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Abstract—We describe our submission to the AAIA’15 Data
Mining Competition, where the objective is to tag the activity
of firefighters based on vital functions and movement sensor
readings. Our solution exploits a selective naive Bayes classifier,
with optimal preprocessing, variable selection and model aver-
aging, together with an automatic variable construction method
that builds many variables from time series records. The most
challenging part of the challenge is that the input variables are
not independent and identically distributed (i.i.d.) between the
train and test datasets. We suggest a methodology to alleviate this
problem, that enabled to get a final score of 0.76 (team marcb).

I. INTRODUCTION

The AAIA’15 Data Mining Competition [1] is related to

a problem of activity tagging. Firefighters are equipped with

body sensors that register vital functions and movements.

Vital function records are summarized by statistics (minimum,

maximum, median...) using a fixed number of input variables,

whereas movement records are available as 42 times series of

length 1.8 s with measures every 4.5 ms. Train data consists of

20,000 samples for activities recorded from four firefighters,

whereas the test data contains 20,000 samples coming from a

different group of four firefighters. The objective is to tag the

activity of firemen, among 24 activities, and the evaluation

criterion is the balanced accuracy (BAC). In this paper, we

present our submission to the challenge. It exploits a Selective

Naive Bayes classifier together with an automatic variable

construction method (Section II). We motivate the choice of

this classification framework and describe its application to the

challenge in Section III. A good classifier trained on the train

data obtains a disastrous leaderboard score. This is not caused

by over-fitting, but by a severe distribution drift between the

train and test data. We suggest in Section IV a methodology to

alleviate this problem. In Section V, we present related work

and discuss our approach. Finally, Section VI summarizes the

paper.

II. SUPERVISED CLASSIFICATION FRAMEWORK

We summarize the Selective Naive Bayes (SNB) classifier

introduced in [2]. It extends the Naive Bayes classifier [3]

owing to an optimal estimation of the class conditional prob-

abilities, a Bayesian variable selection and a Compression-

based Model Averaging. We also describe the automatic vari-

able construction framework presented in [4], used to get a

tabular representation from times series.

A. Optimal discretization

The Naive Bayes (NB) classifier has proved to be very

effective in many real data applications [3], [5]. It is based on

the assumption that the variables are independent within each

class, and solely relies on the estimation of univariate condi-

tional probabilities. The evaluation of these probabilities for

numerical variables has already been discussed in the literature

[6], [7]. Experiments demonstrate that even a simple equal

width discretization brings superior performance compared to

the assumption using a Gaussian distribution per class. Using

a discretization method, each numerical variable is recoded as

a categorical variable, with a distinct value per interval. Class

conditional probabilities are assumed to be piecewise constant

per interval, and obtained by counting the number of instances

per class in each interval. These class conditional probabilities

are used as inputs for the naive Bayes classifier. Figure 1 shows

an example of discretization into three intervals, for the Sepal

width input variable of the Iris dataset [8].
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Fig. 1. Number of instances per class in the Iris dataset, for a discretization
of the Sepal width input variable into three intervals
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In the MODL approach [9], the discretization is turned into

a model selection problem and solved in a Bayesian way. First,

a space of discretization models is defined. The parameters

of a specific discretization model M are the number of

intervals, the bounds of the intervals and the class frequencies

in each interval. Then, a prior distribution is proposed on

this model space. This prior exploits the hierarchy of the

parameters: the number of intervals is first chosen, then the

bounds of the intervals and finally the class frequencies. The

choice is uniform at each stage of the hierarchy. Finally, the

multinomial distributions of the class values in each interval

are assumed to be independent from each other. A Bayesian

approach is applied to select the best discretization model,

which is found by maximizing the maximum a posteriori

(MAP) model. Owing to the definition of the model space

and its prior distribution, the Bayes formula is applicable to

derive an exact analytical criterion to evaluate the posterior

probability of a discretization model. The optimized criterion

is p(M)p(D|M), where p(M) is the prior probability of a

preprocessing model and p(D|M) the conditional likelihood

of the data given the model.

Efficient search heuristics allow to find the most probable

discretization given the data sample. Extensive comparative

experiments report high performance.

Univariate informativeness evaluation: A 0-1 normalized

version of the optimized criterion provides a univariate in-

formativeness evaluation of each input variable. Taking the

negative log of the MAP criterion, c(M) = −(log p(M) +
log p(D|M)), the approach receives a Minimim Description

Length (MDL) [10] interpretation, where the objective is to

minimize the coding length of the model plus that of the

data given the model. The null model M∅ is the preprocessing

model with one single interval, which represents the case with

no correlation between the input and output variables. We

then introduce the I(V) criterion in Equation 1 to evaluate the

informativeness of a variable V .

I(V ) = 1−
c(M)

c(M∅)
. (1)

The value of I(V ) grows with the informativeness of an input

variable. It is a between 0 and 1, 0 for irrelevant variables

uncorrelated with the target variable and 1 for variables that

perfectly separate the target values.

B. Bayesian Approach for Variable Selection

The naive independence assumption can harm the perfor-

mance when violated. In order to better deal with highly

correlated variables, the Selective Naive Bayes approach [11]

exploits a wrapper approach [12] to select the subset of vari-

ables which optimizes the classification accuracy. Although

the Selective Naive Bayes approach performs quite well on

datasets with a reasonable number of variables, it does not

scale on very large datasets with hundreds of thousands of

instances and thousands of variables, such as in marketing

applications or text mining. The problem comes both from the

search algorithm, whose complexity is quadratic in the number

of variables, and from the selection process which is prone to

overfitting. In [2], the overfitting problem is tackled by relying

on a Bayesian approach, where the best model is found by

maximizing the probability of the model given the data. The

parameters of a variable selection model are the number of

selected variables and the subset of variables. A hierarchic

prior is considered, by first choosing the number of selected

variables and second choosing the subset of selected variables.

The conditional likelihood of the models exploits the Naive

Bayes assumption, which directly provides the conditional

probability of each class. This allows an exact calculation

of the posterior probability of the models. Efficient search

heuristic with super-linear computation time are proposed, on

the basis of greedy forward addition and backward elimination

of variables.

C. Compression-Based Model Averaging

Model averaging has been successfully exploited in bag-

ging [13] using multiple classifiers trained from re-sampled

datasets. In this approach, the averaged classifier uses a voting

rule to classify new instances. Unlike this approach, where

each classifier has the same weight, the Bayesian Model Av-

eraging (BMA) approach [14] weights the classifiers according

to their posterior probability. In the case of the Selective Naive

Bayes classifier, an inspection of the optimized models reveals

that their posterior distribution is so sharply peaked that av-

eraging them according to the BMA approach almost reduces

to the MAP model. In this situation, averaging is useless. In

order to find a trade-off between equal weights as in bagging

and extremely unbalanced weights as in the BMA approach,

a logarithmic smoothing of the posterior distribution, called

Compression-based Model Averaging (CMA), is introduced

in [2]. The weighting scheme on the models reduces to a

weighting scheme on the variables, and finally results in a sin-

gle Naive Bayes classifier with weights per variable. Extensive

experiments demonstrate that the resulting Compression-based

Model Averaging scheme clearly outperforms the Bayesian

Model Averaging scheme. In the rest of the paper, the classifier

resulting from model averaging is called Selective Naive Bayes

(SNB).

D. Automatic Variable Construction for Multi-Table

In a data mining project, the data preparation phase aims

at constructing a data table for the modeling phase [15], [16].

The data preparation is both time consuming and critical for

the quality of the mining results. It mainly consists in the

search of an effective data representation, based on variable

construction and selection. Variable construction [17] has been

less studied than variable selection [18] in the literature.

However, learning from relational data has recently received an

increasing attention. The term Multi-Relational Data Mining

(MRDM) was initially introduced in [19] to address novel

knowledge discovery techniques from multiple relational ta-

bles. The common point between these techniques is that

they need to transform the relational representation. Methods

named by propositionalisation [20], [21], [22] try to flatten the
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relational data by constructing new variables that aggregate the

information contained in non target tables in order to obtain a

classical tabular format.

In [4], an automatic variable construction method is pro-

posed for supervised learning, in the multi-relational setting

using a propositionalisation-based approach. Domain knowl-

edge is specified by describing the multi-table structure of the

data and choosing construction rules. The formal description

of the data structure relies on a root table that contains the

main statistical units and several secondary tables in 0 to

1 or 0 to n relationship with the root table. For example,

Figure 2 describes the structure of the data for the challenge.

The construction rules available for automatic construction of

variables are detailed below:

• Selection(Table, Num)→Table: selection of records from

a secondary table according to a conjunction of selection

terms (membership in a numerical interval of a variable

Num in the secondary table),

• Count(Table)→Num: count of records in a table,

• Mean(Table, Num)→Num: mean value of variable Num,

• Median(Table, Num)→Num: median value,

• Min(Table, Num)→Num: min value,

• Max(Table, Num)→Num: max value,

• StdDev(Table, Num)→Num: standard deviation,

• Sum(Table, Num)→Num: sum of values.

The space of variables that can be constructed is virtually

infinite, which raises both combinatorial and over-fitting prob-

lems. When the number of original or constructed variables

increases, the chance for a variable to be wrongly considered

as informative becomes critical. A prior distribution over

all the constructed variables is introduced. This provides a

Bayesian regularization of the constructed variables, which

allows to penalize the most complex variables. An effective

algorithm is introduced as well to draw samples of constructed

variables from this prior distribution. Experiments show that

the approach is robust and efficient.

III. APPLYING THE FRAMEWORK FOR THE CHALLENGE

We motivate our choice of the classification framework1,

then describe how we apply it on the challenge dataset.

A. Choice of the classification framework

In all our challenge submissions, we exploit the frame-

work described in Section II to train a selective naive Bayes

classifier, with optimal discretization, variable selection and

model averaging. The classifier is trained on a flat data repre-

sentation, obtained using the automatic variable construction

method (Section II-D) that builds many variables from the

time series records data. Once the data schema is specified,

the only parameter is the number of variables to construct. The

method is fully automatic, scalable and highly robust, with test

performance mainly equivalent to train performance.

The SNB classifier is resilient to noise and to redundancies

between the input variables, but it is blind to non-trivial

1Available as a shareware at http://www.khiops.com

interactions between the variables. This can be leveraged by

feature engineering, relying on domain expertise rather than on

statistical expertise. More accurate classification methods are

available, such as random forests, gradient boosting methods,

support vector machines or neural networks. However, these

methods require intensive feature engineering to get a flat

input data table representation, are prone to over-fitting, are

mainly black-box, not suitable for an easy interpretation of the

models and finally require fine parameter tuning, both time

consuming and expertise intensive. In an industrial context

like the Orange telecommunication operator, the major issue

is to quickly provide an accurate, robust and interpretable

solution to many data mining problems, rather than a very

accurate solution to few problems. In this context, the generic

framework described in Section II and used in this challenge

offers a good solution.

B. Application to the challenge dataset

For the AAIA’15 Data Mining Competition, firefighters are

described using a root table that contains the target activity as

well as the summary variables for the vital function sensors

and a secondary table for the movement sensors readings. An

identifier variable Id is added in each record of both tables, to

enable the join between the root and secondary tables.

Firefighter
#Id: Cat
 avg-ecg1: Num
 avg-ecg2: Num
 ...
 avg-diff-temp: Num
 MvtSensor: Table(MvtSensorReading)
 class: Cat

MvtSensorReading
#Id: Cat
 system_millis: Num
 ll-acc-x: Num
 ...
 torso-gyro-z: Num

Fig. 2. Multi-table representation for the data of the AAIA’15 challenge

The multi-table representation of the challenge data is

presented in Figure 2. The root table (Firefighter) contains

20,000 instances, with 44 variables: Id, the 42 vital function

input variables (avg-ecg1, avg-ecg2, . . . avg-diff-temp) and

the class variable. The secondary table (MvtSensorReading)

contains 20,000 × 400 records, with 44 variables: Id as a join

key and the 43 time series variables for the movement sensor

readings (system millis, ll-acc-x, . . . torso-gyro-z). Using the

data structure presented in Figure 2 and the construction rules

introduced in Section II-D, one can for example construct the

following variables (“name” = formula: comment) to enrich

the description of a Firefighter:

• “StdDev(MvtSensor.rl-acc-x)” =
StdDev(MvtSensor, rl-acc-x):
standard deviation of rl-acc-x in the sensor readings,

• “Count(MvtSensor) where ll-gyro-y > 60” =
Count(Selection(MvtSensor, ll-gyro-y > 60)):
number of sensor readings where ll-gyro-y > 0,

• “Max(MvtSensor.torso-acc-z) where torso-acc-x > 5” =
Max(Selection(MvtSensor, torso-acc-x > 5), torso-acc-z):
max of torso-acc-z for sensor readings where torso-acc-x > 5.
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The number of variables to construct is the only user pa-

rameter. An input flat data table representation is then obtained

from the initial input variables coming from the root table and

the set of all automatically constructed variables. All these

variables are then preprocesses using the optimal discretization

method (cf. SectionII-A) to assess their informativeness and

evaluate their class conditional probabilities, before training

the SNB classifier. For advanced use, it is possible to impose

a constraint on the granularity of the discretizations (cf.

Section II-A): instead of obtaining the optimal number of

intervals, the preprocessing method output discretizations with

at most IMax intervals, where IMax is a user parameter.

IV. CHALLENGE SUBMISSION

In this section, we describe our submissions to the challenge

and suggest a methodology to alleviate the problem of the drift

between the train and test distributions of the challenge dataset.

A. First trials

a) Submission 1: To get familiar with the challenge eval-

uation protocol, we made a first quick trial, using only the 43

vital function variables. We obtained a surprisingly high train

accuracy, with few over-fitting: 0.9840 and 0.9680 on a 70%-

30% split of the train dataset. However, our first submission

obtained only a 0.1859 score on the challenge leaderboard.

This dramatic drop of performance was not caused by over-

fitting, but by a drift between the train and test distributions

(based on two different groups of four firefighters).

b) Submission 2: We then generated 100 additional vari-

ables to summarize the movement sensors times series, using

the framework described in Section II-D. As we observed

that the optimal discretizations (see Section II-A) were very

fine grained, with up to hundred of intervals, we decided

to constrain the discretization method to build at most 10

intervals. We obtained a 0.9499 train accuracy (on the test

split of the train dataset), and a 0.4566 leaderboard score.

Constraining the discretisations thus reduced the drift effect.

c) Submission 3: Using discretizations with at most

two intervals, we obtained a 0.8603 train accuracy and a

0.6372 leaderboard score. This confirmed the benefit of the

constrained discretisations to reduce the drift effect.

d) Submission 4.: Still using discretizations with at most

two intervals, we generated 1,000 variables from the move-

ment sensors times series. We obtained a 0.9254 train accuracy

and a 0.6951 leaderboard score.

Table I summarizes the performance obtained for each

preliminary submission as well as the related user parame-

ters: number of constructed variables (cf. Section II-D) and

constrain on the maximum number of intervals in the dis-

cretizations (cf. variable preprocessing in SectionII-A).

These preliminary trials took only one hour and gave

interesting insights.

B. Analysis, trials and errors

Let us consider two tasks: classification of the activity and

detection of the drift. The drift detection task can be turned

TABLE I
METHOD PARAMETERS AND PERFORMANCE PER SUBMISSION

Submission Constructed Interval Train Leaderboard
variables max nb accuracy score

Submission 1 0 0.9680 0.1859

Submission 2 100 10 0.9499 0.4566

Submission 3 100 2 0.8603 0.6372

Submission 4 1000 2 0.9254 0.6951

into a classification task as in [23], by merging the train and

test datasets and using the dataset label (’train’ or ’test’) as

the target variable. Intuitively, if we are able to select an input

representation with good classification accuracy on the train

dataset but poor drift detection, we expect that our classifier

will be less sensitive to drift and that the performance drop

on the test dataset will be reduced.

The objective is then to explore varying input representa-

tions and select the one with the best classification accuracy

together with the poorest drift detection. To do so, we mainly

considered the following dimensions: max number of intervals

for discretizations, representation of times series, selection of

variables, both for the root and secondary tables, choice of

construction rules, number of constructed variables. Exploiting

the informativeness of variables both from the classification

and drift detection tasks, we made many trials and errors and

finally obtained a solution with a leaderboard score of 0.7892.

This solution mainly consists of:

1) discretizations with at most two intervals,

2) no use of any vital function variables, selection of part

of the movement variables (mainly, the acc-x and acc-z

for the torso, the acc-x, acc-z, gyro-x, gyro-y for the legs

and acc-x, gyro-x, gyro-z for the hands),

3) construction of 10,000 variables using only the Count

and Selection construction rules.

C. A methodology to reduce the drift problem

While the approach described in the preceding section was

insightful and allowed to improve significantly the leader-

board score, it heavily relies on human expertise and is

time consuming. We now suggest a methodology that aims

at automatizing the approach. First, we use all the initial

input representation and all the available construction rules

to build 10,000 variables. Using discretizations with at most

two intervals, we evaluate the informativeness of each input

variable (cf. Formula 1), both for the drift detection and the

classification tasks. The results, displayed in Figure 3, show

that there are variables with large drift informativeness and

small classification informativeness (top-left of the figure),

or on the contrary variables with small drift informativeness

and large classification informativeness (bottom-right). The

interesting variables are those close to the X axis, with small

drift informativeness.

We then sort the variables by increasing drift informa-

tiveness and select subsets of variables of increasing sizes,

for a list of thresholds of drift informativeness (0, 0.0001,

0.00025...). Figure 4 displays the number of informative
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variables for both the classification and detection tasks, for

each drift threshold. For example, using a threshold of 0

that excludes any variable with drift informativeness, the

smallest selected subset contains around 2,000 variables that

are informative for the classification task.
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For each of these subsets, we train the selective naive Bayes

classifier both for the classification and drift detection tasks,

collect the resulting accuracies as well as the leaderboard score

obtained with the related submissions. For both tasks, we use

a 70%-30% split of the data to evaluate the robustness of

the classifier, and always observe a small difference (≈ 1%)

between the train and test performance.

Training times are more than ten times longer for the

classification task (24 target values) than for the drift detection

task (two labels). The largest classification task consists of

14,000 train instances (70%*20,000) and 10,000 constructed

variables, each summarizing 400 movement sensor readings.

On a PC Windows with Intel Xeon 2.3 Ghz processor, it took

about half an hour for the data preparation and four hours to

train the SNB classifier.

Figure 5 shows that the accuracy of drift detection rapidly

decreases with smaller number of variables while the decrease

is slower for the train classification accuracy. Meanwhile,

the leaderboard score increases, from 0.7083 using all the

variables to a plateau with a leaderboard score of about 0.78

between 2,500 and 6,000 variables . Using this methodology,

our final chosen submission obtained a leaderboard score of

0.7
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Fig. 5. Train classification, drift detection and leaderboard accuracies w.r.t.
number of input variables

0.7856 (using around 4,500 variables) and a final score of 0.76.

D. Insights on relevant variables

Looking at Figure 4, we can see that the selected subset

that contains around 4,500 variables is related to a drift

threshold of 0.005, which is very small. Figure 3 shows that

this corresponds to variables very close from the X axis, with

potentially large class informativeness but very small drift

detection informativeness.

For interpretability purposes, it is interesting to further

investigate on which kind of variables are kept in the best

classifier. In Figure 6, we reuse the same kind of plot as in

Figure 3 and focus on the initial data representation, per family

of variables. The 42 vital function variables are summarized

in five families: EGC, heart rate, breath rate, respiration and

temperature. The figure shows that these variables (especially

the heart rate ones) have large drift informativeness and small

classification informativeness. They are excluded from the best

classifier. As for the 42 movement sensor time series, we

divided the analysis using separate plots for the 7 body parts

(torso, left and right hand, arm and legs) with 6 families

per body part: x, y and z readings for the accelerometer

and gyroscope. From the 10,000 automatically constructed

variables, we collected the subset of variables related to each

body part per family. The results are summarized in the 7 body

part plots in Figure 6. This brings interesting insights w.r.t. to

the relevance of each movement sensor for the classification

task. For example, the arm sensors are the least interesting,

since they are related to many variables with large drift

informativeness. On the opposite, the other body part sensors

are related to many constructed variable close to the X axis,

with small drift informativeness and large classification infor-

mativeness. Overall, the torso and leg movement sensor bring

the most useful information. The dissimilarity between the left

and right body part sensors appears clearly. For example, for

the left hand, the z accelerometer is too sensible to the drift,

and for the left leg, this the case for the y accelerometer.

All these insights may be useful to optimize data collection

and pre-processing in order to improve the performance of the

classifier.

E. Limits of the approach

Using the leaderboard to chose the best solution is likely to

overfit the test dataset, and the solution might not be reliable
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when applied to new firefighters not in the train nor test

datasets. Ideally, data should be collected from more distinct

firefighters to improve the reliability and performance of the

solution. Also, the firefighter identifiers should be available in

the datasets. This would enable a cross-validation process with

splits based on distinct firefighters, to select the best solution

using the train dataset only.

V. RELATED WORK AND DISCUSSION

The challenge settings rely on a train and test datasets with

the same task. As in supervised learning, labels are available in

the train dataset and not available in the test dataset. However,

the train and test data do not come from the same distribution

(different firefighters in train and test).

In semi-supervised learning, [24] the objective is to exploit

both labeled and unlabeled data, as in our approach, but the

distributions of the labeled and unlabeled data are assumed to

be the same. The case of transfer learning (see [25] for a com-

prehensive survey) is close to the challenge settings. Transfer

learning aims at exploiting two source and target domains and

tasks, with or without available labels for each task. It has been

studied under different names (learning to learn, knowledge

transfer, inductive transfer, multitask learning...) and covers

a variety of settings. The closest one is called Transductive

Transfer Learning (also named Domain Adaptation, Sample

Selection Bias, Co-variate shift...), where the source and target

domains are different but related, the tasks are the same,

and the labels are available only in the source domain. In

this setting, our approach is related to Feature-Representation

Transfer approaches, where the objective is to find a good

feature representation that reduces the difference between the

source and target domains and improves the accuracy for the

target task. According to Pan and Yang [25], most feature-

representation transfer approaches to the transductive transfer

learning settings are under unsupervised learning frameworks.

In structural correspondence learning (SCL) [26], a set of

domain specific pivot features is defined and treated as a

new label vector. The corresponding classification problems

are assumed to be solved by linear classifiers. SCL then

learns a matrix of parameters and applies a singular value

decomposition on this matrix. This allows to create new

features that encodes a correspondence between the source and

target domains. The tricky part is how to well design the pivot

features. This can be done heuristically or using mutual infor-

mation [27]. Many approaches focus on the natural language

processing (NLP) domain. In [28], a kernel-mapping function

is proposed to map the data from both the source and target

domains. However, the kernel is domain knowledge driven

and is not easy to generalize to other applications. In [29],

a co-clustering based approach is proposed to propagate the

labels across the domains. In [30], an algorithm named bridged

refinement is proposed to correct the labels predicted by a

shift-unaware classifier toward a target distribution and take

the mixture distribution of the training and test data as a bridge

to better transfer from the training data to the test data. Other

approaches summarized in [25] extend traditional approaches

in the NLP domain, such as spectral analysis, probabilistic

latent semantic analysis (PLSA) or dimensionality reduction.

Our approach is clearly related to the settings of Trans-

ductive Transfer Learning based on Feature-Representation

Transfer. One main difference is that our method relies on

a multi-table data representation of the data and exploits

the automatic variable construction framework summarized in

Section II-D to explore many representations. Still, in the flat

table case, our approach could be applied in the NLP domain

where many input variables are available using the bag of

words representation of texts.

Compared to related transfer learning approaches, another

difference is that our approach focuses on the methodology

rather than on new specific modeling techniques. The unla-

beled train and test data are first exploited jointly to sort the

input variables by decreasing drift informativeness. Then, a

list of embedded classifiers is build on subsets of variables

of increasing size, with expected increasing classification

performance but also increasing sensibility to drift. The final

classifier can be found either using a tolerance threshold

compared to the best classification performance in the source

domain, or using labels in the target domain if they are partly

available.

Let us now focus on some settings that could benefit from

our approach or more generally from transfer learning:

• Like in the AAIA’15 Data Mining Competition, there

are many problems where the train and test data are not

governed by the same distributions, and where the task

is to train a classifier from many train instances coming

from few sources (like the many train samples coming

from only four firefighters). This is the case in domains

where data is hard to collect and relies on few volunteers,

each contributing to several train instances. For example,

the MNIST database of handwritten digits [31] contains

60,000 train instances and 10,000 test instances, with 250

train writers and 250 other test writers. The UCI reposi-

tory [8] contains many other such datasets, including for

example the Australian Sign Language signs Data Set

with 95 signs were collected from five signers for a total

of 6650 sign samples, or the Spoken Arabic Digit Data

Set with 10 digits collected from 88 speakers for a total

of 8800 samples (represented using timeseries of mel-

frequency cepstrum coefficients).

• When the train and test data come from different time

periods, the assumption of i.i.d. distribution is violated

as soon as the data are not stationary. This applies to

many times series prediction problems, where samples

are collected from one single source in a train period and

where the trained model is applied to a future test period.

For example, the IJCRS’15 Data Mining Competition2 is

related to a problem of prediction of methane outbreaks

in a coal mine equipped with 28 sensors of different types

(barometer, anemometer, temperature meter, humidity

2https://knowledgepit.fedcsis.org/contest/view.php?id=109
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meter, methane meter...), with 51,700 train samples
and 5,076 test samples with time periods that do not
overlap with those in the train data.

• A variant of the preceding settings usually occurs in
the marketing field,  where there  is  abundant  data
from millions of customers, which allows extracting
train datasets with one sample per customer. How-
ever, the marketing tasks are not classification, but
prediction  on  a  future  period  in  a  non-stationary
market environment (for tasks such as churn, fraud
or up-selling for example). In the Orange telecom-
munication operator, we have many such problems
and plan to evaluate our transfer learning approach.

VI. CONCLUSION

Whereas most data mining methods rely on i.i.d. data, this
is not the case in AAIA’15 Data Mining Competition, where
the train and test  data where collected  from two different
groups of four firefighters.  In  this case,  a robust  classifier
was able to achieve 100% accuracy in a 70%-30% split of
the train data, with a dramatic drop of the test performance
down to 18% leaderboard score.  This is not an overfitting
problem, but a problem of distribution drift between the train
and test datasets. In this paper, we have suggested a method-
ology to alleviate this problem by evaluating the informative-
ness of each variable for the classification and drift detection
tasks. We follow the intuition that the classifiers that exploit
input variables with high class informativeness and low drift
informativeness are more likely to be resilient to drift. Ap-
plying this methodology, we were able to build a classifier
with 0.76 final  score,  which is a tremendous improvement
compared to our initial solution. In future work, we plan to
refine the methodology and to evaluate it on new problems,
in particular  for  Orange marketing prediction tasks,  where
the data are abundant, complex and governed by non station-
ary distributions.
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