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Abstract—The article introduces a novel mechanism for auto-
matic extraction of features from streams of numerical data. It
was originally designed for the purpose of processing multiple
streams of readings generated by sensors in coal mines. The orig-
inal research was conducted on methane concentration analysis
in the DISESOR project. The article demonstrates an application
of the elaborated mechanism for the case of tagging short series
of readings from sensors that monitor activities and movements
of firefighters during the action with labels corresponding to
firefighter activities. The purpose of the experiment was to
assess how the automatic feature extraction and construction
of classifiers (without parameters tuning and without the use
of classifier ensembles) can cope with the competition’s task in
comparison to other participants.

I. INTRODUCTION

Every day, the surrounding world is being monitored by

a still increasing number of sensors. Starting with sensors

from our neighborhood as: mobile phones, intelligent home

appliances, GPS, automotive sensors, cardio-in watches etc.

ending with specialized sensors that support the manufacturing

processes deployed in factories, mines or platforms. The veloc-

ity of data acquisition makes that the methods of analysis are

expected to adapt rapidly to the changes and the emergence of

data. On the other hand, the similarity of the nature of the data

generated by the sensors appears to allow the construction of

generic, reusable mechanisms for data processing and analysis.

The recent emergence of data storage technologies like

columnar databases with high level of compression as Info-

bright [24] and the solutions that can scale up to thousands

of machines like MapReduce [8] allow us to store machine

generated data that is extremely large. What has to be done at

this point, is to develop a generic approach to process data and

to introduce a mechanism for automatic (or semi-automatic)

knowledge discovery from acquired data in order to support

analysts. This aims to reduce the time needed to perform the

laborious, manual data analysis.

This article introduces a novel mechanism for automatic

extraction of features from streams of numerical data and

verifies its effectiveness based on data mining competition

results. The elaborated mechanism was originally prepared

for the purpose of processing multiple streams of readings

generated by sensors in coal mines. The article demonstrates

an application of the developed mechanism for the case of

the AAIA’15 Data Mining Competition1: Tagging Firefighter

Activities at a Fire Scene[16] which was the continuation of

the previous contest investigating key risk factors for Polish

Fire Service [11]. The competition was concerned the process

of automatic labels (activities) assignment to a short series of

readings from sensors that monitor activities and movements

of firefighters during the action. The aim of the competition

was to maximize balanced accuracy measure which is defined

as an average accuracy within all decision classes while the

aim of our research was to assess how the automatic feature

extraction and classifiers learning (without parameters tuning)

can cope with the competition’s task.

Another of our objectives was a requirement that the total

effort spent on the data preparation and experiments should be

limited, which enables easier management of human resources.

The overall time was limited in advance by 2MD (two man

days - that is 16 h) which has been recognized as sufficient

for researchers to become familiar with the task and to adjust

original data representation to a format accepted by the eval-

uated feature extraction mechanisms. A part of the available

time was used for a classifier selection and learning process

and was conducted by means of the algorithms available in

packages for R programming language2.

This paper is organised as follows. In Section II the original

data set and features extraction mechanisms are presented. In

Section III, the assumptions of experiments, an approach to the

features selection, the final solution, as well as verified (but

finally discarded) approaches to data analysis are shown. In

Section IV, the original application of elaborated mechanisms

for the extraction of features from multiple streams within

the DISESOR project is described. Finally, in Section V a

1https://knowledgepit.fedcsis.org/contest/view.php?id=106
2See. http://www.r-project.org/
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summary of research, conclusions and plans for the nearest

future are presented.
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Figure 1. The diagram shows the whole process of feature extraction and
model training which was carried out in order to solve the problem of labeling
sensor time series with posture and main activity of a firefighter. Model
responsible for recognizing a firefighter’s posture uses windows constructed
on the raw-sensory and virtual-sensory data. The model labeling main activity
takes into account both sensory data and a posture label.

II. DATA PREPROCESSING

A. Original data set

The data provided in the competition were obtained during

training exercises conducted by a group of eight firefighters

from the Main School of Fire Service. The sensors placed on a

chest were registering vital functions, while the sensors placed

on torso, hands, arms and legs were registering movements

of a firefighter. Along with recording the data from sensors,

all training sessions were also filmed. The video recordings

firstly synchronized with the sensor readings, were presented

to experts who manually labeled them with actions performed

during the exercises. The data were provided as CSV files.

The training and test data sets contain 20,000 rows and

17,242 columns each. A given row in a file corresponds to

a short time series with length equal to approximately 1.8

s. The first 42 columns contain basic statistics (aggregations

like mean, standard deviation, maximum, minimum, etc.) of

data from sensors monitoring a firefighter’s vital functions

over the given fixed time period. The raw readings for the

vital functions were recorded using Equivital Single Subject

Kit (EQ-02-KIT-SU-4) fitted with two medical-quality ECG

units, heart rate and breath rate units, and thermometers for

measuring skin temperature. The remaining columns contain

readings from a set of kinetic sensors attached to seven places

on a body (torso, hands, both arms and both legs) identified as

important during the realization of the main ICRA project’s

objectives. They are divided into 400 chunks that represent

consecutive points in time. Each set is composed of readings

from an accelerometer (dynamic bandwith: +/- 16G) and a

gyroscope (scale up to 2,000 deg/s), therefore a total number

of kinetic sensors are equal to 14. Each sensor of the both types

(an accelerometer or a gyroscope) produces three readings

x,y,z corresponding to the tree dimensions, hence we have the

total number of reading streams equals to 42. A single chunk

of columns, therefore, consists of 43 numeric values, from

which the first one is time from the beginning of the series

and the following 42 values represent the readings from the

accelerometers (measured in m/s2) and gyroscopes (measured

in deg/s). An average time difference between consecutive

sensory readings in the data is 4.5 ms. The task is even more

challenging since the training and test data sets consist of

recordings from disjoint groups of firefighters.

The above description shows the details of the values

arrangement in the provided data. We considered each row as

a separate data set containing readings from many sensors. As

described above, values from the vital sensors were aggregated

externally, but the kinetic ones are provided in the raw form

of time series. Let us present a fragment of an example in

a visual form of data plots to better illustrate the amount of

available data and their internal dependence. The references

to the sensor readings are consistent with the naming from

metadata provided by the organizers. There are seven places

on a body that the sensors were placed on, i.e. left leg, right

leg, left hand, right hand, left arm, right arm, and torso.

The body areas corresponds to the following name prefixes:
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Figure 2. A fragment of an example row

ll,rl, lh,rh, la,ra, torso. An name infix acc or gyro refers to an

accelerometer or gyroscope type of sensors. Finally, a suffix

x,y, or z names the axis from which the readings came from. In

Figure 2 we present an example row that was tagged in the data

with "standing" and "no_action" labels describing a posture

of a firefighter and his current activity. The figure contain six

time series (each consisted of 400 values that correspond to

approximately 1.8 s) from the set of sensors placed on a left

hand of a subject performing an exercise.

B. Feature extraction

In the process of development of our feature extraction

system we decided to follow the sliding window method. In

general, for a given set of readings we put a window of a

fixed length – the size of a window, i.e., a number of readings

or a time interval, which travels through the values from the

beginning to the end. We can control the amount of processed

windows not only by setting the window length but also

defining the offset for the consecutive windows – the extent to

which the consecutive windows overlap to each other. Figure

3 presents four examples of sliding window set-ups. The first

example, marked in red, shows the situation when the length

of a sliding window is equal to the offset. The green and blue

examples show the consecutive positions of a sliding window

when the offset is equal to 1
2 and 1

3 , respectively, of the length.

The system is also capable to express the situation when the

offset is greater than the length – the example marked in cyan.

For each basic window that is created during the process

of moving a sliding window through the time series a defined

aggregate function is applied. This step of the process may

be adjusted for the actual task by supplying a specific im-

plementation. The following list presents features which are

calculated to represent the time series in a window:

• fill – a ratio of correct readings in the window = nValid
n ,

• firstValue – a value of the first reading in the window,
• lastValue – a value of the last reading,
• max – a maximum value of the readings in the window,
• maxMinDiff – a difference between the max and min,
• mean – a mean value of readings in the window,
• min – a minimum value of the readings in the window,
• n – a total number of readings in the window,
• nValid – a number of valid readings in the window
• percentile25 – a percentile 25% for the readings,
• percentile5 – a percentile 5% for the readings,
• percentile50 – a percentile 50% for the readings (median),
• percentile75 – a percentile 75% for the readings,
• percentile95 – a percentile 95% for the readings,
• percentiles5Diff – a subtraction of the percentiles 95% and 5%,
• sourceFullId – a data source identifier included in the statistics

of the window, e.g. ID or a name of the sensor,
• stdDev – a standard deviation of the readings,
• windowEndDate – a window end date
• windowEndMillis – an end timestamp of the window,
• windowMetaInfo – a meta information of the sliding window

configuration, encoded in a form of a string, e.g. "o60l60" is
equivalent to o f f set = 60 and length = 60,

• windowStartDate – a window start date,
• windowStartMillis – a start timestamp of the window,

A sliding window in a fixed position for which the aggregate

function was applied and produced the statistics is referred

later as a basic (or plain) window. An example of a basic

window for an axis x of the sensor placed on a left leg of a

firefighter is presented in Table I.

For the purpose of the competition we have processed the

data with three layouts of a sliding window. An illustration

of our choice is presented in Figure 4. We have decided to
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Figure 3. A set of examples showing the possible set-ups. Sliding windows are defined by a length and an offset. The length determines the size of a window,
whether it is a fixed number of readings contained in a window or a fixed time interval. The offset is the extent to which the consecutive windows overlap
to each other. The example marked in red shows the situation when the length of a sliding window is equal to the offset. The green and blue examples show
the consecutive positions of a sliding window when the offset is equal to 1

2 and 1
3 of the length. The example marked in cyan illustrates the situation when

the offset is twice as large as the length (or in general just greater) of a sliding window.

calculate statistics for each row by splitting each time series

to 1, 2 or 5 consecutive non-overlapping windows.
We have described earlier in the section the capabilities of

the feature extraction system to express different layouts of

a sliding window in terms of its length and offset. If there

is more than one window generated for the time series we

can extract additional features in addition to those included

in a basic window statistics. We have implemented also inter-

window stats extraction, i.e., a set of values that express the

changes between a pair of consecutive windows. We have

introduced the following inter-window stats:
• firstFill – a ratio of correct readings in the first window,
• firstN – a total number of readings in the first window,
• firstNValid – a number of valid readings in the first window,
• firstWindowDate – a start date in the first window,
• firstWindowMillis – a start timestamp in the first window,
• maxDiff – a difference between max statistics in the windows,
• meanDiff – a difference between mean statistics in the windows,
• minDiff – a difference between min statistics in the windows,
• percentile25Diff – a difference between percentile25 statistics

in the windows,
• percentile5Diff – a difference between percentile5 statistics in

the windows,
• percentile50Diff – a difference between percentile50 statistics

in the windows,
• percentile75Diff – a difference between percentile75 statistics

in the windows,
• percentile95Diff – a difference between percentile95 statistics

in the windows,
• secondFill – a ratio of correct readings in the first window,
• secondN – a total number of readings in the second window,
• secondNValid – a no. of valid readings in the second window,
• secondWindowDate – a start date in the second window,
• secondWindowMillis – a start timestamp in the second window,
• sourceFullId – a data source identifier,
• windowMetaInfo – a meta information of the sliding window,

An example of the inter-window stats for an axis x of the

sensor placed on a left leg of a firefighter is presented in Table

stat value
1 fill 1
2 firstValue -7
3 lastValue -11.2
4 max -2.8
5 maxMinDiff 14.3
6 mean -9.6
7 min -17.1
8 n 400
9 nValid 400

10 percentile25 -9.9
11 percentile5 -10.8
12 percentile50 -9.8
13 percentile75 -9.5
14 percentile95 -7.6
15 percentiles5Diff 3.2
16 sourceFullId ll-acc-x
17 stdDev 1.1
18 windowEndDate 2015-05-03 00:06:40
19 windowEndMillis 1430604400000
20 windowMetaInfo o400l400
21 windowStartDate 2015-05-03 00:00:00
22 windowStartMillis 1430604000000

Table I
AN EXAMPLE OF AGGREGATION FUNCTION COMPUTATION – A BASIC

WINDOW STATS FOR THE FIRST ROW OF THE TRAINING DATA.

II. A sliding window configuration used in the example, i.e.,

the length of the window is equal to its offset, has produced

two basic non-overlapping windows that split the time series

from a given row into two halves.

C. Virtual sensors

According to the task description, the kinetic sensors (ac-

celerometers and gyroscopes) used during the exercises have

symmetric scales with 0 as their neutral reading. The speci-

ficity of the firefighter activities like walking, running, moving

up the stairs or ladder, may cause the readings to be more
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Figure 4. An illustration of the sliding window configurations applied in our solution. We have decided to process the time series with a varied granularity,
ranging from the statistics computed for the whole time series, to calculate them for 2 or 5 shorter, non-overlapping windows which divided the time series
to the parts of equal length.

stat value
1 firstFill 1
2 firstN 200
3 firstNValid 200
4 firstWindowDate 2015-05-03 00:00:00
5 firstWindowMillis 1430604000000
6 maxDiff 6.6
7 meanDiff 0.6
8 minDiff -4
9 percentile25Diff 0.3

10 percentile50Diff 0.2
11 percentile5Diff -0.4
12 percentile75Diff 0.8
13 percentile95Diff 2.7
14 secondFill 1
15 secondN 200
16 secondNValid 200
17 secondWindowDate 2015-05-03 00:03:20
18 secondWindowMillis 1430604200000
19 sourceFullId ll-acc-x
20 windowMetaInfo o200l200

Table II
AN EXAMPLE OF INTER-WINDOW STATISTICS

significant when considered as a group, e.g. a whole tuple

(x,y,z) from a given sensor rather than separate readings x,

y, and z, to express the intensity of the movement. We have

decided to introduce a concept of virtual sensors. Besides

applying the aggregate functions to the original time series

available in the delivered files, we have implemented an idea

of creating artificial time series derived from the original ones.

The virtual sensors are created on the basis of one or more

time series from other sensors (whether original or virtual)

after applying a particular function. In our solution, we decided

to create virtual sensors for readings from all accelerometers

and gyroscopes’ axes separately, applying an abs (absolute

value) function. We created also virtual sensors for readings

grouped in tuples (x,y,z) for each kinetic sensor – computing

the Manhattan and Euclidean norms for the (x,y,z) vectors.

An example that illustrates the concept of virtual sensors that

we have used in our solution can be seen in Figure 5.

After all basic windows for original and virtual sensors that

comes from a given data row are calculated, they are joined

(in the sense of appending all their values) together, forming

a row of data that will serve as an input for further steps of

data analysis and experiments.

III. EXPERIMENTS

A. Evaluation

The submitted solutions were evaluated using the balanced

accuracy measure which is defined as an average accuracy

within all decision classes. It was computed separately for the

labels describing the posture and main activities of firefighters.

The final score is a weighted average of balanced accuracies

computed for those two sets of labels and is defined as follows:

score(s) =
BACp(s)+2 ·BACa(s)

3
.

Where BACp is the balanced accuracy for labels describing

the posture and BACa for the main activity. Precise definition

of balanced accuracy is as follows:

BAC(preds, labels) =
∑1<i<l ACCi(preds, labels)

l

ACCi(preds, labels) =
| j : preds j = labels j = i |

| j : labels j = i |
.

B. Constraints

We considered the competition as a good opportunity to

verify the developed mechanisms of automation of knowledge

discovery process and their usefulness in the production envi-

ronment. Therefore, working on the solution we have imposed

a few additional constraints and requirements. All have been

set arbitrarily for the issue of labeling firefighters activity. We

consider them to be satisfactory for the task:

1) Overall working time, to be spent on solving of the

problem by all members of the research team must not

exceed a total of 2MD.
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2) The overall time required to train the classifiers must not

exceed the total of 10 minutes. In case of classifiers which

are mutually independent this is 10 minutes for training

each of them, since the process can be run in parallel.

3) The time required to pre-process a single row of data to

a format accepted by classifier and assignment of both

labels must not exceed one second.

The first of the imposed restrictions is intended to help

to verify whether it is possibile to immediately familiarize

analysts with both data and the problems. In the simulated

case, two analysts were working on adaptation of the data

provided in the new format to the already existing mecha-

nisms. Possibility to adapt quickly to new data and to new

expectations while maintaining a satisfactory accuracy of the

model is very important especially in the threats monitoring.
The second point poses a constraint on the time that is

necessary to re-train the model on the new data, in case after a

certain time the quality of the assessment has fallen below the

a predetermined score level due to, e.g. concept shift/drift [6].

We assumed that the time required to re-training the model

should not exceed 10 minutes. Nevertheless, we consider this

point to be the least important and in our opinion exceeding

proposed limit should not disqualify the approach. However, in

the final embodiment, the total time of training classifiers did

not exceed 7 minutes, wherein the classifiers are independent

and can be trained simultaneously.
The last point we consider to be the most important because

it imposes limits on the permissible delay in operation of pre-

processor and classifiers when acting in a production environ-

ment. According to the assumptions maximum delay between

data collection and complete processing and labeling of single

row of data should not exceed one second. This is one of the

main reasons for excluding from consideration all object based

methods as well as heavy classifier ensembles. Generation of

all the features, including those for both: raw and virtual-

sensors readings, took approximately 450 milliseconds per a

single csv file row. The postprocessing and assignment of the

labels has been performed in the R - software environment for

statistical computing and consisted of: importing data (overall

30 seconds per 20000 rows of test data set), feature selection

(overall 10 seconds per 20000 rows of test set) and labeling

(classification with SVM took overall of 70 seconds for both

labels for 20000 rows).

C. Post processing

Generated data sets have the following quantity of attributes

for each of 20000 objects, depending on configuration:

• 2199 – one sliding window per short time series

• 6315 – two sliding windows per short time series

• 18663 – five sliding windows per short time series

Making a total of 27177 attributes [27] from the conditional-

and inter-sliding windows constructed for both raw and virtual

sensors. Elements of the automatic feature selection and re-

ducing the number of attributes are in the study phase and still

have not been introduced to the data processing mechanisms.

Hence, the feature selection was carried out manually.

In a first step, all features exhibiting signs of identifiers

and all constants values, that is: fill, n, nValid, sourceFullId,

windowEndDate, windowEndMillis, windowMetaInfo, win-

dowStartDate, windowStartMillis have been removed from

the prepared data set. We have also removed maximum and

minimum of values in windows to limit the influence of

outliers on the final result. After applying the model on

acquired attributes of training data set we have noticed that

the model has been extremely overfitted. As the main reason

for this, we find the fact that the training data set was prepared

based on the observation of a small number of firefighters,

hence data could not contain all possible patterns of motor

behavior and vital signs. This observation led us to change

our approach and forced to look for features that maintain a

quality of prediction for test set.

In the process of feature selection we used a wrapper

approach[13]. We have been progressively enlarging the num-

ber of utilized features and making periodic evaluations, after

each step we have either remained the selected features or we

resigned from them, depending on the result of the evaluation.

Ultimately, the SVM was run on the 163 attributes for the

classifier that labels the objects with posture and with one

additional attribute (the computed posture label) for the second

SVM model which classifies the data with a main activity.

Beyond selected features in sliding windows, described in

Section II final set of objects includes additional attributes to

exclude the symmetry of right- and left-handed people e.g. the

sum of the selected features for the left and right hand as well

as sum for the left and right leg. This is very important since

the training samples were created basing on the behavior of

different people than the test samples. Moreover, training and

test set data were acquired during observation of small group

of firefighters, hence the training sample could not contain

all possible patterns. The situation when training set differs

significantly from the test set forced us to make additional

step during verification of selected attributes.

D. Classifier training and labeling

Because of the pre-processing of data that has been provided

in the competition, the real problem of monitoring the firefight-

ers activities, which is originally associated with processing of

streams of sensor readings [10] that constituting time series

[2], has been reduced for the problem of classification [25],

more precisely to multi-labeling [26]. Original sensor readings

has been pre-processed and subdivided into frames [21], [28]

of given length and made available in a csv file. To apply

the developed feature extraction mechanism each row of the

csv file has been split into short time series of readings

from sensors respectively to csv header names: "ll-acc-x", "ll-

acc-y", "ll-acc-z", etc. and passed as an input stream to the

feature extraction mechanism. Eventually, we obtained a set

of elaborated features ready for multi-labeling [14].

During data analysis, not only the conditional variables

have been inspected but also posture and activity labels. The

preliminary conclusions of labels aggregation allowed to state

that there is a huge imbalance [29] in classes defined by
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Figure 5. An example of deriving virtual sensors by applying an absolute value function and the Euclidean norm to the original time series.

particular labels and that the labels for firefighters posture and

activity are not independent [20] and there is a connection

between them [19]. The application of label power-set methods

[23], [30] did not provide satisfactory results but classifier

chains[22] improved the achieved score significantly. The way

in which assessment of solutions was defined, that is uneven

importance of labels for posture and activity encouraged to

consider various concepts like a multilabel classification with

label ranking [9] or a graded multilabel classification [5].

Experiments have been implemented and carried out in

the R software environment. We have experimented with

the following classification algorithms: rPart (decision trees

[4]), rFerns (random forests [3]) and e1071 (support vector

machines [1]). The final solution is based on SVM. While

learning classifiers we have used the relationship between

labels by training two SVM models on slightly different data.

Model 1, which recognizes posture, is SVM with 4356

support vectors. Model has been trained on the basis of the
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features described above with the default parameters, that is:

• SVM-Type: C-classification

• SVM-Kernel: radial

• Cost: 1

• Gamma: 0.006134969

model1← svm(posture∼ .,

data = trainSet[,c(selectedFeatures, posture)]);

Model 2, which recognizes the main activity, is SVM with

5011 support vectors. Model has been trained on data enriched

by the posture label with the default parameters, that is:

• SVM-Type: C-classification

• SVM-Kernel: radial

• Cost: 1

• Gamma: 0.005952381

model2← svm(activity∼ .,

data = trainSet[,c(selectedFeatures, posture,activity)])

During labeling, data were firstly described with the posture

label, and after that with the main activity label:

testLabelsForPosture← predict(model1,

newdata = testSet[,selectedFeatures],

type = ”class”);

testSet$posture← testLabelsForPosture;

testLabelsForActivity← predict(model2,

newdata = testSet[,c(selectedFeatures, posture)],

type = ”class”);

IV. DISESOR

The most significant application of the presented solution

for automated feature extraction is the ongoing DISESOR

project. DISESOR aims to build a decision support system

for threats monitoring and early warnings in coal mines.

Nowadays, the coal mining is playing a crucial role on

Polish energy market and is employing hundreds of thousands

of people. Coal mines are well equipped with monitoring,

supervising and dispatch systems connected with machinery,

devices and transport facilities. There are a lot of systems that

support essentially different aspects of the mine operation, e.g.:

ARES, ARAMIS, HESTIA for seismo-acoustic monitoring;

RODOS, ALFA for quality control, MAKS, Ergon, Hades

for machinery monitoring; SMP, STAR, CTT, UTS, Venturon,

Univers for risk control, ZEFIR, THOR, sD2000 - central

systems and many, many others. Each of these gathers readings

from specific sensors placed in mines, depending on their

domain: methane sensor, CO and CO2 sensor, seismic sensor,

shearer state sensors etc. Assembly of a variety of data from

multiple systems enables performing a wide-ranging analysis.

Monitoring systems are developed by many providers what

causes problems with integration and proper interpretation of

the data, therefore there is need to deploy a decision support

system integrating different aspects of coal mine operations,

what is the main task of the DISESOR system. The high

Sensors in

 second Mine

Sensors in

 first Mine

Hydrogen sensor

Pressure sensor

Seismic sensor

System ZefirSysem THOR

Methane sensor

Temperature sensor

CO sensor

Metadata + 

selected readings

MODEL(S) 

TRAINING

ETL

DISESOR

Sensor Readings DWH

METHANE

FORCASTING

MODELS

ARE TRANSFERED

TO MONITORING

APLICATIONS 

Figure 6. DISESOR ETL process collects sensor readings from mine
monitoring systems like THOR or ZEFIR. Raw data is cleand and after
preprocesing predictive models are generated.

level design of DISESOR takes into account the data cleaning

process, the process of building data mining models and on-

line predictive reasoning for the latest data readings. The most

important use cases of the DISESOR system are:

• The assessment of seismic hazard probabilities in the

vicinity of the mine.

• Forecasting dangerous increase of the methane concen-

tration in the mine shafts.

• Detection of endogenous fires and conveyor belts fires.

• Detecting anomalies in the consumption of media.

• Diagnostics of machines: roadheaders and shearers.

V. CONCLUSIONS AND FURTHER RESEARCH

The developed feature extraction system can be configured

to accept a data set consisted of readings from multiple

sensors. The algorithm that builds sliding windows divides
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reading streams into consecutive fragments and then processes

each of them separately. This approach allows for effective par-

allelization of the whole feature extraction process. However,

there are some important issues that have not been addressed

in a prepared solution or have been taken into account in a very

simplified manner, e.g. a quantization of real value attributes

[17], [18] or an attribute selection [7], [12] which we recognize

as very important elements of a knowledge discovery [15]

process. We are going to extend the discussed mechanisms

with modules covering those issues in the nearest future.

The conducted experiments showed that the features pre-

pared by the elaborated mechanism are suitable for machine

learning algorithms, which in the next step can give very

promising results without neither long lasting manual data

cleaning nor classifier tuning. The results of experiments

turned out to be significantly better than the baseline solution.

Therefore, it seems that the elaborated system is prepared to

work in production. However, there is still a lot of space

for further improvements since results achieved by other

participants in case of manual transformation of data and

tuning of classifiers turned out to be even better.
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