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Abstract—Let

f (n) =



1 if n = 1

22n−2
if n ∈ {2, 3, 4, 5}

(
2 + 22n−4

)2n−4

if n ∈ {6, 7, 8, . . .}

We conjecture that if a system

T ⊆ {xi + 1 = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

has only finitely many solutions in positive integers x1, . . . , xn,
then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). We
prove that the function f cannot be decreased and the conjecture
implies that there is an algorithm which takes as input a
Diophantine equation, returns an integer, and this integer is
greater than the heights of integer (non-negative integer, positive
integer, rational) solutions, if the solution set is finite. We show
that if the conjecture is true, then this can be partially confirmed
by the execution of a brute-force algorithm.

Index Terms—bound for integer solutions, Diophantine equa-
tion, finite-fold Diophantine representation, height of a solution,
integer arithmetic.

IN THIS article, we present a conjecture on integer arith-

metic which implies a positive answer to all versions of

the following open problem:

Problem. Is there an algorithm which takes as input a

Diophantine equation, returns an integer, and this integer

is greater than the heights of integer (non-negative integer,

positive integer, rational) solutions, if the solution set is finite?

The height of a rational number
p

q
is defined by max(|p|, |q|)

provided
p

q
is written in lowest terms. The height of a rational

tuple (x1, . . . , xn) is defined as the maximum of n and the

heights of the numbers x1, . . . , xn.

Theorem 1. Only x1 = 1 solves the equation x1 · x1 = x1 in

positive integers. Only x1 = 1 and x2 = 2 solve the system

{x1 · x1 = x1, x1 + 1 = x2} in positive integers. For each in-

teger n > 3, the following system



x1 · x1 = x1

x1 + 1 = x2

∀i ∈ {2, . . . , n − 1} xi · xi = xi+1

has a unique solution in positive integers, namely(
1, 2, 4, 16, 256, . . . , 22n−3

, 22n−2
)
.

Theorem 2. For each positive integer n, the following system



∀i ∈ {1, . . . , n} xi · xi = xi+1

xn+2 + 1 = x1

xn+3 + 1 = xn+2

xn+3 · xn+4 = xn+1

is soluble in positive integers and has only finitely many

integer solutions. Each integer solution (x1, . . . , xn+4) satisfies

|x1|, . . . , |xn+4| 6
(
2 + 22n)2n

. The maximal solution in positive

integers is given by



∀i ∈ {1, . . . , n + 1} xi =
(
2 + 22n)2i−1

xn+2 = 1 + 22n

xn+3 = 22n

xn+4 =
(
1 + 22n − 1

)2n

Proof. The system equivalently expresses that (x1 −2) · xn+4 =

x2n

1 . By this and the polynomial identity

x2n

1 = 22n
+ (x1 − 2) ·

2n − 1∑

k = 0

22n − 1 − k · xk
1

we get that xn+3 = x1 − 2 divides 22n
and xn+4 =

x2n

1

x1 − 2
.

Hence, x1 ∈
[
2 − 22n

, 2 + 22n]
∩ Z, the system has only

finitely many integer solutions, and |x1|, . . . , |xn+4| 6
(
2 + 22n)2n

. �

In [10, p. 719], the author proposed the upper bound 22n−1

for positive integer solutions to any system

T ⊆ {xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}
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which has only finitely many solutions in positive integers

x1, . . . , xn. The bound 22n−1
is not correct for any n > 8

because the following system


∀i ∈ {1, . . . , k} xi · xi = xi+1

xk+2 + xk+2 = xk+3

xk+2 · xk+2 = xk+3

xk+4 + xk+3 = x1

xk+4 · xk+5 = xk+1

provides a counterexample for any k > 3. In [11, p. 96], the

author proposed the upper bound 22n−1
for modulus of integer

solutions to any system

T ⊆ {xk = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

which has only finitely many solutions in integers x1, . . . , xn.

The bound 22n−1
is not correct for any n > 9 because the

following system


∀i ∈ {1, . . . , k} xi · xi = xi+1

xk+2 = 1

xk+3 + xk+2 = x1

xk+4 + xk+2 = xk+3

xk+4 · xk+5 = xk+1

provides a counterexample for any k > 4. Let

f (n) =



1 if n = 1

22n−2
if n ∈ {2, 3, 4, 5}

(
2 + 22n−4

)2n−4

if n ∈ {6, 7, 8, . . .}

Conjecture. If a system

T ⊆ {xi + 1 = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

has only finitely many solutions in positive integers x1, . . . , xn,

then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n).

Theorems 1 and 2 imply that the function f cannot be

decreased. Let Rng denote the class of all rings K that

extend Z, and let

En = {xk = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

Th. Skolem proved that any Diophantine equation can be

algorithmically transformed into an equivalent system of Dio-

phantine equations of degree at most 2, see [6, pp. 2–3]

and [2, pp. 3–4]. The following result strengthens Skolem’s

theorem.

Lemma 1. ([10, p. 720]) Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp].

Assume that deg(D, xi) > 1 for each i ∈ {1, . . . , p}. We can

compute a positive integer n > p and a system T ⊆ En which

satisfies the following two conditions:

Condition 1. If K ∈ Rng ∪ {N, N \ {0}}, then

∀x̃1, . . . , x̃p ∈ K

(
D(x̃1, . . . , x̃p) = 0⇐⇒

∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T
)

Condition 2. If K ∈ Rng ∪ {N, N \ {0}}, then for each

x̃1, . . . , x̃p ∈ K with D(x̃1, . . . , x̃p) = 0, there exists a

unique tuple (x̃p+1, . . . , x̃n) ∈ K
n−p such that the tuple

(x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 1 and 2 imply that for each

K ∈ Rng ∪ {N, N \ {0}}, the equation D(x1, . . . , xp) = 0

and the system T have the same number of solutions in K.

For a positive integer n, let S (n) denote the successor of n.

Lemma 2. Let T be a finite system of equations of the forms:

x = 1, x + y = z, and x · y = z. If the equation x = 1 belongs

to T , then the system T ∪ {x · x = x} \ {x = 1} has the same

solutions in positive integers.

Lemma 3. Let T be a finite system of equations of the forms:

S (x) = y, x + y = z, and x · y = z. If the equation x + y = z

belongs to T and the variables z1, z2, z̃1, z̃2, ṽ, u, t, t̃, v are

new, then the following system

T ∪ {z · x = z1, z · y = z2, S (z1) = z̃1, S (z2) = z̃2, z̃1 · z̃2 = ṽ,

z · z = u, x · y = t, S (t) = t̃, u · t̃ = v, S (v) = ṽ} \ {x + y = z}

has the same solutions in positive integers and a smaller

number of additions.

Proof. According to [5, p. 100], for each positive integers

x, y, z, x + y = z if and only if

S (z · x) · S (z · y) = S ((z · z) · S (x · y))

Indeed, the above equality is equivalent to
(
z2 · x · y + 1

)
+ z · (x + y) =

(
z2 · x · y + 1

)
+ z2

�

Lemmas 1–3 imply the next theorem.

Theorem 3. If we assume the Conjecture and a Diophantine

equation D(x1, . . . , xp) = 0 has only finitely many solutions in

positive integers, then an upper bound for these solutions can

be computed.

Corollary 1. If we assume the Conjecture and a Diophantine

equation D(x1, . . . , xp) = 0 has only finitely many solutions in

non-negative integers, then an upper bound for these solutions

can be computed by applying Theorem 3 to the equation

D(x1 − 1, . . . , xp − 1) = 0.

Corollary 2. If we assume the Conjecture and a Diophantine

equation D(x1, . . . , xp) = 0 has only finitely many integer solu-

tions, then an upper bound for their modulus can be computed

by applying Theorem 3 to the equation
∏

(i1, . . . , ip) ∈ {1, 2}p
D((−1)i1 · (x1 − 1), . . . , (−1)ip · (xp − 1)) = 0

Lemma 4. ([10, p. 720]) If there is a computable upper

bound for the modulus of integer solutions to a Diophantine

equation with a finite number of integer solutions, then there is

a computable upper bound for the heights of rational solutions

to a Diophantine equation with a finite number of rational

solutions.
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Theorem 4. The Conjecture implies that there is a computable

upper bound for the heights of rational solutions to a Diophan-

tine equation with a finite number of rational solutions.

Proof. It follows from Corollary 2 and Lemma 4. �

The Davis-Putnam-Robinson-Matiyasevich theorem states

that every recursively enumerable setM ⊆ Nn has a Diophan-

tine representation, that is

(a1, . . . , an) ∈ M ⇐⇒

∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0 (R)

for some polynomial W with integer coefficients, see [2].

The polynomial W can be computed, if we know the Turing

machine M such that, for all (a1, . . . , an) ∈ Nn, M halts on

(a1, . . . , an) if and only if (a1, . . . , an) ∈ M, see [2]. The repre-

sentation (R) is said to be finite-fold, if for any a1, . . . , an ∈ N

the equation W(a1, . . . , an, x1, . . . , xm) = 0 has only finitely

many solutions (x1, . . . , xm) ∈ Nm. Yu. Matiyasevich conjec-

tures that each recursively enumerable set M ⊆ Nn has a

finite-fold Diophantine representation, see [1, pp. 341–342],

[3, p. 42], and [4, p. 745]. Matiyasevich’s conjecture implies

a negative answer to the Problem, see [3, p. 42].

Theorem 5. (cf. [10, p. 721]) The Conjecture implies that if a

set M ⊆ N has a finite-fold Diophantine representation, then

M is computable.

Proof. Let a setM ⊆ N has a finite-fold Diophantine represen-

tation. It means that there exists a polynomial W(x, x1, . . . , xm)

with integer coefficients such that

∀b ∈ N
(
b ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(b, x1, . . . , xm) = 0

)

and for any b ∈ N the equation W(b, x1, . . . , xm) = 0 has only

finitely many solutions (x1, . . . , xm) ∈ Nm. By Corollary 1,

there is a computable function g : N→ N such that for

each b, x1, . . . , xm ∈ N the equality W(b, x1, . . . , xm) = 0 im-

plies max(x1, . . . , xm) 6 g(b). Hence, we can decide whether

or not a non-negative integer b belongs to M by checking

whether or not the equation W(b, x1, . . . , xm) = 0 has an integer

solution in the box [0, g(b)]m. �

In this paragraph, we follow [9] and we explain why

Matiyasevich’s conjecture although widely known is less

widely accepted. Let us say that a set M ⊆ Nn has a bounded

Diophantine representation, if there exists a polynomial W

with integer coefficients such that

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm ∈ {0, . . . ,max (a1, . . . , an)}

W (a1, . . . , an, x1, . . . , xm) = 0

Of course, any bounded Diophantine representation is

finite-fold and any subset of N with a bounded Diophantine

representation is computable. A simple diagonal argument

shows that there exists a computable subset of N without

any bounded Diophantine representation, see [1, p. 360].

The authors of [1] suggest a possibility (which contradicts

Matiyasevich’s conjecture) that each subset of N which has

a finite-fold Diophantine representation has also a bounded

Diophantine representation, see [1, p. 360].

For a positive integer n, let τ(n) denote the smallest positive

integer b such that for each system

T ⊆ {xi + 1 = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

with a finite number of solutions in positive integers x1, . . . , xn,

all these solutions belong to [1, b]n. By Theorems 1 and 2,

f (n) 6 τ(n) for every positive integer n. The Conjecture im-

plies that f (n) = τ(n) for every positive integer n.

Theorem 6. (cf. [9, Theorem 4]) If a function

h : N \ {0} → N \ {0} has a finite-fold Diophantine

representation, then there exists a positive integer m

such that h(n) < τ(n) for every integer n > m.

Proof. There exists a polynomial W(x1, x2, x3, . . . , xr) with

integer coefficients such that for each positive integers x1, x2,

(x1, x2) ∈ h⇐⇒

∃x3, . . . , xr ∈ N \ {0} W(x1, x2, x3 − 1, . . . , xr − 1) = 0

and for each positive integers x1, x2 at most finitely

many tuples (x3, . . . , xr) of positive integers satisfy

W(x1, x2, x3 − 1, . . . , xr − 1) = 0. By Lemmas 1–3, there

is an integer s > 3 such that for any positive integers x1, x2,

(x1, x2) ∈ h⇐⇒

∃x3, . . . , xs ∈ N \ {0} Ψ(x1, x2, x3, . . . , xs) (E)

where Ψ(x1, x2, x3, . . . , xs) is a conjunction of formulae of the

forms xi + 1 = xk and xi · x j = xk, the indices i, j, k belong

to {1, . . . , s}, and for each positive integers x1, x2 at most

finitely many tuples (x3, . . . , xs) of positive integers satisfy

Ψ(x1, x2, x3, . . . , xs). Let [·] denote the integer part function,

and let an integer n is greater than m = 2s + 2. Then,

n >

[
n

2

]
+

n

2
>

[
n

2

]
+ s + 1

and n −
[

n
2

]
− s − 2 > 0. Let Tn denote the following system

with n variables:


all equations occurring in Ψ(x1, x2, x3, . . . , xs)

∀i ∈
{
1, . . . , n −

[
n
2

]
− s − 2

}
ui · ui = ui

t1 · t1 = t1

∀i ∈
{
1, . . . ,

[
n
2

]
− 1
}

ti + 1 = ti+1

t2 · t[ n
2 ] = u

u + 1 = x1 (if n is odd)

t1 · u = x1 (if n is even)

x2 + 1 = y

By the equivalence (E), the system Tn is soluble in positive

integers, 2 ·
[

n
2

]
= u, n = x1, and

h(n) = h(x1) = x2 < x2 + 1 = y

Since Tn has at most finitely many solutions in positive

integers, y 6 τ(n). Hence, h(n) < τ(n). �
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Below is the excerpt from page 135 of the book [7]:

Folklore. If a Diophantine equation has only finitely many

solutions then those solutions are small in ‘height’ when

compared to the parameters of the equation.

This folklore is, however, only widely believed because of

the large amount of experimental evidence which now exists

to support it.

Below is the excerpt from page 12 of the article [8]:

Note that if a Diophantine equation is solvable, then we can

prove it, since we will eventually find a solution by searching

through the countably many possibilities (but we do not know

beforehand how far we have to search). So the really hard

problem is to prove that there are no solutions when this is

the case. A similar problem arises when there are finitely many

solutions and we want to find them all. In this situation one

expects the solutions to be fairly small. So usually it is not

so hard to find all solutions; what is difficult is to show that

there are no others.

That is, mathematicians are intuitively persuaded that solu-

tions are small when there are finitely many of them. It seems

that there is a reason which is common to all the equations.

Such a reason might be the Conjecture whose consequences

we have already presented.

For a positive integer b, let Φ(b) denote the Conjecture

restricted to systems whose all solutions in positive integers

are not greater than b. Obviously,

Φ(1)⇐ Φ(2)⇐ Φ(3)⇐ . . .

and the Conjecture is equivalent to ∀b ∈ N \ {0} Φ(b). The

Conjecture is true for n = 1 and n = 2. Therefore, the sentence

Φ(4) is true. For each positive integer n, there are only finitely

many systems

T ⊆ {xi + 1 = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

Hence, for each positive integer n there exists a positive integer

m such that the Conjecture restricted to systems with at most

n variables is equivalent to the sentence Φ(m).

Theorem 7. The Conjecture is equivalent to the following

conjecture on integer arithmetic: if positive integers x1, . . . , xn

satisfy max(x1, . . . , xn) > f (n), then there exist positive inte-

gers y1, . . . , yn such that
(
max(x1, . . . , xn) < max(y1, . . . , yn)

)
∧

(
∀i, k ∈ {1, . . . , n} (xi + 1 = xk =⇒ yi + 1 = yk)

)
∧

(
∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk)

)

The execution of the following flowchart never terminates.

Start

c := 2

a := 2

Compute positive integers x1, . . . , xn

and primes r1, . . . , rn such that

r1 < . . . < rn and a = r
x1
1
. . . r

xn
n

Is f (n) < max(x1, . . . , xn) 6 c?

Print [x1, . . . , xn]

Print c − 1

b := 2

Compute positive integers y1, . . . , ym

and primes q1, . . . , qm such that

q1 < . . . < qm and b = q
y1
1
. . . q

ym
m

Is m > n?

Is max(y1, . . . , yn) > c?

Is ∀i, k ∈ {1, . . . , n} (xi + 1 = xk ⇒ yi + 1 = yk)?

Is ∀i, j, k ∈ {1, . . . , n} (xi · x j = xk ⇒ yi · y j = yk)?

Is x1 = . . . = xn = c 6 f (n + 1)?

c := c + 1

a := a + 1

b := b + 1

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Theorem 8. If the Conjecture is true, then the execution of the

flowchart provides an infinite sequence X1, c1, X2, c2, X3, c3, . . .

where {c1, c2, c3, . . .} = N \ {0}, c1 6 c2 6 c3 6 . . . and each Xi

is a tuple of positive integers. Each returned number ci

indicates that the performed computations confirm the sen-

tence Φ(ci). If the Conjecture is false, then the execution

provides a similar finite sequence X1, c1, . . . , Xk, ck on the

output. In this case, for the tuple Xk = (x1, . . . , xn) an appropri-

ate tuple (y1, . . . , yn) does not exist, {c1, . . . , ck} = [1, ck] ∩ N,

c1 6 . . . 6 ck, the sentences Φ(1),Φ(2),Φ(3), . . . ,Φ(ck) are

true, and the sentences Φ(ck + 1),Φ(ck + 2),Φ(ck + 3), . . . are

false.
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Proof. Let pn denote the nth prime number (p1 = 2, p2 = 3,

etc.), and let c stands for any integer greater than 1. The

function f is strictly increasing and there exists the smallest

positive integer n such that c 6 f (n + 1). Hence, if positive

integers x1, . . . , xi satisfy f (i) < max(x1, . . . , xi) 6 c, then i 6 n

and 2 6 p
x1
1
. . . p

xi
i
6 pc

1
. . . pc

n . Therefore, if the sentence Φ(c)

is true, then the flowchart algorithm checks all tuples of

positive integers needed to confirm the sentence Φ(c). �

The following MuPAD code implements a simplified

flowchart’s algorithm which checks the following conjunction
(
m > n

)
∧
(
max(y1, . . . , yn) > c

)
∧

(
∀i, k ∈ {1, . . . , n} (xi + 1 = xk =⇒ yi + 1 = yk)

)
∧

(
∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk)

)

instead of four separate conditions.

c:=2:

while TRUE do

a:=2:

repeat

S:=op(ifactor(a)):

n:=(nops(S)-1)/2:

u:=min(S[2*i+1] $i=1..n):

v:=max(S[2*i+1] $i=1..n):

X:=[S[2*i+1] $i=1..n]:

if n=1 then f:=1 end_if:

if n>1 then f:=2ˆ(2ˆ(n-2)) end_if:

if n>5 then f:=(2+2ˆ(2ˆ(n-4)))ˆ(2ˆ(n-4))

end_if:

g:=2ˆ(2ˆ(n-1)):

if n>4 then g:=(2+2ˆ(2ˆ(n-3)))ˆ(2ˆ(n-3))

end_if:

if f<v and v<=c then

print(X):

print(c-1):

b:=2:

repeat

T:=op(ifactor(b)):

m:=(nops(T)-1)/2:

Y:=[T[2*i+1] $i=1..m]:

r:=min(m-n+1,max(Y[i] $i=1..m)-c):

for i from 1 to min(n,m) do

for j from 1 to min(n,m) do

for k from 1 to min(n,m) do

if X[i]+1=X[k] and Y[i]+1<>Y[k] then

r:=0 end_if:

if X[i]*X[j]=X[k] and Y[i]*Y[j]<>Y[k] then

r:=0 end_if:

end_for:

end_for:

end_for:

b:=b+1:

until r>0 end_repeat:

end_if:

a:=a+1:

until c=u and c=v and c<=g end_repeat:

c:=c+1:

end_while:

We attempt to confirm the sentence Φ(256). Since the

execution of the flowchart algorithm (or its any variant)

proceeds slowly, we must confirm the sentence Φ(256) in a

different way. For integers a1, . . . , an, let P(a1, . . . , an) denote

the following system of equations:
{

xi + 1 = xk (if ai + 1 = ak)

xi · x j = xk (if ai · a j = ak)

Lemma 5. For each positive integer n, there exist positive

integers a1, . . . , an such that a1 6 . . . 6 an = τ(n) and the sys-

tem P(a1, . . . , an) has only finitely many solutions in positive

integers. Each such numbers a1, . . . , an satisfy a1 < . . . < an.

Proof. If a1 < . . . < an does not hold, then we remove the first

duplicate and insert an + 1 after an. Since an + 1 > an = τ(n),

we get a contradiction. �

Let F denote the family of all systems P(a1, a2, a3), where

integers a1, a2, a3 satisfy 1 < a1 < a2 < a3.

Theorem 9. The Conjecture is true for n = 3.

Proof. By Lemma 5, there exist positive integers a1, a2, a3

such that a1 < a2 < a3 = τ(3) and the system P(a1, a2, a3) has

only finitely many solutions in positive integers. If a1 = 1, then

a2 = 2 and a3 ∈ {3, 4}. Let a1 > 1. Since a1 < a2 < a3, we get

a1 · a1 < a1 · a2 < a2 · a2. Hence,

card
(
P(a1, a2, a3)∩

{
x1 · x1 = x3, x1 · x2 = x3, x2 · x2 = x3

})
6 1

Each integer a1 satisfies a1 + 1 , a1 · a1. Hence,

card
(
P(a1, a2, a3) ∩

{
x1 + 1 = x2, x1 · x1 = x2

})
6 1

Since a1 < a2 < a3, the equation x1 + 1 = x3 does not belong

to P(a1, a2, a3). By these observations, the following table

shows all solutions in positive integers to any system that

belongs to F .
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∅ {x1·x1=x3} {x1·x2=x3} {x2·x2=x3}

any triple any triple any triple any triple

∅∪ (s, t, u)
(
s, t, s2

)
(s, t, s·t)

(
s, t, t2

)

solves this solves this solves this solves this
system system system system

any triple any triple any triple any triple

{x1+1=x2} ∪ (s, s+1, u)
(
s, s+1, s2

)
(s, s+1, s·(s+1))

(
s, s+1, (s+1)2

)

solves this solves this solves this solves this
system system system system

any triple any triple any triple

{x1·x1=x2} ∪
(
s, s2
, u
)

< F
(
s, s2
, s3
) (

s, s2
, s4
)

solves this solves this solves this
system system system

any triple any triple

{x2+1=x3} ∪ (s, t, t+1)
(
s, s2−1, s2

)
< F < F

solves this solves this
system system

any triple only the triple
{x1+1=x2, (s, s+1, s+2) (2, 3, 4) < F < F
x2+1=x3} ∪ solves this solves this

system system
any triple

{x1·x1=x2,

(
s, s2
, s2+1

)
< F < F < F

x2+1=x3} ∪ solves this
system

The table indicates that the system
{
x1 + 1 = x2, x2 + 1 = x3, x1 · x1 = x3

}
=

{
x1 + 1 = x2, x2 + 1 = x3

}
∪
{
x1 · x1 = x3

}

has a unique solution in positive integers, namely (2, 3, 4). The

other presented systems do not belong to F or have infinitely

many solutions in positive integers. �

Corollary 3. Since the Conjecture is true for n ∈ {1, 2, 3}, the

sentence Φ(16) is true.

Theorem 10. The sentence Φ(256) is true.

Proof. By Corollary 3, it suffices to consider quadruples of

positive integers. The next MuPAD code returns 63 quadruples

(ai, bi, ci, di) of positive integers, where ai < bi < ci < di 6 256

and max(ai, bi, ci, di) = di > 16. These quadruples have the

following property: if positive integers a, b, c, d satisfy

a < b < c < d 6 256 and max(a, b, c, d) = d > 16, then there

exists i ∈ {1, . . . , 63} such that P(a, b, c, d) ⊆ P(ai, bi, ci, di).

TEXTWIDTH:=60:

S:={}:

G:=[]:

T:={}:

H:=[]:

for a from 1 to 256 do

for b from 1 to 256 do

for c from 1 to 256 do

Y:=[1,a+1,a*a,a*b]:

for l from 1 to 4 do

X:=sort([a,b,c,Y[l]]):

u:=nops({a,b,c,Y[l]}):

v:=max(a,b,c,Y[l]):

if u=4 and 16<v and v<257 then

M:={}:

for i from 1 to 4 do

for j from i to 4 do

for k from 1 to 4 do

if X[i]+1=X[k] then

M:=M union {[i,k]} end_if:

if X[i]*X[j]=X[k] then

M:=M union {[i,j,k]} end_if:

end_for:

end_for:

end_for:

d:=nops(S union {M})-nops(S):

if d=1 then

S:=S union {M}:

G:=append(G,M):

T:=T union {X}:

H:=append(H,X):

end_if:

end_if:

end_for:

end_for:

end_for:

end_for:

for w from 1 to nops(G) do

for z from 1 to nops(G) do

p:=nops(G[w] minus G[z]):

q:=nops(G[z] minus G[w]):

if p=0 and 0<q then T:=T minus {H[w]}

end_if:

end_for:

end_for:

print(T):

The next table displays the quadruples

[a1, b1, c1, d1], . . . , [a63, b63, c63, d63] and shows that for

each i ∈ {1, . . . , 63} the system P(ai, bi, ci, di) has infinitely

many solutions in positive integers, which completes the

proof by Lemma 5. �
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(1, 2, 3, t) (1, 2, 4, t) (2, 3, 4, t)
[1, 2, 3, 17] [1, 2, 4, 17] [2, 3, 4, 17](

t, t+1, t (t+1) , t(t+1)2
)

(1, 2, t, 2t) (1, t, t+1, t(t+1))

[2, 3, 6, 18] [1, 2, 9, 18] [1, 4, 5, 20](
t, t2, t2+1, t2

(
t2+1
)) (

t, t+1, (t+1)2
, t(t+1)2

)
(t, t+1, t+2, (t+1)(t+2))

[2, 4, 5, 20] [2, 3, 9, 18] [3, 4, 5, 20](
1, 2, t, t2

) (
1, t, t+1, (t+1)2

)
(t, t+1, t+2, t(t+1))

[1, 2, 5, 25] [1, 4, 5, 25] [4, 5, 6, 20]

(1, 2, t, t+1)
(
t, t2, t2+1,

(
t2+1
)2) (

1, t, t+1, t2
)

[1, 2, 16, 17] [2, 4, 5, 25] [1, 5, 6, 25](
t, t+1, t+2, (t+2)2

) (
1, t, t2, t2+1

) (
t, t2, t4, t4+1

)

[3, 4, 5, 25] [1, 4, 16, 17] [2, 4, 16, 17]

(t, t+1, t+2, t(t+2))
(
1, t, t2, t3

) (
t, t+1, (t+1)2

, (t+1)2+1
)

[4, 5, 6, 24] [1, 3, 9, 27] [3, 4, 16, 17](
t, t+1, t+2, (t+1)2

) (
t, t+1, (t+1)2

, (t+1)3
) (

t, t+1, t2, t2+1
)

[4, 5, 6, 25] [2, 3, 9, 27] [4, 5, 16, 17](
t, t+1, t2, t3

) (
t, t+1, t+2, t2

) (
t, t2−1, t2, t

(
t2−1
))

[3, 4, 9, 27] [5, 6, 7, 25] [3, 8, 9, 24](
t, t+1, t2, t(t+1)

) (
t, t2, t3, t5

) (
t, t+1, t(t+1), t2(t+1)2

)

[4, 5, 16, 20] [2, 4, 8, 32] [2, 3, 6, 36](
t, t2−1, t2, t3

)
(t, t+1, t(t+1)−1, t(t+1)) (1, t, t+1, t+2)

[3, 8, 9, 27] [4, 5, 19, 20] [1, 15, 16, 17](
t, t2, t2+1, t3

) (
t, t+1, t2, (t+1)2

)
(t, t+1, t(t+1), t(t+1)+1)

[3, 9, 10, 27] [4, 5, 16, 25] [4, 5, 20, 21](
t, t+1, t2, (t+1)t2

) (
t, t2, t2+1, t

(
t2+1
)) (

t, t2−1, t2, t2+1
)

[3, 4, 9, 36] [3, 9, 10, 30] [4, 15, 16, 17](
t, t2, t4, t5

) (
t, t+1, t(t+1), (t+1)2

) (
1, t, t2−1, t2

)

[2, 4, 16, 32] [4, 5, 20, 25] [1, 5, 24, 25](
t, t+1, t(t+1), t2(t+1)

) (
t, t2, t2+1, t2+2

) (
t, t+1, (t+1)2−1, (t+1)2

)

[3, 4, 12, 36] [4, 16, 17, 18] [4, 5, 24, 25](
t, t+1, t2−1, t2

)
(t, t+1, t+2, t+3)

(
t, t2, t3−1, t3

)

[5, 6, 24, 25] [14, 15, 16, 17] [3, 9, 26, 27](
t, t2, t3, t3+1

) (
t, t2−2, t2−1, t2

) (
t, t2, t3, t6

)

[3, 9, 27, 28] [5, 23, 24, 25] [2, 4, 8, 64](
t, t2−1, t2,

(
t2−1
)2) (

t, t2, t4, t6
) (

t, t2−1, t2,
(
t2−1
)

t2
)

[3, 8, 9, 64] [2, 4, 16, 64] [3, 8, 9, 72](
t2, t3, t4, t6

) (
1, t, t2, t4

) (
t, t+1, (t+1)2

, (t+1)4
)

[4, 8, 16, 64] [1, 3, 9, 81] [2, 3, 9, 81](
t, t+1, t2, t4

) (
t, t2−1, t2, t4

) (
t, t2, t2+1, t4

)

[3, 4, 9, 81] [3, 8, 9, 81] [3, 9, 10, 81](
t, t2, t3, t4

) (
t, t2, t4−1, t4

) (
t, t2, t4, t8

)

[3, 9, 27, 81] [3, 9, 80, 81] [2, 4, 16, 256]

Of course, the Conjecture restricted to integers

n ∈ {1, 2, 3, 4} is intuitively obvious and implies Theorem 10.

Formally, the Conjecture remains unproven for n = 4. We

explain why a hypothetical brute-force proof of the Conjecture

for n = 4 is much longer than the proof of Theorem 10. By

Lemma 5, it suffices to consider only the systems P(a, b, c, d),

where positive integers a, b, c, d satisfy a < b < c < d.

Case 1: a = 1. Obviously,

card
({

x1 + 1 = x2

}
∩ P(a, b, c, d)

)
6 1

and

card
({

x3 + 1 = x4

}
∩ P(a, b, c, d)

)
6 1

Since b + 1 < b · b, we get

card
({

x2 + 1 = x3, x2 · x2 = x3

}
∩ P(a, b, c, d)

)
6 1

Since b · b < b · c < c · c, we get

card
({

x2 · x2 = x4, x2 · x3 = x4, x3 · x3 = x4

}
∩ P(a, b, c, d)

)
6 1

The above inequalities allow one to determine (1+1) · (1+1) ·

(2 + 1) · (3 + 1) = 48 systems which need to be solved.

Case 2: a > 1. Obviously,

card
({

x2 + 1 = x3

}
∩ P(a, b, c, d)

)
6 1

Since a + 1 < a · a, we get

card
({

x1 + 1 = x2, x1 · x1 = x2

}
∩ P(a, b, c, d)

)
6 1

Since c + 1 < a · c, we get

card
({

x3 + 1 = x4, x1 · x3 = x4

}
∩ P(a, b, c, d)

)
6 1

Since a · a < a · b < b · b, we get

card
({

x1 · x1 = x3, x1 · x2 = x3, x2 · x2 = x3

}
∩ P(a, b, c, d)

)
6 1

Since a · a < a · b < b · b < b · c < c · c, we get

card
({

x1 · x1 = x4, x1 · x2 = x4, x2 · x2 = x4,

x2 · x3 = x4, x3 · x3 = x4

}
∩ P(a, b, c, d)

)
6 1

The above inequalities allow one to determine (1 + 1) ·

(2 + 1) · (2 + 1) · (3 + 1) · (5 + 1) = 432 systems which need to

be solved.

MuPAD is a computer algebra system whose syntax is

modelled on Pascal. The commercial version of MuPAD is

no longer available as a stand-alone product, but only as

the Symbolic Math Toolbox of MATLAB. Fortunately, the

presented codes can be executed by MuPAD Light, which was

offered for free for research and education until autumn 2005.
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