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Abstract—This paper presents a hybrid programming 

framework for  solving multi-objective optimization problems 

in supply chain. The proposed approach consists of the 

integration and hybridization of two modeling and solving 

environments, i.e., constraint logic programming and 

mathematical programming, to obtain a programming 

framework that offers significant advantages over the classical 

approach derived from operational research. The strongest 

points of both components are combined in the hybrid 

framework, which by introducing transformation allows a 

significant reduction in size of a problem and the optimal 

solution is found a lot faster. This is particularly important in 

the multi-objective optimization where problems have to be 

solved over and over again to find a set of Pareto-optimal 

solutions. An over two thousand-fold reduction in size was 

obtained for the illustrative examples together with a few 

hundred-fold reduction in the speed of finding the solution in 

relation to the mathematical programming method. In 

addition, the proposed framework allows the introduction of 

logical constraints that are difficult or impossible to model in 

operational research environments. 

I. INTRODUCTION 

UPPLY chain (SC) is an integrated process in which a 

group of several organizations and/or companies, such 

as suppliers, producers, distributors and retailers, work 

together to acquire raw materials with a view to converting 

them into end products which they distribute to retailers [1]. 

Decision and optimization problems occurring in the real-

world supply chain are characterized by multiple objectives, 

constraints and many different  decision variables. The 

presence of multiple conflicting objectives and constraints is 

natural and results from the complexity and interrelated 

character of problems and different interests of individual 

supply chain participants. Environmental aspects such as 

CO2 emissions, noise, etc., which are a new type of 

constrains in SC, are emerging to become an important 

factor in the design of supply chains. Operational research 

models, with mathematical programming (MP) in particular, 

are most often used. They include MILP (mixed integer 

linear programming), MIP (mixed integer programming), IP 

(integer programming), etc. and MOOP (multi-objective 
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optimization problem) [2]. The vast majority of these models 

have a very large number of constraints, and two major 

difficulties appear in their application. First, discrete 

optimization problems, both single and multi-objective, 

contain many discrete decision variables. This increases 

their computational complexity and the finding of the 

optimal solution is long and costly. Second, mathematical 

programming models have linear constraints, which is 

insufficient for the description of many of the SC problems. 

This paper deals with a problem of supply chain modeling, 

multi-objective optimization and solving. An important 

contribution of the presented approach is to propose a 

programming framework that supports the hybrid modeling, 

hybrid multi-objective optimization and analysis of decision 

problems in the supply chain. In this programming 

framework two environments are hybridized, constraint 

logic programming (CLP) and mathematical programming 

(MP), in which constraints are treated in different ways and 

different methods are implemented to use the strengths of 

both for solving complex and constrained problems. The 

hybrid approach offers a lot more possibilities and higher 

efficiency in both the modeling and multi-objective 

optimization. The concept of hybridization is complemented 

by the interaction algorithm and a complete transformation 

of the problem and together creating an application 

programming framework. The rest of the paper is organized 

as follows: Section 2 describes literature review. Next 

Section presents Methodology. Section 4 is about our 

motivation. Section 5 gives the concept of the novel 

constraint logic programming approach with MP-based 

solver and implementation platform. The optimization 

models as the illustrative examples are described in Section 

6. Computational examples and tests of the implementation 

platform are presented in Section 7. The discussion on 

possible extensions of the proposed approach and 

conclusions is included in Section 8. 

II. LITERATURE REVIEW OF SUPPLY CHAINS MODELS AND 

MULTI-OBJECTIVE OPTIMIZATION 

The build-to-order supply chain (BOSC) model, a key 

operation model for providing services/products, has 

received more attention in recent years, car manufacturers 
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including [3]. In the BOSC model, production activities are 

not executed until orders from customers have been 

received, which can effectively reduce the costs of demand 

prediction and inventory and credibly reflect market 

demands. When BOSC is started, the selection of suppliers 

becomes the priority. Product assembly begins after this 

selection. Based on the findings reported in the literature 

[4],[5]. BOSC is a successful supply chain model that is 

currently widely in use. There are two most widely 

encountered objectives of the objective function in multi-

objective programming models for SC. The first objective is 

the cost of activity in the supply chain, including the cost of 

particular chain link, transport, work and even product 

design, etc. The second objective is associated with the costs 

or volumes of CO2 emission and other environmental 

aspects [6]. The second objective may also comprise 

delivery time [7] or, calculated in many different ways, the 

level of customer satisfaction [8],[9]. In [10] the multi-

objective optimization mathematical model of BOSC has 

been presented. There are three objective functions. The first 

is cost minimizing including order cost, purchase cost and 

transport cost. The second is minimizing the maximum time 

of transporting the purchased parts to customers (delivery). 

The last is the part quality. Many researchers have recently 

reported the results of their multi-objective optimization 

studies. For example, a multi-objective programming model 

is proposed in [2],[11] to analyze solid waste management. 

The model for simultaneously optimizing the operations of 

both integrated logistics and its corresponding used-product 

reverse logistics in a close-looped supply chain has been 

presented in [12]. The common feature of these problems is 

the number of decision variables resulting from the 

allocation of resources, choice of location, route selection, 

choice of factory and distribution center, choise o mode of 

transport etc. These are usually binary and/or integer 

decision variables. Besides, all the problems are 

characterized by a large number of constraints binding 

decision variables. The overview of the models and 

algorithms of these problems is shown in [2],[27]. 

A. Multi-objective optimization 

The multi-objective optimization problem (MOOP) can be 

defined as the problem of finding a vector of decision 

variables ��, which optimizes a vector of N objective 

functions fi (��) where i = 1, 2, .. ,N; subject to inequality 

constraints gj (��) ≥ 0 and equality constraints hk (��) = 0 

where j = 1, 2, .. , J and k = 1, 2, .. ,K. 

A set of objective function is a multi-dimensional space, 

in addition to typically the decision space. This additional 

space is called the objective space Z. For each solution ��	in 

the decision variable space, there exists a point in the 

objective space: 

��	(��	)=Z (z1 , z2 ,.., zN )
T
 

In a MOOP, we want to find a set of values for the 

decision variables that optimizes a set of objective functions. 

A decision vector �� is said to dominate a decision vector 

��	(i.e. ��>��) if: 

�	 	(��	) 	≤ 	 �		(��)	∀	� ∈ {1,2, . . , �} 
and 

∃	� ∈ 	 {1,2, . . , �}	|	�	 		(��	) ≤ 	 �		(��) 
All decision vectors that are not dominated by any other 

decision vector are called non-dominated or Pareto-optimal 

and constitute the Pareto-optimal front/set. There are several 

methods for find the Pareto-optimal set of these optimization 

problems. Among the most widely techniques are: ε-

constraint method, weighting method, goal programming, 

sequential optimization etc. [13]. 

III. METHODS AND METHODOLOGY 

The key problem in the modeling and optimization of 

problems in the supply chain are multiple constraints of 

different types and character-linear, integer, non-linear, 

logical etc. Constraints are logical relations between 

variables, each variable taking a value from a specific 

domain. Thus a constraint restricts the possible values that a 

variable can take, i.e. it represents some partial information 

about the variables of interest. Constraints are: 

• declarative, they specify a relationship between entities 

(decision variables) without determining a specific 

computational or programming procedure; 

• additive, we are interested in the conjunction of 

constraints and not in the order in which they are 

imposed; 

• rarely independent, normally constraints share decision 

variables. 

Thus constraints are a natural medium and form to express 

problems in many fields, especially in logistic, transport, 

manufacturing, scheduling, distribution, supply chain etc. by 

all (researchers, practitioners, professionals, end-users etc.). 

In the above problems, there are resource, financial, 

capacity, time, transportation, environmental, multimodal, 

sale etc. constraints. Based on numerous studies and our own 

experience, the constraint-based environment [14], [15], 

[16], [17], [29] is believed to offer a very good framework 

for representing the knowledge, information and methods 

needed for the decision support and optimization. The 

central issue for a constraint-based environment is a 

constraint satisfaction problem (CSP) [14]. Constraint 

satisfaction problem is the mathematical problem defined as 

a set of elements whose state must satisfy a number of 

constraints. Constraint satisfaction problems (CSPs) on finite 

domains are typically solved using a form of search. The 

most widely used techniques include variants of 

backtracking, constraint propagation, and local search. 

Constraint propagation embeds any reasoning that consists 

in explicitly forbidding values or combinations of values for 

some variables of a problem because a given subset of its 

constraints cannot be satisfied otherwise [15]. CSPs are 

frequently used in constraint programming. Constraint 

programming is the use of constraints as a programming 

language to encode and solve problems. Constraint logic 

programming (CLP) is a form of constraint programming 

(CP), in which logic programming is extended to include 

concepts from constraint satisfaction. A constraint logic 

program is a logic program that contains constraints in the 

body of clauses (predicates). In CLP the declarative 

approach and the use of logic programming provide 
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incomparably greater possibilities for decision problems 

modeling than the pervasive approach based on 

mathematical programming. Unfortunately, discrete 

optimization is not a strong suit of CP-based environments.  

This weakness is more pronounced in multi-objective 

optimization problems, where a parameterized problem of a 

single-objective optimization problem has to be solved 

multiple times depending on  the size of  Pareto set. Based 

on [14],[15] and previous work on hybridization 

[16],[17],[18] some advantages and disadvantages of these 

environments have been observed. The hybrid approach of 

constraint logic programming and mathematical 

programming can help to solve optimization problems that 

are intractable with either of the two methods alone 

[19],[20],[21]. In both MP and CLP, there is a group of 

constraints that can be solved with ease and a group of 

constraints that are difficult to solve. Both MP and finite 

domain CP/CLP involve variables and constraints. However, 

the types of the variables and constraints that are used, and 

the way the constraints are solved, are different in the two 

approaches [21]. MP relies completely on linear equations 

and inequalities in integer variables, i.e., there are only two 

types of constraints: linear arithmetic (linear equations or 

inequalities) and integrity (stating that the variables have to 

take their values in the integer numbers). In finite domain 

CP/CLP, the constraint language is richer. In addition to 

linear equations and inequalities, there are various other 

constraints: disequalities, nonlinear, symbolic (alldifferent, 

disjunctive, cumulative etc.) [14]. Integrity constraints are 

difficult to solve using mathematical programming methods 

and often the real problems of MP make them NP-hard. In 

CP/CLP, domain constraints with integers are easy to solve. 

The system of such constraints can be solved over integer 

variables in polynomial time. The inequalities between many 

variables, general linear constraints, and symbolic 

constraints are difficult to solve, which makes real problems 

in CP/CLP NP-hard [21]. This type of constraints reduces 

the strength of constraint propagation. As a result, CP/CLP 

is incapable of finding even the first feasible solution [16]. 

IV. MOTIVATION AND CONTRIBUTION  

The motivation and contribution behind this work was to 

apply a hybrid approach as a hybrid multi-objective 

programming framework  for supply chain problems. The 

hybrid multi-objective programming framework  is a 

concept that combines hybrid approach with iterative 

algorithm (Appendix A) in the context of multi-criteria 

optimization. The hybrid approach proved to be very 

effective when applied to a single objective optimization 

problems [17],[18]. This hybrid approach is an original 

concept whose elements and outline are presented in 

[16],[17],[18]. Application of this approach to multi-

objective optimization has not been presented before. The 

best structure for the implementation of the above approach 

is a declarative CLP environment with operation research 

MP as a hybrid system. Furthermore, such a hybrid approach 

allows the use of all layers of the problem (data, structure, 

methods) to solve it. Finally, it allows the transformation of 

the problem (Section VIC) to such a form that can fully 

exploit the strengths of the constraint propagation and data 

instances. It is well-known that there exist multiple non-

dominated solutions for a multi-objective optimization 

problem. Those solutions are called “Pareto-optimal” 

solutions. In this paper, our objective is to obtain a “Pareto-

optimal” set which provides evenly distributed Pareto 

solutions and  it is convenient for the decision maker to 

select a suitable costs between production, distribution and 

environmental (F1 and F2) or between all costs and total 

distributor capacity (F1’ and F2’) etc. (Section VIA and 

Section VID). This hybrid programming framework is not 

just a blind attempt to integrate two environments, CLP/MP. 

The proposed approach is reinforced with the 

transformation, different representation of the problem 

(Section VIC) and using the algorithm for finding a “Pareto-

optimal” set. In addition, hybridization refers to the class of 

decision problems which has certain property (This property 

is characterized by the constraints of many discrete decision 

variables and their summation). 

V. THE CONCEPT AND IMPLEMENTATION ASPECTS OF THE 

HYBRID MULTI-OBJECTIVE PROGRAMMING FRAMEWORK 

In this approach to the modeling and multi-objective 

optimization of supply chain problems, the hybrid multi-

objective programming framework has been proposed, 

where: 

• the decision and optimization models solved using the 

proposed framework can be formulated as a pure model 

of MOOP/MOLP or a hybrid model (with logical and 

non-linear constraints); 

• knowledge related to the problem can be expressed as 

facts and constraints (linear, non-linear, logical and 

symbolic etc.); 

• the problem is modeled in the constraint logic 

programming environment by CLP predicates, which is 

far more flexible than the MP  environment; 

• transforming the optimization model to explore its 

structure and data has been introduced by CLP 

predicates; 

• optimization is performed by MP-based environments. 

• the effective algorithm for finding a “Pareto-optimal” set 

has been introduced. 

The schematic diagram of the implementation framework for 

the hybrid approach is presented in Figure 1. The names and 

descriptions of the predicates and procedures are shown in 

Table 1. From a variety of tools for the implementation of 

the CP-based environment, ECL
i
PS

e
 software [22] was 

selected. ECL
i
PS

e
 is an open-source software system for the 

cost-effective development and deployment of constraint 

programming applications. MP-based environment in 

implementation platform was LINGO by LINDO Systems 

[23]. LINGO Optimization Modeling Software is a powerful 

tool for building and solving mathematical optimization 

models. ECL
i
PS

e
 was used to implement the following 

predicates of the framework: CLP1, CLP2, CLP3 and CLP4 

(Fig. 1, Table 1.). CLP predicates significantly restrict the 

space of feasible solutions (Fig. 1). The transformed files of 
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the model were transferred from ECLiPSe to LINGO where 

they were merged (MP1). Then the complete model was 

solved using LINGO efficient solvers (MP2). After that the 

model was modified for next step in procedure MP1 and 

solved again and again by MP2 in order to find a set of 

Pareto-optimal solutions (algorithm see appendix A). 

TABLE I. 

THE NAMES AND DESCRIPTIONS OF THE PREDICATES AND PROCEDURES 

Symbol Description 

CLP1 
The implementation of the model in CLP, the term 

representation of the problem in the form of predicates. 

CLP2 

Constraint propagation for the model or transformed model. 

Constraint propagation is one of the basic methods of CLP. As 

a result, the variable domains are narrowed, and in some cases, 

the values of variables are set, or even the solution can be 

found. 

CLP3 

The transformation of the original problem aimed at extending 

the scope of constraint propagation. The transformation uses the 

structure of the problem and data. The most common effect is a 

change in the representation of the problem by reducing the 

number of decision variables, and the introduction of additional 

constraints and variables, changing the nature of the variables, 

etc. 

CLP4 
Generation the model for mathematical programming-MOOP; 

 

MP1 
Merging files generated by CLP4 into one file. It is a model file 

format in LINGO system.  

MP2 

The solution of the model from the MP1 by MP solver. Sending 

the new solution to MP1 as a new constraint. Modification of 

the model. The process is repeated until the whole Pareto set is 

found (algorithm Appendix A). 

 

Fig.  1 The scheme of the hybrid multi-objective programming 

framework 

VI. ILLUSTRATIVE EXAMPLES OF SUPPLY CHAIN MODELING 

AND MULTI-OBJECTIVE OPTIMIZATION - THE HYBRID 

APPROACH 

The proposed approach was used and tested on two 

illustrative supply chain multi-objective optimization 

models. The model was formulated as a multi-objective 

mixed-integer optimization problem (MOOP) problem based 

on under constraints (2) .. (23) in order to test the proposed 

approach (Fig. 1) against the classical operation research 

approach. The models differ from one another objective 

functions (Section 6.A). Indices, parameters and decision 

variables used in the models together with their descriptions 

are summarized in Table 2 and [16],[17]. The simplified 

structure of the supply chain network for this model, 

composed of producers, distributors and customers is 

presented in Figure 2. Both models are the cost multi-

objective models that take into account other types of 

parameters, i.e., the spatial parameters (area/volume 

occupied by the product, distributor capacity and capacity of 

transport unit), time (duration of delivery and service by 

distributor, etc.), the transport mode and environmental 

aspects.  

These models are based on optimization models taken from 

[16],[17]. 

TABLE II. 

INDICES, PARAMETERS AND DECISION VARIABLES 

Symbol Description 

Indices 

k product type (k=1..K) 

m delivery point/customer/city (m=1..M) 

n manufacturer/factory (n=1..N) 

e distributor /distribution center (e=1..E) 

d  mode of transport (d=1..D) 

N number of manufacturers/factories 

M number of delivery points/customers 

E number of distributors 

 K number of product types 

D number of mode of transport 

Input parameters 

Fe the fixed cost of distributor/distribution center e  

Cn,k the cost of product k at factory n 

K1n,e,k,d 
the variable cost of delivery of product k from 

manufacturer n to distributor e using mode of transport d  

An,e,d 
the fixed cost of delivery from manufacturer i to 

distributor s using mode of transport d  

K2e,m,k,d 
the variable cost of delivery of product k from distributor e 

to customer m using mode of transport d  

Ge,m,d 
the fixed cost of delivery from distributor e to customer m 

using mode of transport d  

Odd the environmental cost of using mode of transport d  

Decision variables 

Xn,e,k,d,m 
delivery quantity of product k from manufacturer  n to 

distributor s using mode of transport d to customer m 

Xan,e,k,d,m 

if delivery is from manufacturer i to distributor e 

product k using mode of transport d to customer m then 

Xan,e,k,d,m =1, otherwise Xan,e,k,d,m =0  

Xbn,e,d 
the number of courses from manufacturer n to 

distributor m using mode of transport d 

Ye,m,k,d 
delivery quantity of product k from distributor e to 

customer m using mode of transport d 

Ybe,m,d 
the number of courses from distributor e to customer m 

using mode of transport d  

Tce 
if distributor e  participates in deliveries, then Tce=1, 

otherwise Tce=0 
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Fig.  2 Simplified supply chain network 

A. Objective function 

Two typical objective functions, F1 and F2, are commonly 

used in optimization issues. Objective function F1 (1a) 

defines the aggregate costs of the entire chain and consists of 

four elements. The first element comprises the fixed costs 

associated with the operation of the distributor involved in 

the delivery (e.g. distribution centre, warehouse, etc.). The 

second component determines the cost of the delivery from 

the manufacturer to the distributor. Another component is 

responsible for the costs of the delivery from the distributor 

to the end user (the store, the individual client, etc.). The last 

component of the objective function F1 determines the cost 

of manufacturing the product by the given manufacturer. 

The second objective function F2 (1b) corresponds to 

environmental costs of using various means of transport. 

Those costs are dependent on the number of courses of the 

given means of transport, and on the other hand, on the 

environmental levy, which in turn may depend on the use of 

fossil fuels and carbon-dioxide emissions [8]. This hybrid 

approach and its implementation can be successfully used 

for other objective functions, including those named in 

Section 3. For the numerical examples from Section 7, in 

addition to the objective function formulated as above, the 

objective functions where F1’=F1+F2 (sum (1a) and (1b), 

whereas F2’=V (total capacity of distribution centers) were 

formulated.  
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B. Two typical objective functions, F1 and F2, are 

commonly 

The model was based on constraints (2) .. (23). Constraint 

(2) specifies that all deliveries of product k produced by the 

manufacturer n and delivered to all distributors e using mode 

of transport d do not exceed the manufacturer’s production 

capacity. Constraint (3) covers all customer m demands for 

product k  through the implementation of delivery by 

distributors s (the values of decision variables Ye,m,k,d). The 

flow balance of each distributor e corresponds to constraint 

(4). The possibility of delivery is dependent on the 

distributor’s technical capabilities (5). Time constraint (6) 

ensures the terms of delivery are met. Constraints (7), (8), 

(9), (10), (11) guarantee deliveries with available transport 

taken into account. Constraints (12), (13), (14) set values of 

decision variables based on binary variables Tce, Xan,s,k,d,m, 

Yae,m,k,d, Xn,e,k,d,m, Ye,m,k,d. Dependencies (15) and (16) 

represent the relationship based on which total costs are 

calculated. In general, these may be any linear functions. 

The remaining constraints (17) .. (23) arise from the nature 

of the model (MILP). A detailed description of the 

constraints and their formalization have been presented in 

[16],[17]. 

 

C. Model transformation 

The ability to transform the problem using CLP is one of the 

most important features of the hybrid programming 

framework. Due to the nature of the decision problem 

(adding up variables in the objective function and 

constraints), the constraint propagation efficiency decreases 

dramatically. Constraint propagation is one of the most 

important methods in CLP affecting the efficiency and 

effectiveness of the CLP and hybrid programming 

framework (Fig. 1). For that reason, research into more 

efficient and more effective methods of constraint 

propagation was conducted. The results included different 

representation of the problem and the manner of its 

implementation. The classical problem modeling in the CLP 

environment consists in building a set of CLP predicates 

with parameters. While modeling problem (1) .. (23), 

quantities n, e, k, d1, d2, m and decision variables Xn,e,k,d1,m 

and Ye,m,k,d2 were predicate parameters (Fig. 3a). The process 

of finding the solution may consist in using the constraints 

propagation methods, labeling of variables and the 

backtracking mechanism [15]. The quality of constraints 

propagation and the number of backtrackings are affected to 

a high extent by the number of parameters that must be 

specified/labeled in the given predicate. In the models 

presented above, the classical problem representation 

included four parameters (Fig. 3b): n, e, d1, d2, and two 

decision variables Xn,e,k,d1,m,j, Ye,m,k,d2. Considering the domain 

size of each parameter, the process is complex and time-

consuming. The idea was to transform the problem by 

changing its representation without changing the very 

problem. All permissible routes were first generated by 

CLP3 predicate based on the fixed data (factories, 

distributors, mode of transport etc.) and a set of orders (Fig. 

4a), then the specific values of parameters n, e, k, d1, d2, m 

were assigned to each of the routes. Thereby only one 

parameter of the transformed decision variable X
T

n,k,e,j,d1,d2 

(deliveries) had to be specified (Fig. 4b). This 

transformation fundamentally improved the efficiency of the 
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constraint propagation and reduced the number of 

backtracks.  

Solution (Objective_Function, parameters) :- 

parameters /O_n,P,M,D,F,Tu,Tu,Oq,X,Y,T/ 

Fig  3a. Representation of the problem in the classical approach-the main 

search predicate  

Solution (VFC
1,o_1,p1,m1,_,_,_,_,12,_,_,8) 

(VFC
1,o_2,p2,m4,_,_,_,_,20,_,_,6) 

(VFC
1,o_4,p3,m2,_,_,_,_,12,_,_,9) 

… 

Fig.  3b. Representation of the problem in the classical approach- the 

process of finding a solution 

Solution_hybrid (Objective_Function, parameters) :- 

parameters /route_n,P,M,D,F,Tu,Tu,Oq,XT, T/ 

Fig.  4a. Representation of the problem in the hybrid approach- the main 

search predicate 

Solution_hybrid (VFC,((route_1,f1,p1,c1,m1,s1,s1,5,10,100,_8) 

(route_2,f1,p2,c1,m1,s1,s1,5,15,120,_12), 

(route_2,f1,p2,c1,m1,s2,s1,5,15,80,_8), 

(route_4,f2,p2,c2,m1,s1,s2,5,12,20,_6),…), …) 

Fig.  4b. Representation of the problem in the hybrid approach- set of 

feasible routes 

Symbols used in descriptions are presented in Table III. 

TABLE III. 

INDICES, SYMBOLS USED IN THE REPRESENTATION OF THE PROBLEM 

Symbol Description 

VFC 
Value of the objective function calculated on the basis of the 

vector of parameters. 

O_n Order number. 

P Products, P ∈ {p1,p2, ... ,po}. 

M Customers, M ∈{m1,m2, … ,mm}. 

D Distributors, D ∈{c1,c2, … ,ce}. 

F Factories, F ∈{f1,f2, … ,fn}. 

Tu Transport unit, Tu ∈{s1,s2, … ,sl}. 

T Delivery time/period. 

Oq Order quantity. 

X/Y/XT Delivery quantity. 

route_n Routes name-number. 

, Separates predicate parameters. 

:- Separates predicate heading from its definition. 

_ Unknown value of the variable. 

The obtained multi-objective optimization model after the 

transformation (MOOPT) has different decision variables 

and different constraints than those in the MOOP (1) .. (23). 

Some of the decision variables are redundant; other variables 

are subject to aggregation. This results in a very large 

reduction in their number. Decision variables before and 

after the transformation are shown in Table IV. The 

transformation also reduces or eliminates some of the 

constraints of the model. Thus constraints (4), (6), (12), (13), 

(14), (15) and (16) present in the MOOP (1) .. (23) are 

redundant in the MOOPT. Balance constraint (4) is 

unnecessary because the route defines the specific 

distribution center. Only those routes are generated that meet 

the time constraints, therefore constraint (6) does not make 

sense. Binarity ensures whether or not the route occurs, thus 

constraint (12) is redundant. Reduction of certain variables 

also affects the reduction of constraints, hence lack of 

constraints (13), (14) in the model. Constraints (15) and (16) 

are unnecessary, because the delivery costs are now 

calculated for the entire route. 

TABLE IV. 

DECISION VARIABLES USED IN THE MOOP AND TRANSFORMED 

MOOPT MODELS 

MOOP MOOPT 
Description of the decision variables after 

the transformation 

Xn,e,k,d1,m 
XT

n,k,e,m,d1,d2 

Decision variable XT, unlike the initial 

decision variables X,Y, is generated only 

for technologically possible indices 

combinations. It defines the allocation size 

of product k to the route of deliveries. Ye,m,k,d2 

Xan,e,k,d,m unnecessary 

After transformation replaced by the 

appropriate factor for the route - generated 

by the CLP. 

Xbn,e,d Xbn,e,d Without change, the same sense. 

Yae,n,k,d unnecessary 

After transformation replaced by the 

appropriate factor for the route - generated 

by the CLP. 

Ybe,m,d Ybe,m,d Without change, the same sense. 

Tce Tce Without change, the same sense. 

After the transformation in the MOOPT model, the objective 

functions F1 and F2 were re-formulated. New objective 

functions, F1T (A1a) and F2T (A1b) were obviously 

formulated using new decision variables (Table IV) and 

calculated parameters by CLP (Table V). These parameters 

were determined as a result of constraint propagation and the 

transformation itself using CLP2 and CLP3. Owing to these 

quantities, it is possible to introduce to the MOOPT model 

additional constraints (A2) ... (A7). These constraints affect 

the efficiency of the search for a solution by narrowing 

down the search area. Table VI describes these constraints. 
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TABLE V. 

CALCULATED FIGURES FOR MOOPT 

Symbol Description 

Rmind 
Minimum number of transport units d (CLP – 

propagation). 

Rmaxd 
Maximum number of transport units d (CLP – 

propagation). 

Min_F_C 
Minimum number of transport units in the route Factories 

– Centers (CLP – propagation). 

Min_D_C 
Minimum number of transport units in the route 

Distributors – Customers (CLP – propagation). 

Min_TU 
Minimum number of transport units (CLP – 

propagation). 

Cn Minimum number of active centers (CLP – propagation). 

Ksc 

The fixed cost of delivery from manufacturer to 

distributor by using transport mode (CLP-calculated 

based on fixed data). 

Ksm 

The fixed cost of delivery from distributor to customer by 

using transport mode (CLP-calculated based on fixed 

data). 

Kz 
The variable cost of delivery (CLP-calculated based on 

fixed data). 

TABLE VI. 

ADDITIONAL CONSTRAINTS FOR MOOPT 

Constraints Description 

A2 
narrowing the size of the transport unit domain from the 

bottom 

A3 
narrowing the size of the transport unit domain from the 

top 

A4 

the minimum number of all transport unit types 

necessary for the shipment from the factory to the 

distribution center 

A5 

the minimum number of all transport unit types 

necessary for the shipment from the from the center to 

customers 

A6 the minimum number of transport units in routes 

A7 the number of working distribution centers 

D. Decision support 

Implementation of the presented models using 

implementation hybrid programming framework can support 

decision-making in the following practical areas of supply 

chain (not limited to the following): 

• the multi-optimization of total cost of the supply chain 

(objective functions F1 and F2/ F1’ and F2’ -Table VII) 

in the form of the Pareto-optimal solution set (Fig.5.); 

• analysis of delivery costs with environmental cost 

optimization;  

• the selection of the transport fleet number, capacity and 

modes for specific total costs (Fig.6, Fig.8);  

• the sizing of distributor warehouses and the study of their 

impact on the overall costs (objective functions F1’ and 

F2’ -Table VII and Fig.7); 

• the sizing production capacity and the study of their 

impact on the overall costs; 

• the selection of transport routes for elements of the 

Pareto-optimal solution set;  

VII. NUMERICAL EXPERIMENTS AND ANALYSIS 

In order to verify and evaluate the proposed hybrid 

approach and implementation platform, many numerical 

experiments were performed. All the examples relate to the 

supply chain with seven manufacturers (n=1..7), three 

distributors (e=1..3), ten customers (m=1..10), three modes 

of transport (d=1..3), and twenty types of products 

(k=1..20). The numerical data were taken from the trans-

regional distributor FMCG and transportation fleet 

parameters available online. Experiments began with four 

examples of P1 .. P4 for the optimization MOOP model (1) .. 

(23). The examples differ the number of orders (No). The 

first series of experiments was designed to show the benefits 

and advantages of the presented approach. For this purpose 

the model was implemented in both the hybrid programming 

framework (MOOPT) and mathematical programming 

environment (MOOP). In the next stage of the experiments, 

the objective function was changed (Section 6.A). Its first 

element F1’ refers to the total cost of deliveries whereas F2’ 

defines the distributor’s total storage capacity available. 

Due to the nature of the optimization problems considered 

here, a new algorithm based on the ε-constraint method was 

proposed in the final phases of MP1 and MP2. This 

algorithm (Appendix A) helped determine a set of Pareto-

optimal solutions. The algorithm has been implemented in 

LINGO by using meta-modeling and programming language 

LINGO package.  

The detailed results for a 20-order example (P4) are shown 

in Table 7. Figures 5 and 6 show the corresponding sets of 

Pareto-optimal solutions for a 20-order example. It is evident 

that only the hybrid approach provides the results within the 

acceptable time (Table VIIIA and VIIIB).  

This is possible owing to the reduction of the problem size 

and, in particular, transformation of the problem with the use 

of methods from both environments, MP and CLP. For the 

illustrative examples discussed here, a 23-fold reduction in 

the number of constraints (C) was obtained with an over 

130-fold reduction in the number of decision variables (V). 

This gives the size of the combinatorial problem calculated 

as VxC reduced by more than 2600 times. Comparison of 

the results (Table 8a and 8b) from the hybrid approach with 

those from mathematical programming indicates that, first, 

when the same model and data are used in the classical 

manner (mathematical programming), the Pareto-optimal 

solution was obtained only for the smallest example P1 (5 

orders). Second, for larger examples P2, P3, P4, it was 

hardly possible to find at least one point of the Pareto-

optimal solution in acceptable time (computing stopped after 

600 s). Comparing the proposed approach to modeling and 

solution in only CLP environment is pointless due to the 

nature and weak capacity of the CLP relative to the 

optimization of problems where many variables are added 

up, which is illustrated in [16]. 

 

TABLE VII. 

THE DETAILED RESULT FOR EXAMPLE P4 (NO=20) 

PP F1 F2 PP F1’ F2’=V 

1 F1≥26540 F2=3775 1 F1’=0 F2’≤0 

2 F1≥29345 F2=3725 2 F1’=0 F2’≤500 

3 F1≥32150 F2=3725 3 F1’=0 F2’≤1000 

4 F1≥34955 F2=3655 4 F1’=0 F2’≤1500 

5 F1≥37760 F2=3655 5 F1’=45195 F2’≤2000 

6 F1≥40565 F2=3655 6 F1’=35705 F2’≤2500 

PAWEL SITEK: A HYBRID MULTI-OBJECTIVE PROGRAMMING FRAMEWORK 1637



 

 

 

 

7 F1≥43370 F2=3655 8 F1’=35705 F2’≤3000 

8 F1=33670 F2≥3655 9 F1’=35705 F2’≤3500 

9 F1=26540 F2≥4158 10 F1’=35705 F2’≤4000 

10 F1=26540 F2≥4661 PP-the number of element of 

Pareto-optimal set F1, F2, F1’, F2’-

objective function 

11 F1=26540 F2≥5164 

12 F1=26540 F2≥5668 

13 F1=26540 F2≥6171 

14 F1=26540 F2≥6075 

 

TABLE VIIIA. 

THE PARAMETERS OF THE PROCESS OF FINDING A SET OF PARETO-

OPTIMAL SOLUTIONS FOR ILLUSTRATIVE EXAMPLES (OBJECTIVE 

FUNCTIONS F1 AND F2) 

Exa

mple 
No 

MP-based approach 

(MOOP) 

Hybrid programming 

framework (MOOPT) 

 

T V C T V C  

P1 5 53 30369 16177 7 223 693  

P2 10 ----* 30369 19122 10 264 697  

P3 15 ----* 30369 20067 14 287 702  

P4 20 ----* 30369 21012 44 318 703  

* calculations stopped after 600 s, not found even one point from the set 

of Pareto-optimal solutions 

T-solution time, V- the number of integer variables, C- the number of 

constraints 

 

 

TABLE VIIIB. 

THE PARAMETERS OF THE PROCESS OF FINDING A SET OF PARETO-

OPTIMAL SOLUTIONS FOR ILLUSTRATIVE EXAMPLES (OBJECTIVE 

FUNCTIONS F1’ AND F2’) 

Example No 

MP-based approach 

(MOOP) 

Hybrid programming 

framework  (MOOPT) 

T V C T V C 

P1 5 70 30369 16179 11 223 691 

P2 10 ---- 30369 19124 14 264 695 

P3 15 ---- 30369 20069 21 287 700 

P4 20 ---- 30369 21014 36 318 701 

P5 25 ---- 30369 21959 67 357 707 

* calculations stopped after 600 s, not found even one point from the set 

of Pareto-optimal solutions 

T-solution time, V- the number of integer variables, C- the number of 

constraints 

 

 

 

Fig.  5 A set of Pareto-optimal solutions for illustrative example P4 

(No=20, vertical axis F2 horizontal axis F1) 

 

Fig.  6 The use of mode of transport  for illustrative example P4 

(No=20, F1, F2, vertical axis the number of mode of means of 

transport-dx1,dx2,dx3,  horizontal axis Pareto set of points -PP) 

 

Fig.  7 A set of Pareto-optimal solutions for illustrative example E4 

(No=20, vertical axis F2’ horizontal axis F1’) 

 

Fig.  8 The use of mode of transport  for illustrative example P4 

(No=20, F1’,F2’, vertical axis the number of mode of means of 

transport-dx1,dx2,dx3,  horizontal axis Pareto set of points –PP for 

F1’>0 ) 

VIII.  CONCLUSIONS 

This hybrid programming framework is especially 

significant and suited for multi-objective optimization, 

where a slightly changed single-objective problem has to be 

solved multiple times and where the modeling efficiency and 

ease are essential. The efficiency of the proposed approach 

is based on the reduction of the combinatorial problem. This 

means that using the hybrid approach practically for all 

models of this or a similar class, the same or better solutions 

are found even up to two hundred times faster (the optimal 
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instead of the feasible solutions). Another element 

contributing to the high efficiency of the method is a 

possibility to determine the values or ranges of values for 

some of the decision variables (predicate CLP2). The 

presented transformation of the problem (predicate CLP3), 

characteristic of the problems that have the structure as in 

Fig. 2, is an important aspect of this approach. It should be 

emphasized that with this approach it is possible not only to 

solve optimization problems faster, but also to solve much 

larger problems than in the [24]. The proposed solution is 

highly recommended for all types of decision problems in 

supply chain or for other problems with a similar structure. 

This structure is characterized by the constraints of many 

discrete decision variables and their summation. 

Furthermore, this method can model and solve problems 

with logical constraints. Therefore the implementations in 

the form of hybrid platform can be applied to various 

practical decision problems in the area of logistics, transport, 

production, scheduling or project management. In addition 

to the undoubted effectiveness of the proposed declarative 

hybrid approach, we should underline the possibility of 

modeling decision problems.  

Further work will focus on running the optimization 

models with non-linear and other logical constraints, 

uncertainty, fuzzy logic [25] etc., numerical test with hybrid 

models (HM) and different scheduling problems and 

resource allocation and activity coordination in the supply 

chain [26]. It is also planned to implement the framework in 

the form of cloud applications [28]. 

 

APPENDIX ALGORITHM FOR FINDING A SET OF PARETO-

OPTIMAL SOLUTIONS. 
Enter the step (for how many points divided 

interval)  

Number_of _steps =? /input value/ 

Solve (min objective F1  

  subject to 

  the constraints of 1 - 27 (primary problem)  

  or A1-A7 (problem after transformation)  

)  

Save the F1min-determined value of the objective 

function  

F2max = F2  

Solve (min objective F2  

  subject to 

  the constraints of 1 - 27 (primary problem) 

  or A1-A7 (problem after transformation)  

)  

Save the F2min-determined value of the objective 

function  

F1max = F1  

There are designated intervals of a function F1 

and F2  

(F1min, F1max) and (F2min,F2max) 

Optimization of F2  

discretization = (F1max - F1min) / Number_of 

_steps 

cutting_off = F1min  

i = 1  

WHILE (cutting_off <F1max)  

{ 

 Solve (min F2  

  subject to 

   the constraints of 1 - 27 (primary problem)  

   or A1-A7 (problem after transformation)  

   F1> = cutting_off  

 )  

 save the pareto-optimal point 

 F2 (i) - optimal value of the objective function  

 F1(i) = F1  

 cutting_off cutting_off + = discretization  

 i = i +1  

}  

Optimization of F1  

discretization = (F2max - F2min) / Number_of 

_steps 

cutting_off = F2min  

WHILE (cutting_off <F2max)  

{ 

 Solve (min F1  

  subject to 

   the constraints of 1 - 27 (primary problem) 

   or A1-A7 (problem after transformation)  

 F2> = cutting off  

 )  

 save the point  

 F1 (i) - optimal value of the objective function  

 F2 (i) = F2  

 Cutting_off=cutting off + discretization  

 i = i +1  

} 

F1=F1 or F1’  

F2=F2 or F2’  

REFERENCES 

[1] Beamon B.M, Supply chain design and analysis: models and methods, 

International Journal of Production Economics 55, 281–294, 1998. 

[2] Mula J., Peidro D., Diaz-Madronero M., Vicens E., Mathematical 

programming models for supply chain production and transport 

planning, European Journal of Operational Research, 204, 377–390, 

2010. 

[3] Gunasekaran A., Ngai EWT., Modeling and analysis of build-to-order 

supply chains. Eur J Oper Res 2009;195(2):319–34, 2009. 

[4] Howard M, Miemczyk B.J, Graves A., Automotive supplier parks: an 

imperative for build-to-order. J Purch Supply Manage 2006, 12, 91–

104, 2006 

[5] Krajewski L., Wei J.C., Tang L.L., Responding to schedule changes in 

build-to-order supply chains. J Oper Manage 2005;23(5):452–69, 

2005. 

[6] Abdolhossein S., Napsiah I., Norzima Z., Ariffin M. K. A., 

Nezamabadi-pour H., Mirabi H., A Multiobjective Optimization 

Model in Automotive Supply Chain Networks, Mathematical 

Problems in Engineering, vol. 2013, Article ID 823876, 

doi:10.1155/2013/823876, 2013. 

[7] Minor P., Hertwin O., Elías O.B., Ruben T.O., Luis M., Variations in 

the Flow Approach to CFCLP-TC for Multiobjective Supply Chain 

Design, Mathematical Problems in Engineering, vol. 2014, Article ID 

816286, doi:10.1155/2014/816286, 2014. 

[8] Seyed M, Al-e-Hashem J.M., Aryanezhad M.B, Sadjadi S.J., An 

efficient algorithm to solve a multi-objective robust aggregate 

production planning in an uncertain environment, The International 

Journal of Advanced Manufacturing Technology, January 2012, 

Volume 58, Issue 5-8, 765-782, 2012. 

[9] Shankar L., Basavarajappa B., Chen S., Jason C.H, Kadadevaramath, 

Rajeshwar S., Location and allocation decisions for multi-echelon 

supply chain network - A multi-objective evolutionary approach, 

Expert Systems with Applications, Volume 40, Issue 2, 1 February 

2013, 551–562, 2013 

[10] Che Z.H., Chiang C.J., A modified Pareto genetic algorithm for multi-

objective build-to-order supply chain planning with product assembly, 

Advances in Engineering Software 41, 1011–1022, 2010. 

[11] Wang F., Lai X., Shi N., A multi-objective optimization for green 

supply chain network design, Decision Support Systems, 51, 262–269, 

2011. 

PAWEL SITEK: A HYBRID MULTI-OBJECTIVE PROGRAMMING FRAMEWORK 1639



[12] Erenguc  S.  S.,  Simpson  N.  C.,  Vakharia  A.  J.,  Integrated  produc-
tion/distribution  planning  in  supply  chains:  an  invited  review,
European Journal of Operational Research, 115, 219–236, 1999.

[13] Collette  Y.,  Siarry  P.,  Multiobjective  Optimization,  Principles  and
Case Studies, Springer, IX, 293 p, 2003.

[14] Apt  K.,  Wallace M.,  Constraint  Logic  Programming  using  Eclipse,
Cambridge University Press, 2006

[15] Rossi  F.,  Van  Beek  P.,  Walsh  T.,  Handbook  of  Constraint
Programming  (Foundations  of  Artificial  Intelligence),  Elsevier
Science Inc. New York, NY, USA, 2006

[16] Sitek,  P.,  Wikarek,  J.,  A  hybrid  approach  to  modeling  and
optimization for supply chain management with multimodal transport,
IEEE  Conference:  18th  International  Conference  on  Methods  and
Models in Automation and Robotics (MMAR), 777-782, 2013.

[17] Sitek,  P.,  A hybrid  CP/MP  approach  to  supply  chain  modelling,
optimization  and  analysis,  Federated  Conference  on  Computer
Science  and  Information  Systems  (FedCSIS),  2014.pp.1345-1352.
DOI: 10.15439/2014F89.

[18] Sitek,  P.,  Wikarek,  J.:  A Hybrid  Approach  to  the  Optimization  of
Multiechelon  Systems.  Mathematical  Problems  in  Engineering  vol.
2015, Article ID 925675, 12, pages, 2015. doi:10.1155/2015/925675.

[19] Milano  M.,  Wallace  M.,  Integrating  Operations  Research  in
Constraint  Programming,  Annals  of  Operations  Research,  vol.  175
issue 1, 37-76, 2010.

[20] Achterberg T.,  Berthold  T.,  Koch  T.,  Wolter  K.,  Constraint  Integer
Programming.  A New Approach  to  Integrate  CP  and  MIP, Lecture
Notes in Computer Science, Volume 5015, 6-20, 2008.

[21] Bockmayr  A.,  Kasper  T.,  Branch-and-Infer,  A  Framework  for
Combining  CP  and  IP,  Constraint  and  Integer  Programming
Operations Research/Computer Science Interfaces Series, Volume 27,
59-87, 2004.

[22] Eclipse  -  The Eclipse Foundation  open source  community website,
www.eclipse.org, 2015

[23] LINDO  Systems  -  Optimization  Software:  Integer  Programming,
Linear Programming, Nonlinear, www.lindo.com, 2015

[24] Sitek  P.,  Wikarek  J.,  Cost  optimization  of  supply  chain  with
multimodal  transport,  Federated  Conference  on  Computer  Science
and Information Systems (FedCSIS), 1111-1118, 2012.

[25] M.  Relich  and  W. Muszynski,  “The use  of  intelligent  systems  for
planning and scheduling of product development projects”, Procedia
Computer Science, vol. 35, pp. 1586–1595, 2014.

[26] Grzybowska  K.,  Selected  Activity  Coordination  Mechanisms  in
Complex Systems,  J.  Bajo et al.  (Eds.):  PAAMS 2015  Workshops,
CCIS 524, Springer International Publishing Switzerland,  pp.  1–11,
2015.

[27] Grzybowska K.,  Kovács G., Logistics  Process Modelling in  Supply
Chain – algorithm of coordination in the supply chain – contracting,
International  Joint  Conference  SOCO’14-CISIS’14-ICEUTE’14,
Advances in Intelligent Systems and Computing,  Vol. 299, pp. 311-
320, 2014

[28] Bąk,  S.,  Czarnecki  R.,  Deniziak S. (2013).  Synthesis  of Real-Time
Cloud  Applications  for  Internet  of  Things.  Turkish  Journal  of
Electrical Engineering &Computer Sciences, DOI: 10.3906/elk-1302-
178.

[29] Bocewicz, G., Nielsen, I., Banaszak, Z. (2014). Iterative multimodal
processes scheduling. Annual Reviews in Control 38(1), 113-132.

1640 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015


