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Abstract—A deductive system of geometry is presented which is
based on atomistic mereology (“mereology with points”) and the
notion of convexity. The system is formulated in a liberal many-
sorted logic which makes use of class-theoretic notions without
however adopting any comprehension axioms. The geometry
developed within this framework roughly corresponds to the “line
spaces” known from the literature; cf. [1, p. 155]. The basic ideas
of the system are presented in the article’s Introduction within
a historical context. After a brief presentation of the logical and
mereological framework adopted, a “pregeometry” is described
in which only the notion of convexity but no further axiom is
added to that background framework. Pregeometry is extended
to the full system in three steps. First the notion of a line segment
is explained as the convex hull of the mereological sum of two
points. In a second step two axioms are added which describe
what it means for a thus determined line segment to be “straight”.
In the final step we deal with the order of points on a line
segment and define the notion of a line. The presentation of the
geometric system is concluded with a brief consideration of the
geometrical principles known by the names of Peano and Pasch.
Two additional topics are treated in short sections at the end of
the article: (1) the introduction of coordinates and (2) the idea
of a “geometrical algebra”.

I. Introduction

Geometry is a very old science and from its very beginnings
it was a classical place for discussing the relationship between
qualitative and quantitative reasoning. Synthetic geometry as
developed in the first four books of Euclid’s Elements [2]
is a paradigm instance of qualitative reasoning. The concept
of number is only introduced in Book VII of the work;
and the treatment of numbers and the investigation of their
properties make use of geometrical representations. As is
testified by our parlance about square and cubic numbers,
remnants of this procedure are still present in contemporary
mathematical terminology. Zeuthen, in his history of ancient
mathematics, refers to this procedure as “geometric arithmetic”
and “geometric algebra”; cf. [3, pp. 40–53].

The relationship between geometry and algebra was turned
around when, in the 17th century, Fermat and Descartes,
translating geometric construction tasks into problems con-
cerning the solution of equations, laid the foundations of
analytic geometry and thus paved the way for the use of
algebra and, later, calculus for the solution of geometric
problems. This is rightly considered a major breakthrough
in geometric research. However, not so long after Fermat’s
and Descartes’ innovation, already Leibniz argued that the

use of (numerical) analysis for achieving geometric results
is a detour since analysis is concerned with magnitude and
thus only indirectly (“per circuitum”) faces such geometric
notions as shape (“forma”) and similarity (“similitudo”); cf.
[4]. According to him, numerical analysis is therefore to be
supplemented by a geometric analysis — an analysis situs —
which deals with such important geometric properties in a
direct rather than roundabout way. This geometric analysis is
based on a calculus of geometric concepts which makes use of
a symbolic language (“characteristica geometrica”) resembling
that of algebra. Though “analysis situs” became the original,
now obsolete name for what is called (general) topology
today, there is scarcely a connection between this modern
discipline and Leibniz’ original ideas.1 However, Hermann
Grassmann, in a treatise submitted as an answer to a prize
question asked by a scientific society of Leibniz’s hometown
Leipzig, re-interpreted Leibniz’s ideas in the framework of his
“lineale Ausdehnungslehre”, which we today consider as a
rather abstract and general formulation of vector algebra.2

What Leibniz had in mind when he proposed his analysis

situs, was not a simple return to Euclid’s synthetic method and
to his deductive procedure but rather an algebraic formulation
of geometry in which one could confirm geometric proofs by
calculations which directly deal with such geometric entities
such as angles, triangles, squares, and circles without first
encoding them into numbers, thus translating a geometric
problem into one of numerical algebra or analysis. By this
he hoped to replace long and intricate arguments to be found
in Euclid’s Elements by simple calculations; cf. the examples
given by him at the end of this brief note; [4, pp. 181–
183]. Today we are tempted to say that he tried to reduce the

1The reference to “position” (Latin situs) is not uncommon in geomet-
ric research of the 19th century. Thus, for instance, in 1803 the French
mathematician L. N. M. Carnot published a book with the title Géométrie

de position, in which he tried to combine intuitive synthetic geometry with
algebraic analytic geometry. Another example is Ch. von Staudt, who in 1847
presented his formulation of projective geometry in a book Geometrie der

Lage, which is an exact German translation of the title of Carnot’s book.
Leibniz, when developing his idea of a “characteristica geometrica”, might
have been acquainted with the geometric ideas of Desargues which led up in
the 19th century to the development of projective geometry; cf. [5]. — The
19th century is generally considered “a golden age of geometry”; cf. [6, ch.].

2Both works of Grassmann, his Lineale Ausdehnungslehre and his Ge-

ometrische Analyse geknüpft an die von Leibniz erfundene geometrische
Charakteristik, have been reprinted in [7].
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computational complexity of spatial reasoning. Grassmann, in
the treatise mentioned in the previous paragraph, delivers an
insightful analysis of Leibniz’ first attempts in that direction,
cf. [7, pp. 328–334] and puts forwards, in the framework of
his own “Ausdehnungslehre”, some suggestions for improving
Leibniz’ work. In order to be able to apply his conceptual
framework to geometry, however, he analyses “geometric mag-
nitudes” such as points and line segments as pairs consisting
of a geometric entity (a position in the case of a “point
magnitude” and a direction in the case of a “line magnitude”)
and a “metrical value” (“Masswerth”). Hence in his algebraic
analysis of Euclid’s basic operation of connecting two points
by a straight line he re-introduces numbers which Leibniz
wished to eliminate; cf. [7, p. 355f].

An analysis of the Euclidean operation of joining two points
which is more consonant with Leibniz’ original ideas has been
given only much later by Walter Prenowitz; cf. [8], [9]. Given
(not necessarily different) points p1, p2, their join p1 p2 is
the linear segment between them; cf. [9, p. 3].3 For the join
operation, then, algebraic laws such as that of commutativity
p1 p2 = p2 p1, assiociativity (p1(p2 p3) = (p1 p2)p3), and
idempotency (pp = p) are postulated. This looks as if the set of
points and the join operation make up an idempotent, Abelian
groupoid. However, a closer look upon the first law reveals that
this algebraization of a geometric topic rests upon a notational
convention. The result p2 p3 of joining the points p2 and p3

is a line segment; but what then is the result of joining this
line segment to a point? Prenowitz conceives of line segments
as point sets. The range of the binary join operation thus is a
set of point sets; furthermore, he declares (p1(p2 p3) to be the
set of points lying on segments which join the point p1 with
some point of the set p2 p3. Hence p1(p2 p3) is the set of points
within the triangle △p1 p2 p3. If we want to conform to absolute
exactness, we should either conceive of the join operation as
an operation on point sets — and thus formulate associativity
by something like {p1} · p2 p3 = p1 p2 · {p3}— or we should use
a background set theory which identifies urelements with their
singletons.4 Ignoring the distinction between an individual and
its singleton set, forces one also to blur the distinction between
the relations of membership and inclusion: as an individual the
point p1 is a member of the set p1 p2, but as its own singleton
it is also a subset of that set.

Prenowitz, of course, is completely aware of this; cf. his
footnote 5 in [8, p. 3]. Instead of relying on the good instinct of
the reader of his writings who restores the set-theoretic distinc-
tions whenever necessary, there would have been an alternative
for him, namely to use mereology instead of set theory as a
background theory. Given a mereological background, single
points of a line segments bear the same relationship to that
segment as complete subsegments do: both its points and its

3In Prenowitz’ 1943 article on this topic, the additive notation “p1 + p2”
is preferred; cf. [8, p. 236]. For Prenowitz, the segment p1 p2 resulting from
joining p1 and p2 does not include these two boundary points. Thus, for him,
a segment is an “open” set of points. In contrast to this, the join operation
which will be defined below in Def. 14)-(c) includes the boundary points.

4As is done, for instance, in Quine’s NF; cf. [10].

subsegments are just parts of the entire segment. The present
article follows the strategy just suggested by adopting mere-
ology as a framework for geometry. This issue will be taken
up in section II-B below. Adopting mereology “homogenizes”
points and segments: both are individuals and the arguments
of the join operation are thus on an equal footing. Terms
like “p1(p2 p3)” can be interpreted in a straightforward way
which does not require special care of the reader. However,
mereology does not resolve our problem completely. It is fine
to have both points and line segments as first class citizens
of the entire universe of discourse, but these two entities are
nevertheless of different kinds. There are things we want to say
about points which do not make sense for segments. Since the
inception of many-sorted logic systems in the 1930s geometry
always has been a prime application area for many-sorted
logics; and Arnold Schmidt [11, p. 32], in his classical article
on this topic, explicitly refers to Hilbert’s axiomatisation of
Euclidean geometry [12] in order to motivate the introduction
of sortal distinctions. Introducing sortal distinctions between
points and segments, however, reintroduces our problem with
the interpretation of terms like p1(p2 p3) — unless, of course, a
more liberal sort system is adopted that allows for the crossing
of sort boundaries which is strictly forbidden in such rigid
systems as that of Schmidt [11]. Such a liberal system, due to
Arnold Oberschelp [13, ch. 3], is adopted in section II below.

The main use Prenowitz makes of the join operation is
to define the notion of convexity which is central for his
approach to geometry; cf. [9, pp. 25–28]. There is plenty
of reason to follow Prenowitz in assigning a central role
to the notion of convexity. (1) It plays a central role in
various other parts of mathematics as documented in the
comprehensive handbook [14]. (2) In quite a few important
applications of computational geometry it plays a crucial role;
cf. the list given in [15, p. 63]. (3) It seems to be of special
importance for the human cognitive systems also in areas
beyond geometry; cf. [16, pp. 69–74, 157–174].5 We shall
therefore give convexity a central position in our system of
geometry presented below. Its position in that system is even
more central than that it occupies in Prenowitz’ since we start
with the notion of convexity and define that of a linear segment
in terms of it whereas definitional dependence in the other
way round in Prenowitz’ system.6 However, first our logical

5Given the importance and usefulness of the notion of convexity, it does
not come to a big surprise that it already has made it appearance in formal
systems for the representation of spatial knowledge; cf., e. g., [17], [18], and
[19]. In [17, sec. 4.3] it is assumed that the convexity function conv which
assigns to regions their convex hulls “is only well sorted when defined on
one piece regions”. No such restriction is assumed here for the hull operator
[ ] which will be introduced below in Def 14. The domain of discourse of
the interesting theory put forward by [19] is the set of “regular open rational
polygons of the real plane” (p. 5). We adopt a much more comprehensive
notion of a region (cp. fn. 8) and do not make any decision on the matter of
dimensions.

6In a strict formal sense, we actually do not define the notion of a segment
in terms of convexity. The first notion is present in our system from the start
since the many-sorted language used comprises a special sort s of segments.
However, the axiom Mer 3 below specifies a sufficient and necessary condition
for being a segment.
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and mereological background has to be explained in order to
prepare the stage for the treatment of these geometric topics.

II. Background: Class Theory andMereology

The system of geometry proposed here builds upon two
more basic formal theories: (1) a certain system of “class
logic” and (2) a system of mereology.7 The version of class
logic chosen here is the system LC developed by Arnold
Oberschelp [13, chap. 3]. Basically, class logic is “set the-
ory without comprehension axioms”. The system LC will
be described in more detail in the first part of the present
section. Mereology has been used as an ingredient in several
axiomatisation of geometric theories; cf., e.g., [23], [24], [25],
[26], [27]. The specific system of mereology used here will
be introduced in section II-B below.

A. Class Theory

The specific version of LC used here is formulated within
a many-sorted language with four sorts denoted by u, c, s, p.
The universal sort u is the sort of all regions. In the present
system a region is any mereological sum of points. Thus a
region does not need to be connected or three-dimensional, but
each region has at least one punctual part; cf. MER 6 below.8

The remaining three sorts are, respectively, the sort of convex
regions (c), of (linear) segments (s), and of points (p). The
universal sort contains all other sorts as its subsorts; segments
are special convex regions and points, as we shall see below
(cf. The 17), special segments. For each sort there are infinitely
many variables. We reserve the letter used as the index of a
sort for the variables of that sort; thus, e.g., p, p1, p2, . . . are
the variables for points. The letters v, w, v1, v2, . . . are used
as meta-linguistic signs for variables (of any sort); u always
refers to a variable of sort u. If it is else necessary to indicate
a term’s membership in a sort s, this will be done by adding
“s” as a superscript. Besides the variables there is only one
single constant “P” for the part-whole-relation; this constant
is an example of a class term and is not assigned to any of
the sorts. Semantically LC distinguishes between individuals
and objects. Individuals are special objects; they are the
possible values of the variables hence the “real” objects. Some

7Mereology is one of the two logical theories which the Polish logician
Stanisław Leśniewsik proposed as frameworks for the explication of the
traditional notion of a class. Leśniewski discerned two different meanings
within that notion, namely that of a “distributive” and that of a “collective”
class. Collective classes are treated in mereology, i.e, the theory of the part-
of-relationship, whereas distributive classes are the topic of what he called
“ontology”, the theory of the is-a-relationship. The relationship between
common set theory and mereology has been investigated in, e.g., [20] and
[21, esp. chs. 5 and 7]. Such a comparison, however, is a delicate issue since
Leśniewski based mereology upon his ontology which is a more powerful
logic than elementary predicate logic; cf. [22] for a detailed discussion. In
the present article, too, (atomistic) mereology is transplanted into a non-
Leśniewskian framework.

8It should be pointed out here that this is a quite comprehensive (and non-
standard) concept of a region. Tarski [23, p. 24] suggests that the “solids”
of the geometry envisaged by Leśniewski and the “events” of Whitehead’s
space-time are “intuitive correlates of open (or closed) regular sets”. This
(or something like this) seems to be true also for the common systems of
mereotopology. The set of points corresponding to a region in the sense
explained above in the main text, however, does not need to be regular.

objects, however, are not individuals; they are only “virtual”,
lie without the domain of quantification, and thus do not
belong to any sort. LC abstains from any assumptions about
the existence of classes and so class terms may denote merely
virtual objects. “P” stands for a relation, i.e., a class of pairs
of individuals.

There are three groups of logical signs in our version of LC:
(1) the connectives ¬, ∧, ∨ →, and ↔; (2) the quantifiers ∃
and ∀; (3) the relational signs = (identity) and ∈ (membership);
(4) the elementary term constructor 〈 , 〉 (pair formation); and
finally (5) the variable binding term constructors � (definite
description) and { | } (class formation). We use the letters “X”
and “Y” as metalinguistic variables for terms, and “ϕ” and “ψ”
for formulas. These two classes of expressions are defined by
a simultaneous recursion. (a) Each variable is a term and so
is the constant “P”. (b) If X and Y are terms, then 〈X, Y〉 is a
term, too. (c) If X and Y are terms, then X = Y and X ∈ Y are
formulas. (d) If ϕ and ψ are formulas, so are ¬ϕ and [ϕ ◦ ψ]
where ◦ is one of the signs ∧, ∨ →, or ↔. (e) If ϕ is a
formula and v a variable, then ∃v.ϕ and ∀v.ϕ are formulas
and �v.ϕ and {v | ϕ} terms. Terms denote either individuals or
classes. In the following we shall use the letters “a” and “b”
(possibly with subscripts) for terms of the first kind. For terms
denoting classes of individuals we shall use the letters “A” and
“B”; finally, the letter “R” is reserved for classes of tuples of
individuals.

The logic for the connectives and quantifiers is classical
with two exceptions. First, in order to exclude certain trivial
cases, LC requires that there are at least two individuals
(∃u1u1.u1 , u2) whereas one postulates in the semantics of
standard predicate logic only that the universe of discourse in
not empty. The second difference concerns the rule SUB of
substitution of free variables by terms. The presence of class
terms in LC make it necessary to restrict this rule in order to
protect the system against antinomies. In order to formulate
the rule, we have first to define the notion of the domain Ds

of sort s.

Def 1: (a) Ds ====
def

{vs | vs = vs}

(b) D ====
def

Du

Let now in the following formulation of the rule SUB ϕ(vs) be
a formula with the free variable vs and X a term which does
not contain any free variable which is bound by a quantifier
of ϕ(x) in whose scope vs occurs as a free variable, then we
denote by “ϕ X

vs ” the result of substituting each free occurrence
of vs in ϕ(vs) by X. The rule SUB, then, reads as follows.

SUB From X ∈ Ds and ϕ(vs) one may infer ϕ X

v2 .

The reason for the additional premise becomes obvious as soon
as we consider the class theory of LC. It consists of three
principles: the principle of extensionality and two abstraction
principles.

LC 1: (Ext) ∀u.[u ∈ {v | ϕ(v)} ↔ u ∈ {w | ψ(w)}]→
{v | ϕ(v)} = {w | ψ(w)}

(Abs1) v ∈ {v | ϕ} ↔ ϕ

(Abs2) X ∈ {vs | ϕ} → X ∈ Ds
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The formation rules allow to build such a term as, e.g., {u |u <
u}. It is nevertheless not possible to derive Russell’s antinomy
by means of (Abs1) since (Sub) licenses the substitution of {u |
u < u} for the free variable v in (Abs)1 only under the proviso
that the class {u | u < u} can be proven to be an individual of
sort s. Russell’s antinomy shows that this cannot be the case
for any s.

The theory of identity contained in LC is quite standard.
There are two axioms requiring that identity is reflexive and
euclidean. A further axiom finally postulates that identical
individuals belong precisely to the same classes.

LC 2: (Id)1 X = X

(Id)2 X = Z ∧ Y = Z → X = Y

(Id)3 X1 = X2 ∧ Y1 = Y1 → [X1 ∈ Y1 ↔ X2 ∈ Y2]

As is common LC construes relations as classes of pairs. There
are two axioms for pairs. The first one states the usual criterion
of identity for pairs: they are the same iff their components
are. The second axiom postulates that pairs of individuals are
individuals again.

LC 3: (Pr)1 〈X1, Y1〉 = 〈X2, Y2〉 ↔ [X1 = X2 ∧ Y1 = Y2]
(Pr)1 X, Y ∈ D→ 〈X, Y〉 ∈ D

The use of the description operator � is regulated by three
axioms. The first requires that �v.ϕ is the individualv if there
is exactly one ϕ and ϕ(v). If there is no unique individual
with property ϕ, then the definite description �v.ϕ(x) denotes
a special “ersatz” individual ⊥ called “the joker”. The joker
may be defined by ⊥ ====

def
�u0.u0 , u0. It does not belong to

the universe of discourse D but is a virtual object.

LC 4: (Ds)1 ϕ(v) ∧
1
∃v.ϕ(x)→ �v.ϕ(v) = v

(Ds)2 ¬
1
∃v.ϕ(v)→ �v.ϕ(x) = ⊥

(Ds)3 ⊥ < D

Though there are no comprehension principles in LC, an
elementary theory of classes and relations can be developed
which provides most of the means of expressions which
became common since the days of Cantor. X is a class if it is
identical with its class part, i.e., with the class of individuals
which are elements of X.

Def 2: Cls(X)⇐⇒
def

X = {u | u ∈ X}

We note that the referents of abstraction terms are always
classes; cf. [13, p. 235].

The 1: Cls({v | ϕ})

Inclusion relates subclasses to superclasses.

Def 3: A ⊆ B⇐⇒
def

Cls(A) ∧ Cls(B) ∧ ∀u.[u ∈ A→ u ∈ B]

The Boolean operations may be defined in the standard way.
Relations are classes of n-tuples.

Def 4: Reln(R) ⇐⇒
def

Cls(R) ∧

∀u ∈ R.∃u1u2 . . . un. u = 〈u1, u2, . . . , un〉

As usual, the inverse of a relation results from that relation by
inverting the order of its pairs.

Def 5: R−1 ====
def
{〈u1, u2〉 | 〈u2, u1〉 ∈ R}

The two definitions below introduce abbreviations used in the
following.9

Def 6: (a) R>a ====
def

{u | 〈u, a〉 ∈ R}

(b) R<a ====
def

{u | 〈a, u〉 ∈ R}

Functions are defined as special relations fulfilling a unique-
ness condition:

Def 7: Fctn(R) ⇐⇒
def

Reln+1(R) ∧

∀u1 . . . un+2.[〈u1, . . . un, un+1〉,

〈u1, . . . , un, un+2〉 ∈ R→ un+1 = un+2]

Functions will often be defined by specifying how to determine
the value a for given arguments u1, u2, . . . , un. Given a certain
(n-place) function f , the term “ f (a1, a2, . . . , an)” will denote
the value of f for the arguments a1, a2, . . . , an (if it exists).

Def 8: (a) λu1u2 . . . un.a ====
def
{〈u1, u2, . . . , un, u〉 | u = a}

(b) f (a1, a2, . . . , an) ====
def

�u.〈a1, a2, . . . , an, u〉 ∈ f

Functions may be partial. In mereology, for instance, the
product u1 · u2 of two individuals is the largest individual
(modulo the part-of-relation) which is a common part of both
u1 and u2. If in a formal system of mereology the product
operation · is not taken as primitive, it will be defined by some
function involving a definite description; cf., e.g., [28, p. 43].
That description term will be improper if the items denoted by
the “factor” terms do not overlap. Since no product exists in
this case, the product operation is partial. In LC the product of
non-overlapping regions u1 and u2 equals the joker: u1 ·u2 = ⊥.

B. Atomistic Mereology

Whitehead [29]–[31] motivates his use of mereological
concepts as a foundation for his space-time-geometry by the
desire for a conceptual framework which directly relates this
science to spatial reality rather than starting from abstractions
such as, e.g., extensionless points and breadthless lines. Using
his “method of extensive abstraction”, he constructed such
entities from extended regions. The critique of such notions as
that of a point and that of a line, however, is much older and
in fact nearly as a old as the science of geometry itself.10 In
the 19th century, Lobacevski and Bolyai did not only replace
Euclid’s Fifth Axiom (on the unique existence of parallels)
by other assertions but also suggested to take the notion of a

9The notation introduced in Def 6 is often used to render formulas more
easily readable. E.g., “u1 ∈ P>u2” can be read from left to right as “u1 is
(∈) a part of (P>) u2”. The same is said by “〈u1 , u2〉 ∈ P”, which however
requires the reader to apply a “forth and back” procedure when decoding the
formula. — “u1 ∈ P<u2” may be read as “u1 extends / is an extender of u2”.

10Cf., for instance, Aristotle’s remark in his Metaphysics, [32, p. 36, 992a

20] that Plato “fought against [the kind of points] as being a geometric
dogma” and Proclus Lycaeus warning — in his commentary on the first book
of Euclid’s Element — not to follow the Stoics who suppose that such limiting
elements like points “exist merely as the product of reflection”; [33, p. 71].
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rigid, three-dimensional body as the conceptual starting point
for geometry.11 In a similar vein, Whitehead [29]–[31], relying
on a certain analysis of the role of abstractions in science,
developed a theory of events which bears some similarities
to Leśniewski’s mereology, which Tarski [23] combined with
ideas of the Italian mathematician Mario Pieri in order to for-
mulate his geometry of solid bodies.12 This line of research has
been continued by the work of Gruszczyński and Pietrusczcak
[26]. Whitehead’s approach, especially as modified in his book
from 1929, has been continued in “mereotopology”— cf.,
e.g., [28] and [27] — and in work on the Region-Connection-
Calculus (RCC); cf. [38] and the literature cited there.

Hahmann et al. [27, p. 1424] formulate the objections
against points in a concise way: “Points are somewhat tricky
to define and are far from intuitive in real-world applications.”
It is certainly true that the definition of points as equivalence
classes of converging sequences of regions (as suggested by
Whitehead and others) is “tricky”.13 However, if points are
admitted from the outset as special (“extensionless”) regions,
it is rather easy to single them out by a definition. Actually,
we find an adequate explanation already as the very first
definition in the first book of Euclid’s Elements: “A point is
that which has no part”; [2, Book I, p. 153]. As is evident
from this definition, Euclid obviously is thinking of the proper
(irreflexive) part-of-relationship when he is talking about parts.
Allowing, as is usual in mereology, also for improper parts,
we can reformulate Euclid’s definition as follows: “A point is
a minimum of the part-of-relation.”

Euclid’s definition testifies that the notion of a point nicely
fits into a mereological framework. Aside from this formal
issue, perceptual psychology does not seem to support the
sceptical attitude towards points held up by many supporters
of “common sense geometry”. Experimental studies of visuals
space simply accept the existence of points when they approx-
imate these geometric items by “small point sources of light of
low illumination intensity, displayed in darkened room;” [46,
p. 238]. Points seem also to be accepted in phenomenological

11Their endeavors are described in Richard Strohal’s investigations of the
relationships between “pure geometry” and intuition; cf. [34, pp. 20–33].
It deserves to be mentioned that Lobacevski considered the relationship of
connection (between “solids”) as the most basic concept of geometry thus
anticipating the modern line of research which starts with the work of de
Laguna [35] and leads up via Whitehead’s reformulation of his earlier work
in [31] to the Region Connection Calculus of Randell, Cui, and Cohn [17].

12In his lecture notes [36], Leśniewski compares his mereology with
Whitehead’s theory of events. In those notes, Leśniewski mentions that it
was Tarski in 1926 who made him aware of Whitehead’s work; cf. [36, p.
171]. — Pieri’s idea employed by Tarski [23] in his mereological system of
geometry is that this discipline can be developed starting from the notions of
point and sphere as the only undefined concepts. Pieri’s memoir presenting
this idea has been re-published in an English translation by Marchisotto and
Smith [37, pp. 157–288].This book contains also a chapter on Pieri’s impact on
Tarski’s geometric work; cf. [37, ch. 6]. That the notion of sphere is sufficient
as a basic concept of geometry has been noted already by Grassmann in his
1847 memoir on Leibniz’ geometric analysis; cf. [7, p. 328].

13The issue of “region-based” vs. “point-based” geometry is treated in
quite a few articles on mereotopology; cf. [39] and [40], who both provide
surveys of the classical approaches to this topic by Whitehead [29]–[31], De
Laguna [35], Menger [41], Grzegorczyk [24], and Clarke [25]. More recent
contributions include [42], [43], [27], [44], and [45].

and gestalt-theoretic approaches to psychology. In a series
of classical experiments Edgar Rubin [47, §§14–16] showed
that points (as well as other regions lacking extension in
one or more dimension) are really perceived: “As there are
breadthless lines, there are extensionless points”. Furthermore,
Otto Selz [48, p. 40] argued that points essentially belong
to our conceptual frame used in the apprehension of space:
“the pure location in space is postulated by structural laws in
the same way as the infinity of the straight line and [. . . ]
it is of relatively minor importance whether the empirical
Minimum Visibile, i.e., the point gestalt, is to be regarded
as a pure locational phenomenon or rather as a tiny round
area like object”. We hence conclude that points, though they
are perhaps no “real constituents” of physical space, do have
perceptual reality and exist in conceptualized space. This is
all which is of importance in the present context.

As the mereological foundation of our system of geometry
we adopt the system of atomistic mereology developed by
Tarski; cf. [49]. Tarski formulated his system within the simple
theory of types. Instead we use the class logic LC sketched in
the previous subsection. The only undefined notion in Tarski’s
system is the relation P of parthood14 of which it is postulated
that it is transitive. In LC this correspond to the following two
axioms.

MER 1: Rel2(P)
MER 2: 〈u1, u2〉, 〈u2, u3〉 ∈ P→ 〈u1, u3〉 ∈ P

We say that two individuals (regions) overlap if they share a
common part.15

Def 9: O ====
def
{〈u1, u2〉 | P>u1 ∩ P>u2 , ∅}

The formulation of the next axioms requires the following
definition.

Def 10: Σ(a, A)⇐⇒
def

A ⊆ P>a ∧

∀u1 ∈ P>a.∃u2 ∈ A.〈u1, u2〉 ∈ O

The formula “Σ(a, A)” says that a is the mereological sum of
the individuals in A. This means that every element of A is a
part of a and that conversely every part of a overlaps some
element of A. The mereological sum of a singleton class is the
unique member of that class; and non-empty classes always
have a sum.

MER 3: Σ(u1, {u2})→ u1 = u2

MER 4: A , ∅ → ∃u.Σ(u, A)

From the axioms stated until now it can be proven16 that
P is a partial order of the elements of D, i.e., that the part
relation, besides being transitive, is reflexive and antisymmet-
ric. Furthermore, MER 4 may be strengthened by asserting the
uniqueness of the mereological sum.

14In [49] Tarski augments his system of pure mereology by other non-
mereological systems in order to make it suitable as a basis for axiomatic
biology.

15The notion of overlap is not used by Tarski. We introduce it here in order
to make our presentation more similar to standard expositions of mereology;
cf., e.g., [28].

16For the proofs of the mereological theorems the reader is referred to
Tarski’s article [49].
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The 2: (a) 〈u, u〉 ∈ P
(b) 〈u1, u2〉, 〈u2, u1〉 ∈ P→ u1 = u2

(c) A , ∅ →
1
∃u.Σ(u, A)

The 2-(c) justifies the following definitions introducing the
notion of a supremum or sum of a class of individuals.

Def 11: (a) sup(A) ====
def

�u.Σ(u, A)

(b) sup(vs | ϕ) ====
def

sup({vs | ϕ})

(c) sup(a1, a2, . . . , am) ====
def

sup({a1, . . . , am})

(d) + ====
def

λu1u2. sup(u1, u2)

Of course, we shall always write “a+ b” instead of “+(a, b)”.
It can be proven that the thus defined notion of a supremum
of A has indeed the properties normally required: namely, that
it is the “smallest” individual “bigger” than all the elements
of A, cf. The 3.

The 3: u = sup(A) → A ⊆ P>u ∧

∀u1.[A ⊆ P>u1 → u ∈ P>u1]

It is provable in LC that D is non-empty; hence by The 2-(c)
there exists the sum of all individuals. Following [49, p. 162],
we shall call it w (which Tarski transliterates as “world”). It
is the entire space.

Def 12: w ====
def

sup(D)

The space is an individual, hence its exists, and everything,
i.e., every region, is a part of it; cf. The 4.17

The 4: (a) w ∈ D

(b) u ∈ P>w

Corresponding to the notion of the mereological sum of a
class of individuals there is the notion of a product. This is
not defined by Tarski; but Def13 suggests itself by its analogy
to the case of the sum.

Def 13: (a) Π(a, A)⇐⇒
def
Σ(a, {u | ∀u1 ∈ A.〈u, u1〉 ∈ P})

(b) inf(A) ====
def

�u.Π(u, A)

(c) inf(vs | ϕ) ====
def

inf({vs | ϕ})

(d) inf(a1, a2, . . . , am) ====
def

inf({a1, a2, . . . , am})

(e) · ====
def

λu1u2. inf(u1, u2)

Again we use infix notation “a1 · a2” instead of “· (a1, a2)”.
There is an important difference between the notion of a sum
and that of a product: whereas only non-empty classes have
a sum, also the empty class has a product. If A = ∅, then
{u | ∀u1 ∈ A.〈u, u1〉 ∈ P} = D and hence Π(A,w) according
to Def 12. This, however, does not mean that the infimum
always exists. If A is a class of non-overlapping individuals,
i.e., of individuals which have no common parts, then the class
{u|∀u1 ∈ A.〈u, u1〉 ∈ P} will be empty and will hence not have a
supremum. In this case, therefore, A will not have an infimum.

17Theorems like The 4-(a) are of special importance for our formal
framework since the rule of substitution of LC is, as has been explained
in section II-A above, restricted in such a way that the substitution of a term
X for a variable of sort s requires a proof of X ∈ Ds.

Corresponding to The 3 we have the following theorem for the
infimum.

The 5: u = inf(A) → A ⊆ P<u ∧

∀u1.[A ⊆ P<u1 → u1 ∈ P<u]

According to The 4, w is the unique region which is maximal
with respect to the P-relation. Now after we have decided to
adopt points as the minima of that relation, it is useful also to
adopt a special sort p for points. Hence Dp (cf. Def 1-(a)) is the
class of all points which thus does not need a special definition.
However, in order to catch the identification of points with P-
minima, we have to accept a special axiom which corresponds
to Tarski’s Definition of points; cf. [49, p. 163].

MER 5: Dp = {u | P>u ⊆ {u}}

MER 5 has still to be supplemented by Tarski’s postulate that
each individual has at least one punctual part.

MER 6: P>u ∩ Dp
, ∅

MER 6 is sufficient to show that each individual is the sum
of its points; Tarski’s proof for this can be transferred to the
present system.

The 6: u = sup(p | p ∈ P>u)

However, within the framework of LC this does not mean
that talk about regions can be dismissed in favour of talk
about point classes since within LC (unlike as in Tarski’s type-
theoretic framework) we cannot quantify over point classes
though quantification over regions is possible.

III. Interval Spaces and Convexities

In the previous sections we have laid the logical and mere-
ological foundations for the system of geometry which will
be presented in a stepwise manner in this and the following
two sections. In the first part of the present section, we do not
extend the foundational framework provided by any further
axioms but define some concepts of central importance for
our system of geometry. Then we point out some simple
consequences which can be derived from the definitions given
only by means of logic and mereology. In the second part of
the present section we then state the first axioms of a geometric
character.

A. Pregeometry

By a a convex region we understand a region in which every
pair of points is connected by a linear segment completely
belonging to that region. A triangle and a circle are examples
of convex regions whereas the bean shaped region of Fig. 1
is not. The variables of sort c vary over the elements of the
domain Dc (cf. Def. 1) which is the class of all convex regions.
Def 14 introduces the central notion of the convex hull of a
region: the function [ ] assigns to each region u its convex hull
[ ](u). We write “[u]” instead of “[ ](u)” in order to comply
with ordinary notation. The convex hull [u] is the infimum of
all convex regions containing u as a part.
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Fig. 1. Two convex regions and a non-convex one

Def 14: (a) [ ] ====
def

λu. inf(c | u ∈ P>c)

(b) [p1, p2, . . . , pn] ====
def

[sup(p1, p2, . . . , pn)]

(c) p1 p2 ====
def

[p1, p2]

Def 14-(b) defines the polytope — or, more precisely, the n-
tope — spanned by p1, p2, . . . , pn as the convex hull of the
sum of those points. The segment p1 p2, then, between p1 and
p2 is just the 2-tope spanned by these two points, cf. Def 14-
(c). These definitions correspond to those given in point set
based convex geometry; cf., e .g., [1, pp. 3, 5]. The convex hull
[u] of a region u always exists (is an individual) and contains
u as a part.

The 7: (a) [u] ∈ D
(b) u ∈ P>[u]

Proof: Let A := {u1 | ∀c.[〈u, c〉 ∈ P→ 〈u1, c〉 ∈ P}]. If there are
no convex regions containing u, then A = D and [u] = w ∈ D;
and (b) holds by The 4. If, however, there are convex regions
containing u, then u ∈ A , ∅ and hence [u] ∈ D by The 2-(c).
The assertion (b), then, follows by The 5. �

From The 7 we have immediately The 8-(a); the second
claim of that theorem is a direct consequence of the definition
of the product and the hull operation.

The 8: (a) p1, p2 ∈ P>p1 p2

(b) p1 p2 = p2 p1

The 8 states (modulo the replacement of set theoretical notions
by mereological ones) that the class of points and that of
segments together with the segment operation constitutes an
interval space; cf. [1, chap. 1, Sec. 4].18 The 8-(a) corresponds
to the so-called extensive law, Theorem 8-(b) to the symmetry

law of interval spaces. Interval spaces in turn give rise to
convex structure (also briefly called convexities). These are
the structures exhibiting the basic facts about convex sets; cf.
[1, p. 3]. A convexity is a family C of subsets of some point
set X which fulfills the following three closure conditions:

(C-1) ∅, X ∈ C;
(C-2) for D ⊆ C is

⋂
D ∈ C;

(C-3) if for A, B ∈ D ⊆ C it always holds true that A ⊆ B

or B ⊆ A, then
⋃
D ∈ C.

18On the background of set theory, an interval space I = 〈X, I〉 is defined
to be a pair consisting of a set X of points and an operation I : X × X → 2X

such that for p, q ∈ X it holds true that p, q ∈ I(p, q) and I(p, q) = I(q, p); cf.
[1, p. 71].

Using the segment operation, we define in our mereological
context the special class Cv of regions in the following way.

Cv ====
def
{u | ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u}

It is not too difficult to show that Cv fulfills mereological
analogues to (C-1), (C-2), and (C-3).

The 9: (C-1)’ w ∈ Cv
(C-2)’ ∃u.A ⊆ P<u ∧ A ⊆ Cv→ inf(A) ∈ Cv
(C-3)’ ∅ , A ⊆ Cv ∧

∀u1, u2 ∈ A.〈u1, u2〉 ∈ P ∪ P−1 →

sup(A) ∈ Cv

Proof: (C-1)’ is immediate from The 4-(b). — (C-2)’. The first
conjunct of the hypothesis ensures that u1 := inf(A) ∈ D. It
remains to be shown that each segment p1 p2 where p1, p2 ∈

P>u1 is itself a part of u1. From p1, p2 ∈ P>u1 it follows by
The 5 that for each u2 ∈ A p1, p2 ∈ P>u2 and hence p1 p2 ∈

P>u2 since A ⊆ Cv. Thus p1 p2 ∈ u2 for each u2 ∈ A, hence
u1 ∈ Cv. — (C-3)’. Since A , ∅, again u1 := sup(A) ∈ D.
Suppose p1, p2 ∈ P>u1. According to Def 10, the two points
share, respectively, a part with two individuals u2, u3 ∈ A.
According to the second conjunct of the assumption 〈u2, u3〉 ∈

P or, conversely, 〈u3, u2〉 ∈ P. Assume the first (the argument
for the second is completely parallel). Then p1, p2 ∈ P>u2 and,
since u2 ∈ A ⊆ Cv, p1 p2 ∈ P>u2. But then p1 p2 ∈ P>u1, too.
Hence u1 = sup(A) ∈ Cv. �

A region u belongs to Cv if all the “2-topes”, i.e., segments,
whose boundary points are from u lie within that very region.
Of course, the definition of the class Cv is an exact formal
counterpart of the intuitive explanation of the notion of a
convex region provided at the beginning of this subsection.
Therefore it cannot be included as a formal definition within
our system since this would involve a circularity: segments are
defined in terms of convex regions (by using variables of sort
c), hence one cannot use segments in order to define convex
regions. However, the class Cv should turn out to be identical
with the domain Dc. Within pregeometry we can prove at least
the inclusion of that domain in Cv; cf. The 10. The converse
inclusion will be postulated as an axiom in the next subsection.

The 10: Dc ⊆ Cv

Proof: This follows readily from The 5 and Def 14. �

B. Convex Structure

Spelled out, the converse of The 10 amounts to the following
principle.

GEO 1: ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u→ u ∈ Dc

By GEO 1 we leave mereology and pregeometry and enter the
realm of geometry proper. Therefore the label “GEO” is given
to the new axiom rather than continuing using “MER” in order
to mark principles. By The 10 we may strengthen GEO 1 to
a biconditional.

The 11: u ∈ Dc ↔ ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u

Furthermore, we may now replace “Cv” in The 10 by “Dc”.
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The 12: (a) w ∈ Dc

(b) ∃u.A ⊆ P<u ∧ A ⊆ Dc → inf(A) ∈ Dc

(c) ∅ , A ⊆ Dc ∧

∀u1, u2 ∈ A.〈u1, u2〉 ∈ P ∪ P−1 →

sup(A) ∈ Dc

The 11 and The 12 state that Dc is a (mereological) convex
structure. The 12-(b) immediately implies that convex hulls
are, as their name suggests, convex. A corollary of this is that
segments, which are special convex hulls — namely convex
hulls of regions consisting of at most two points — are convex.

The 13: (a) [u] ∈ Dc

(b) Ds ⊆ Dc

The 13-(a) implies that the hull of a region’s hull equals that
hull and that the hull operation is monotonic.19

The 14: (a) [[u]] = [u]
(b) u1 ∈ P>u2 → [u1] ∈ P>[u2]
(c) u ∈ P>c→ [u] ∈ P>c

Proof: By The 7-(b), The 5, and The 13. �
The 7-(b) and The 14-(a), (b) state that the [ ]-operator is

a hull-operator in the algebraic sense. As a special case of
The 14-(b) we have that segments spanned by the points of
some given segment are subsegments of that segment and that
hence a point of a given segment dissects a subsegment of that
segment.

The 15: (a) p1, p2 ∈ P>s→ p1 p2 ∈ P>s

(b) p3 ∈ P>p1 p2 → p1 p3 ∈ P>p1 p2

The 15-(b) is called the monotone law in [1, p. 74]. — We did
not require that the two arguments of the segment operator are
distinct. If we ask for the segment [pp] joining the point p to
itself, a natural answer would be that in this case the segments
shrinks down to the point p. Hence points are just segments
without any extension. Points are also special regions: they
are the minimal regions. But then, we have to admit that the
only segment which is a part of a minimal region p is p

itself and that therefore p is convex according to our intuitive
explanation of convexity. That this is actually the case is
postulated by a new axiom which states that the points are
a subsort of the convex regions.

GEO 2: Dp ⊆ Dc

From GEO 2 it is immediate that points are minimal segments.
This is, for obvious reasons, called the idempotent law in the
theory of interval spaces; cf. [1, p. 74].

The 16: pp = p

Proof: From GEO 2 together with The 5 and The 7. �
The domain Ds is characterized by the following axiom.

19Of the five axioms stated by Randell et. al. [17, p. 5] for their operator
conv, the first one corresponds to The 7-(b) and the second to The 14-(a).
The third axiom follows easily from The 14-(b) (in combination with the (a)-
clause of that theorem). The two remaining axioms which relate the concept
of a convex hull to the relation O (of overlap) and its complement, are true
in the “intended model” of the present theory, too. A proof of them, however,
is by no means obvious.

GEO 3: Ds = {u | ∃p1, p2.u = p1 p2}

From The 16 and the new axiom GEO 3 it follows that points
are special segments, namely one-point-only segments.20

The 17: Dp ⊆ Ds

Another consequence of The 16 is that each region is the sum
of its segmental parts.

The 18: u = sup(s | s ∈ P>u)

Proof: By The 6 and The 16 a region is already the sum of
its punctual segments. The non-punctual elements of the class
{s | s ∈ P>u} do not add anything more to the mereological
sum of this class. �

In the case of convex regions The 18 can be given the
following strengthened form.

The 19: p1 ∈ P>c→ c = sup(s | ∃p2 ∈ P>c.s = p1 p2)

Proof: From p1 ∈ P>c, it follows by The 11, that p1 p2 ∈ P>c

for each p2 ∈ P>c. Hence sup(s|∃p2 ∈ P>c.s = p1 p2) ∈ P>c. —
It remains to be shown that also conversely c ∈ P> sup(s|∃p2 ∈

P>c.s = p1 p2). Assume so that p3 ∈ P>c. It suffices to show
that p3 ∈ P> sup(s | ∃p2 ∈ P>c.s = p1 p2). But this follows
readily from The 16. �

To conclude the present subsection, we state a further axiom
which strengthens the theorem just proven for a special kind
of convex regions. Consider some point p and a convex region
c. The region [p+ c] may be called the cone with apex p and
base c; cf. Fig. 2. Since the cone has been constructed as a
hull, it is convex. By The 19, then, it equals the sum of all
the segments starting from the apex and ending at some other
point of the cone. The next axiom states that we do not really
need to consider all segments of the kind described but rather
can restrict ourselves to segments from the apex to the points
of the base (as the points p1, p2 and p3 in Fig. 2).

GEO 4: [p1 + c1] = sup(s1 | ∃p2 ∈ P>c1.s1 = p1 p2)

This axiom is called join-hull commutativity since it postulates
that the hull operation and the sum (“join”) operation may be
interchanged; cf. [1, p. 39]. The reader should remember here
that pp1 actually is the convex hull [p1, p2]. To make thus the
name of the principle more transparent, we could render it as
[sup(p1, c1)] = sup([p1 p2] | p2 ∈ P>c1).21

IV. Straightness and Order

In the previous section we dealt with the relationship
between segments and convex regions. Segments connect the
points of a convex region without leaving that region. In
the present section we shall consider two further important
properties of segments. In the first subsection we shall set up
two axioms which make explicit what it means for a segment
to be “straight” rather than “bent”. Then we shall study the
order of points in a segment.

20Though The 17 seems to be quite trivial, its formal proof requires some
care as regards the handling of the sorts.

21Where “sup([p1 p2] | ϕ)” abbreviates “sup(s1 | s1 = p1 p2 ∧ ϕ}”.
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c

p1
p2 p3

p

Fig. 2. Join-hull commutativity.

A. Straightness

Segments are convex, as we have seen, and so are the two
first sample regions (the triangle and the circle) displayed in
Fig. 1. Segments are one-dimensional and thus differ from
triangles and circles which are two-dimensional. There is yet
another property which sets segments apart from circles. A
circles (by its circumference) involves curvature whereas a
segment is straight. In the present subsection we set up two
axiomatic principle which make explicit what it means to
be straight. The first of these two principles is known as
decomposability; cf. [1, p. 143]. In our framework it may be
rendered as follows.

GEO 5: p2 ∈ P>p1 p3 → p1 p3 = p1 p2 + p2 p3 ∧

p2 = p1 p2 · p2 p3

A point of a segment dissects the whole segment into two
component segments which overlap precisely in the dissecting
point; cf. the left diagram of Fig. 3. Hence a curved line with
a loop such as that displayed by the right diagram of Fig. 3
cannot be a segment since there is a point on that line which
dissects it into three parts.

p1
p2

p3

p1p2

p2p3

p1 p3

p2

Fig. 3. Decomposition of a segment into two segmental components

As an immediate consequence of decomposability we have:

The 20: p2 ∈ P>p1 p3 ∧ p3 ∈ P>p1 p2 → p2 = p3

Proof: By decomposability p1 p3 = p1 p2 + p2 p3 with p2 =

inf(p1 p2, p2 p3). But since p3 ∈ P>p1 p2 ∩ P>p2 p3, p2 = p3. �

The second postulate which explains what it means for a
line to be straight is known by the name of this property, i.e.,
straightness; [1, p. 143].

GEO 6: ∃p1 p2.[p1 , p2 ∧ p1, p2 ∈ P>s1 ∩ P>s2]→
s1 + s2 ∈ Ds

The sum of two segments sharing two points cannot result in
a curved line because in that case at least one of the items
combined would have already been bent; cf. Fig. 4.

p1p2

p3 p4

s1

s2

sup(s1, s2)

p2 p1

s1

s2

sup(s1, s2)

Fig. 4. The combination of two segments results in a straight segment again

The 5 and The 6 imply the ramification principle of The 21;
cf. [1, p. 143] which says that two segments which have one
boundary point in common but differ with respect to their
second boundary will branch away from each other at the
common point; cf. the left hand side of Fig. 5. The indirect
proof of the ramification principle provided by [1, p. 144]
within a set-theoretic framework can be directly transferred to
our mereological system.

The 21: p3 < P>p1 p2 ∧ p2 < P>p1 p3 → p1 = p1 p2 · p1 p3

p1

p2

p3

p4
p1 p

p2

p3

p5

Fig. 5. The Ramification Property.

B. Order and Lines

Normally an order relation between points belongs to the
undefined concepts of standard axiomatic systems of geome-
try; cf., e.g., [12, §3], [50, pp. 11–13]. In our framework such
a relation may be defined.

Def 15: (a) B ====
def
{〈p1, p2, p3〉 | p2 ∈ P>p1 p3}

(b) p2Bp1 p3 ⇐⇒
def
〈p1, p2, p3〉 ∈ B
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Decomposability implies that of three points at least one lies
between the two others.

The 22: p1, p2, p3 ∈ P>s→

p1Bp2 p3 ∨ p2Bp1 p3 ∨ p3Bp1 p2

Proof: If two of the three points mentioned in the assumption
of the theorem are identical (say, e.g., p1 = p2), then the
assertion surely holds true (since then, in the example case,
p1Bp2 p3). Hence we assume that all the points differ from
each other. Let p4 and p5 be the endpoints of the segment
s; hence s = p4 p5. By GEO 5 s = p4 p1 + p1 p5 with
p1 = p4 p1 · p1 p5. Assume that p2 and p3 belong to differ-
ent component segments of s, e.g.: p2Bp4 p1 and p3Bp1 p5

(the converse distribution is treated in analogous way). Two
further applications of The5 yield p4 p1 = p4 p2 + p2 p1 and
p1 p5 = p1 p3 + p3 p5 where p2 and p3 are, respectively,
the only common points of the component segments. Hence
both p1 < P>p4 p2 and p1 < P>p3 p5. Again by GEO 5 we
have s = p4 p2 + p2 p5 with p2 = p4 p2 · p2 p5. From the
latter and p1 < P>p4 p2 we conclude p1Bp2 p5 and, since
p3Bp1 p5, p3Bp2 p5, too. A further application of The 5 yields
p2 p5 = p2 p3 + p3 p5 with p3 = p2 p3 · p3 p5. We already know
that p1 < P>p3 p5 and thus infer p1Bp2 p3. — Now assume
that p2, p3 belong to the same component segment of our first
division of s into p4 p1 and p1 p5. Assume p2, p3 ∈ P>p4 p1;
the remaining possibility is treated in an analogous way. The

5 yields that p4 p1 = p4 p2+ p2 p1 with p2 = p4 p2 · p2 p1. Hence
either p3Bp1 p2 and nothing remains to prove, or p3 ∈ P>p4 p2.
In the latter case we know by The 20 that p2 < P>p4 p3. But
by a final application of The 5 we have p4 p1 = p4 p3 + p3 p1

with p3 = p4 p3 · p3 p1; therefore p2Bp1 p3. �
Def 15 does not require that the two boundary points

delimiting the position of the third point differ. If they do
not, the point in between them is identical to them.

The 23: p1Bp2 p2 → p1 = p2

This is immediate from the idempotent law for segments The

16. The 23 is an axiom of Tarski’s system of Euclidean geom-
etry presented and investigated in [50]. There it is called the
identity axiom for the betweenness relation. Pasch [51], who is
celebrated for his analysis of the order relation, postulated that
points connected by the B-relation differ from each other, and
Hilbert [12] followed him in this. The B-relation assumed here
may be easily modified in the way suggested by the Pasch-
Hilbert-view.

Def 16: (a) B+ ====
def

B ∩ {〈p1, p2, p3〉 |
∧

1≤i< j≤3
pi , p j}

(b) p2B+p1 p3 ⇐⇒
def
〈p1, p2, p3〉 ∈ B+

For the concept of a segment and for betweenness-relation,
which are both basic in his axiomatisation of geometry, Pasch
[51, §1] postulates nine axioms. In the present framework they
can be formulated as shown in Tab. I. Of these axioms, I.
and IV. are just a special cases of The 7 and the “monotone
law” Theorem 14-(b), respectively. Furthermore, V. easily
follows from GEO 5. VI. says that a segment p1 p2 is always

extendable beyond its boundary point p2. We adopt it as a
basic principle of our system.

GEO 7: ∃p3.p2B+p1 p3

IX. is a dimensionality axiom. Since we wish to remain neutral
here with respect to dimensionality, we do not accept this
axiom.

I.
1
∃s.s = p1 p2

II. ∃p2.p2B+p1 p3
III. p2B+p1 p3 → ¬p1B+p2 p3
IV. p2B+p1 p3 → p1 p2 ∈ P>p1 p3
V. p2B+p1 p3 ∧ p4 < P>p1 p2 ∪ P>p2 p3 → p4 < Pp1 p3
VI. ∃p3.p2B+p1 p3
VII. p2B+p1 p3 ∧ p2B+p1 p4 → p3B+p1 p4 ∨ p4B+p1 p3
VIII. p2B+p1 p3 ∧ p1B+p2 p4 → p1B+p3 p4
IX. ∃p3.[¬p1B+p2 p3 ∧ ¬p2B+p1 p3 ∧ ¬p3B+ p1 p2]

TABLE I
Pasch’s Axioms for Segments and Betweenness

Pasch’s axiom II. is accepted here in the slightly modified
but equivalent form GEO 8.

GEO 8: p1 , p2 → p1 p2 , p1 + p2

The 8 requires each non-punctual segment to contain at least
two points, namely its boundaries. GEO 8 excludes “hollow”
segments just consisting of their boundaries. It thus says that
the relations B and B+ are dense. Hence it may be called the
denseness axiom; cf. [1, p. 146].22 It corresponds to the second
of Hilbert’s “axioms of order”; cf. [12, chap. I, §3].23

Within our framework, then, we can prove Pasch’s VIII.
by means of the principles of decomposability, ramification
and denseness. Actually VIII. refers to a special constellation
considered in the straightness axiom GEO 6. If in that axiom
s1 = p3 p1 and s2 = p2 p4, then we expect that s1 + s2 = p3 p4;
cf. the left hand side of Fig. 4.

The 24: p1 , p2 ∧ p2Bp3 p1 ∧ p1Bp2 p4 →

p3 p1 + p2 p4 = p3 p4

Proof: According to GEO 6, p3 p1 + p2 p4 is a segment, and
according to The 8 and The 15 it contains the segment p3 p4

as a part. Thus it remains to be shown that also conversely
p3 p1 + p2 p4 ∈ P>p3 p4 (∗). — In order to prove this, we first
deal with some special cases. (a) If p1 = p3, then p1 = p3 p1 =

p3. But this would, in contradiction to the assumption of the
theorem, imply that p1 = p2 since p2Bp3 p1. Hence p1 , p3.
— (b) Furthermore, p2 , p4, too. For otherwise we would have
p2 = p2 p4 = p4 and hence from the hypothesis p1Bp2 p4 p1 =

p2, which again contradicts the assumption p1 , p2. — (c)
Finally, p3 , p4, too. For otherwise we had p1Bp2 p3 because
of p1Bp2 p4. But since p2Bp3 p1, p3 p1 = p3 p2 + p2 p1 with

22In [1], that axiom is formulated for a segment operation which maps pairs
of points p1 and p2 to the open segment bounded by those two points; cf.
Fn. 3. This means that the points do not belong to the segment which they
delimit.

23Hilbert, however, conceives of order as a relation restricted to the points
of some given line. We shall return to the topic of lines at the end of the
present subsection.
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p2 = p3 p2 · p2 p1. As we have just seen, however, p1Bp2 p3;
this would yield p1 = p2, once more in contradiction to the
assumption. (d) We may assume that p4 < P>p3 p1 (and so
particularly p1 , p4). Otherwise, by decomposition, p4Bp3 p2

(d.1) or p4Bp2 p1 (d.2). The latter would imply p1 = p4 by The

20. Since the assumption p2Bp3 p1 implies p2 p4 ∈ P>p3 p1 by
The 15, we had p3 p1 + p2 p4 = p3 p1 which together with p1 =

p4 implies (∗), which concludes the case (d.2). — Assume
then (d.1). By decomposition p3 p4 + p4 p2 = p3 p2 with p4 =

p3 p4 · p4 p2. From this and from (b) above we conclude that
p2 < P>p3 p4. Again by decomposition p3 p4 + p4 p1 = p3 p1;
thus p2Bp4 p1. But then with the assumption p1Bp2 p4 and The

20 p1 = p2 in contradiction to the theorem’s assumption. —
(e) Because of a similar reasoning we may also assume that
p3 < P>p2 p4 (and thus in particular p2 , p3). — In order to
prove (∗), it is sufficient to show that p1, p2 ∈ P>p3 p4. From
the latter and The 15 it follows that p3 p1 and p2 p4 are both
parts of p3 p4 which implies (∗) by The 3. — Assume first that
p1 were not a part of p3 p4. We may take it for granted that
p4 < P>p3 p1; cf. (d) above. Hence we may apply The 21 and
conclude that p3 = p3 p4 · p3 p1 (f). Now consider p2 p4. From
(f), the assumption p2Bp3 p1, and the fact that — according to
(b), (c) above — p2 differs from both p3 and p4, we infer that
p2 < P>p3 p4. Furthermore we may assume that p3 < P>p2 p4;
cf. (e) above. Thus we may once again by The 21 conclude
that p4 = p3 p4 · p2 p4 (g). By (f) and (g), we have that p3

and p4 are the only points shared by p3 p4 and p3 p1 + p2 p4.
We had already proven that p3 p4P>p3 p1 + p2 p4 and hence
p3 p4(p3 p1+p2 p4) = p3 p4. But since the factors of that product
share only the two points mentioned, we are forced to conclude
that p3 p4 = p3+ p4 which contradicts denseness. — The same
result is reached by a parallel argumentation which starts from
the assumption that p2 < P>p3 p4.

Pasch’s VII. is a consequence of the ramification property;
cf. The 21.

The 25: p2B+p1 p3 ∧ p2B+p1 p4 → p3B+p1 p4 ∨ p4B+p1 p3

Proof: Since we are concerned with strict betweenness here,
p1 , p2. Hence the two segments p1 p3 and p1 p4 share
more than just one point; thus p1 , inf(p1 p3, p1 p4). By the
ramification property then: ¬[p4 < P>p1 p3 ∧ p3 < p1 p4], i.e.,
p3 ∈ P>p1 p4∨ p4 ∈ P>p1 p3, hence (since, by hypothesis, both
p1 , p3 and p1 , p4): p3B+p1 p4 ∨ p4B+p1 p3. �

We have thus proven (or, in the case of II. and VI. simply
taken over) all of Pasch’s axioms for lines. The celebrated
axiom called after him (“Pasch’s Axiom”; Hilbert’s fourth
“axiom of order”), however, is not included within the list
of Tab. I because it makes its appearance in [51] only in the
book’s second paragraph, which deals with planes. We shall
return to Pasch’s Axiom in the next section. We conclude the
present section by a brief consideration of (unbounded) lines
(as opposed to bounded segments).

Pasch [51, p. 4] rejects the notion of an infinitely extended
line since it does not “correspond to anything perceivable”.
Nevertheless, he introduces lines into his system by a special

procedure which he calls “implicit definition” (and is to be
distinguished from “definition by axioms” also called thus).
The procedure is more closely described in [52], where Pasch
relates it to the doctrine of the As-If of the neo-Kantian
philosopher Hans Vaihinger. It essentially consists in the intro-
duction of a kind of new, “fictitious” objects which, however,
can be uniquely characterized by their relationships to “real”
objects. In our mereological framework we construct lines as
sums of certain points. The following definition mirrors the
set-theoretical procedure of [53, p. 50].

Def 17: L ====
def

{〈u1, p1, p2〉 | p1 , p2 ∧

u1 = sup(p3 | p1Bp3 p2 ∨ p3Bp1 p2 ∨

p2Bp1 p3)}

Obviously, L is a (partial) operation. Coppel [53, p. 49–
52] develops a theory of lines based on four axioms (L1)–
(L4). (L1) is the idempotent law The 16. Coppel’s (L2) says
that p2Bp1 p4 if p2Bp1 p3, p3Bp2 p4, and p2 , p3. This is an
immediate consequence of our The 24. (L3) is the ramification
principle; cf. The 21. Finally (L4) is that part of GEO 5 which
is concerned with the supremum-operation (omitting the part
postulating that the combined segments share a single point).
Since all of Coppel’s axiom are provable in our framework
(and his proofs do not make use of set-theoretical procedures
not available in our class-theoretical framework), the theorems
proven by him can directly be taken over into our framework.
This includes his result that a line is uniquely determined by
any two points lying on it and that the points on a line can
be arranged in a unique way in a total linear order. Because
of GEO 8, we may add that this order is dense.

C. The Axioms of Peano and Pasch

The structure of points and lines described at the end of the
previous section is known as a “line space”; cf. [1, p. 155].
In a line space two distinct points belong to a unique line,
each line has at least two points, and the points on each line
are arranged in a total linear dense order. The only condition
entering into the definition of a line space which has not been
established yet is the so-called Peano Axiom (cf. the left-hand
side of Fig. 6). However, this axiom can be proven in our
framework.

The 26: p4Bp2 p3 ∧ p5Bp1 p4 → ∃p6 ∈ P>p1 p2.p5Bp3 p6

Proof: Suppose that both p4Bp2 p3 and p5Bp1 p4. Then p5

belongs to [p1, p2, p3] which, by GEO 4, is sup(s | ∃p4 ∈

P>p2 p3.s = p1 p4). By the same axiom, however, [p1, p2, p3] =
sup(s | ∃p6 ∈ P>p1 p2.s = p3 p6). Hence p5 ∈ P>p3 p6 for some
p6 ∈ P>p1 p2. �

From the Peano Axiom we now deduce Pasch’s Axiom.
Pasch himself formulates his axiom [51, p. 20] as stating
a relationship between a triangle and a segment entering
the inner of the triangle by crossing one of its edges. The
theorem then says that either the entering segment itself or
a prolongation of it leaves the triangle by crossing (either a
vertex of the triangle or) exactly one of the two other edges.
Here we prove another formulation. Pasch’s own version of
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Fig. 6. The Peano Axiom and Proof of Pasch’s Axiom

his axiom, however, is provable from the version used here,
cf. [53, p. 57f]. Conversely, our version given below is implied
by Pasch’s theorem; cf. [51, p. 25].

The 27: p4Bp1 p2 ∧ p5Bp1 p3 → 〈p2 p5, p3 p4〉 ∈ O

Proof: We24 may presuppose that none of the three points
p1, p2, p3 lies on the segment determined by the two others.
For in that case all the points involved lie on that segment. In
this case the theorem is easily proven by checking a number of
trivial possibilities. By GEO 8 there exists a point p6 between
p5 and p4. Obviously, p1 , p6 since otherwise p1, p2, p3 would
lie on a common segment contrary to our initial assumption.
For p6 two applications of The 26 yield points p7 and p8

on, respectively, p3 p4 and p2 p5 such that both p6Bp1 p7 and
p6Bp1 p8. By GEO 6 p1, p6, p7, and p8 lie on a segment;
hence, by The 22 one of the three points p6, p7, and p8 must
lie within the segment spanned by the two others. If p6Bp7 p8,
it would follow that all three points were identical and then
that point would be a common point of p2 p5 and p3 p4. Hence
p7Bp6 p8 or p8Bp6 p7. The first case is that displayed in the left
hand side of Fig. 6. We consider only this case; the argument
for the other case is completely analogous. The segment p6 p8

is a part of the triangle △p4 p5 p2 (shaded in Fig. 6); therefore
the point p7 also belongs to that triangle. It follows by an
application of GEO 4 that p7Bp4 p9 for some p9 with p9Bp2 p5.
Applying now The 26 to △p1 p2 p3 and the point p9 lying on the
segment p2 p5 we infer that there must be a point p10 between
p1 and p2 such that p9Bp3 p10. Furthermore, p9 , p3, for
else p1, p2, p3 would again lie on a single segment which is
impossible according to our initial assumption. The segments
p3 p10 and p3 p4 share thus two points, namely p3 and p9.
Hence, by The 6, the sum s is a segment. This segment s

contains both p4 and p10. If these were two different points,
then, again by The 6, the sum of s with p1 p2 would be a
segment containing all three of p1, p2, p3. Hence we conclude
that p4 = p10. But then p9Bp3 p4 and p3 p4 and p2 p5 overlap
in p9. �

We conclude the presentation of our theory of space by
some remarks relating to two topics addressed in the In-
troduction (sec. I), namely “coordinates” and the idea of a
“geometric algebra”.

24Van de Vel [1, p. 144] gives another proof of Pasch’s Axiom making
use only of the Ramification Principle instead of the stronger Straightness
Principle. The proof given here employs the same idea as is used by Coppel
[53, p. 86] but applies GEO 4 in order to infer the existence of point p9.

V. Coordinates

The first step in turning a qualitative theory of space into
a “quantitative” one by the introduction of coordinates is
to define operations of addition and multiplication for the
segments of a line (or, when a certain point of the line is
distinguished as the “origin” or “zero point”, for the points
of that line) by help of Desargue’s theorem; cf., e.g., [12, §
24] or [50, Part I, § 14]. Now Coppel [53, p. 54f] defines
a “linear geometry” as a structure fulfilling (set-theoretic
counterparts) of Pasch’s principle VIII. (which follows from
our The 24),25 our The 21 (the “ramification principle”), our
GEO 5 (the “decompososability principle”) and the Peano
Axiom (our The 26). Furthermore, he shows [53, pp. 125–
131] that in each dense linear geometry (thus in each linear
geometry in which our GEO 8 is valid) of dimensionality
greater than 2, Desargue’s theorem holds true in the following
form: Let L(p1 p2), L(p3 p4), L(p5 p6) three distinct lines with
a common point p which is different from p j (1 ≤ j ≤ 6). If
corresponding sides of the two triangles △p1 p3 p4 and △p2 p4 p6

intersect, then the three points of intersection lie on the same
line. Finally, it is shown by Coppel [53, ch. 7] that suitable
additive and multiplicative operations for points can be defined
by use of Desargue’s theorem in such a way that a linear
geometry in which this theorem is valid may be embedded
into (the projective completion of) an ordered skew field. Thus
in order to introduce coordinates we can either postulate that
our space is three-dimensional or we may directly require that
Desargue’s theorem is true.

Of course, if it is desired that the order of points on a line
have Dedekind’s cut property something more is necessary. In
the common axiomatisation of geometry the axiom of continu-
ity guaranteeing the cut property makes use of quantification
over sets of points which is not available in LC. However,
since regions are just the sums of their points, first-order
quantification over regions mimics quantification over point
sets. Thus it would be interesting to see how far one gets with
something like ∃p.∀p1 ∈ P>u1, p2P>u2.p1Bpp2 → ∃p0∀p1 ∈

P>u1, p2P>u2.pBp1 p2 which results from Tarski’s axiom on
continuity [50, p. 14] by replacing variables for point sets by
variables for regions.

VI. Note on the idea of a “geometric algebra”

In the Introduction (sec. I) we considered Leibniz’ idea
of a geometric algebra in which one can directly calculate
with points and lines without encoding these geometric entities
by (pairs and sets of) numbers. Furthermore, the geometric
system presented here has been inspired in many respects
by Prenowitz’ “join geometry” which shares the “algebraic
vision” with Leibniz’ idea of a characteristica geometrica.
However, that system with its axioms involving logical con-
nectives and quantifiers is more in line with the ancient
Euclidean procedure than with modern algebraic theories —

25Actually, not VIII. itself but an equivalent “mirror image” of it in which
the sequence of points concerned is inverted is used by Coppel.
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like, e.g., ring theory or lattice theory — which fix their models
by lists of equations.

Nevertheless there is the possibility to develop within our
framework parts of geometry in an “equational manner”.
In the present section we briefly describe an example for
this. In the Introduction (sec. I) it was pointed out that
the “associative law” p1(p2 p3) = (p1 p2)p3 for Prenowitz’
join operation is only interpretable on the basis of certain
conventions. The problem is that the join operation is defined
for points while, one subterm (namely, respectively “(p2 p3)”
and “(p1 p3)”) of the main terms on both side of the equation
stating the law refers to a segment rather than to a point. In the
framework presented in this article this is not really a problem.
We have just to replace Def 14-(c) by the two definitions
p1u1 ====

def
u1 p1 ====

def
[p1, u1]. Since the universal variable “u1”

is substitutable by variables of both sort p and sort s, this
simultaneously defines the operations of (1) joining points,
(2) joining a point to a segment, and (3) joining a segment
to a point; and their would be no problem with a terms like
“p1(p2 p3)” and “(p1 p2)p3” entering into the formulation of
the associative law.

However, this solution suffers from two shortcomings. (1st)
It seems too restrictive by requiring that one argument of the
generalized join operation is still a point. Should one not
define the operation in a completely general way admitting
for arguments of any sort? (2nd) It does not match Prenowitz
intention that the join of a point and a segment is built up by
the segments joining the point argument and the individual
points of the segment argument. Thus it would be more
adequate to keep the old Def 14-(c) for joining points and
to supplement it by the following general one.26

Def 18: u1 ◦ u2 ====
def

sup(s | ∃p1 ∈ P>u1, p2 ∈ P>u2.s = p1 p2)

Obviously, p1 ◦ p2 = p1 p2; we do not therefore make a nota-
tional distinction between the two operations. It is immediate
that the general join operation is commutative. Furthermore,
it is obvious that is idempotent for convex regions. Thus two
of the algebraic laws valid for his special join operation hold
true for the more general one when it is restricted to convex
regions.

The 28: Idempotency cc = c

Commutativity c1c2 = c2c1

Is the third law postulated to hold by Prenowitz for his join
operation, thus assiociativity, valid (for convex regions), too?
In order to show that c1(c2c3) = (c1c2)c3, it suffices in view
of The 6 to show that c1(c2c3) and (c1c2)c3 have exactly the
same points. Let us consider a point p4 of c1(c2c3); we have
to show that p4 ∈ P>(c1c2)c3. From p4P>c1(c2c3) we conclude
the existence of points p j ∈ P>c j (1 ≤ j ≤ 3) and of a point
p5Bp2 p3 such that p4Bp1 p5; cf. the constellation built up by
the solids line in the left hand diagram of Fig. 7. That p4

26Def 18 corresponds in our mereological framework to a similar definition
provided by Prenowitz and Jantocziak in their set-theoretic setting; cf. [9, p.
55].
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Fig. 7. Associativity of the generalized join operation

belongs to (c1c2)c3 means that there are points p′
j
∈ P>c j

1 ≤ j ≤ 3 and a point p′5 such that p′5Bp′1 p′2 and p4Bp′5 p′3.
Considering the situation depicted on the left hand side of Fig.
7, it suggests itself to set p′

j
:= p j 1 ≤ 3 and to chose p′5 as

the point of intersection p6 of p1 p2 and the line through the
segment p3 p4; cf. the constellation of dashed lines in the left
part of Fig. 7.

What then remains to be shown is that p6 really exists, i.e.,
that the segment p3 p4 can be extended so that it intersects with
p1 p2. But one readily recognizes that the situation described
is just a “Pasch-configuration”. Using GEO 7, we may extend
p1 p3 to a point p7 such that p3Bp1 p2. Then the line through
p3 p4 is a line entering the triangle △p1 p7 p2 through its edge
p1 p7. The original version of Pasch’s Axiom requires that this
line leaves the triangle through one of the two other edges. In
our case p6 must be incident with p1 p2. Assume that p6 were
a part of p7 p2. The only point that p7 p2 has in common with
△p1 p3 p2 is p2;27 hence we had p2 = p6 and thus nevertheless
p6 ∈ p1 p2. So we have proven that p4 ∈ P>(p1 p2)p3 and by
this that P>p1(p2 p3) ⊆ P>(p1 p2)p3. The converse of this can
be shown by an analogous argument. Summing up, we have
thus proven associativity.

The 29: Associativity c1(c2c3) = (c1c2)c3

Prenowitz’ [9, p. 55] three basic algebraic laws (J2), (J3),
and (J4) of his join geometry are (modulo the difference
explained in Fn. 3 above) just special cases of the more general
principles given here and can be derived from these principles
because of MER 2.

VII. Conclusion

We have provided a theory of space formulated in a mereo-
logical framework which is based on the notion of convexity.
Using mereological concepts, segments of straight lines have
been explained as the convex hulls of the sum of two points.
What “straightness” exactly means for thus defined segments
has been determined by two axioms. Two further axioms have
been included into the system in order to describe the linear
arrangement of the points of a segment. Finally, it has been
illustrated by examples how a more algebraic approach to
geometry, envisaged already by Leibniz, can be developed
within the framework presented here.

27In order to see this, one has to use GEO 6.
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