
Reproducible floating-point atomic addition in

data-parallel environment

David Defour

Laboratoire DALI-LIRMM

52 avenue Paul Alduy

66860 Perpignan Cerdex - France

Email: david.defour@univ-perp.fr

Sylvain Collange

INRIA – Centre de recherche Rennes – Bretagne Atlantique

Campus de Beaulieu, F-35042 Rennes Cedex, France

Email: sylvain.collange@inria.fr

Abstract—Floating-point additions in concurrent ex-
ecution environment are known to be hazardous, as
the result depends on the order in which operations
are performed. This problem is encountered in data
parallel execution environments such as GPUs, where
reproducibility involving floating-point atomic addition is
challenging. This problem is due to the rounding error or
cancellation that appears for each operation, combined
with the lack of control over execution order. In this
article we propose two solutions to address this problem:
work reassignment and fixed-point accumulation. Work
reassignment consists in enforcing an execution order that
leads to weak reproducibility. Fixed-point accumulation
consists in avoiding rounding errors altogether thanks to
a long accumulator and enables strong reproducibility.

I. INTRODUCTION

Efficient exploitation of modern multicore architec-
tures relies on a hierarchical structuration of compu-
tation as well as execution concurrency. This affects
determinism and numerical reproducibility making soft-
ware development tedious. For example, GPUs man-
age several thousands of concurrent threads thanks to
hardware resources such as warp and block schedulers.
The design complexity of those processors is such
that thread scheduling is mostly unknown and can
be considered unpredictable. A common workaround
is to enforce interaction between tasks using memory
consistency with synchronization mechanisms such as
locks, atomics or barriers.

Atomic operations are designed to perform a read-
modify and write operation in one instruction. For
example, atomicAdd() reads a word at a given address,
adds a number to it, and writes the result back to the
same address. The operation is atomic in the sense that it
is guaranteed to be performed without interference from
other threads. In other words, no other thread can access
this address until the operation is complete. Although
atomic operations can address the problem of memory
consistency, they do not solve the problem of numer-
ical reproducibility when dealing with floating-point

numbers. This is a major issue as non-determinism of
floating-point calculations in parallel programs causes
validation and debugging issues, and may even lead to
deadlocks [1].

The numerical non-reproducibility of floating-point
atomic additions is due to the combination of two
phenomena: rounding-error and the order in which oper-
ations are executed. This problem can be depicted with
the simplified following CUDA kernel which computes
the sum of N floating-point numbers stored in table
i val according to their address i adr in a table res
located in global memory.

__global__ void GlobalSum(float *i_val,

int *i_adr, float *res, int N){

int gid = blockDim.x*blockIdx.x+threadIdx.x;

for(uint i=0; i<N; i+=GridDim.x*blockDim.x)

atomicAdd(&res[i_adr[i+gid]],

i_val[i+gid]);

}

Listing 1. Floating-point atomic accumulation

The problem with this simple code, is that we do
not have any information on the order in which threads
will acquire access to the datum Res. For example, on
a set of N = 216 values with a condition number1 of
108 and a single output address, we measured that out
of over 1000 runs with 1 block of 1024 threads on a
GTX680 we obtain 1000 different results.

One can argue that in the case where there is a single
accumulator, weak reproducibility could be achieved by
replacing atomicadd with standard addition combined
with a reduction algorithm. However this solution does
not hold when some threads are not producing any
value (not executing the atomic addition), or when
there are multiple accumulator, as in the bin counting
or histogram problem as encountered in Nbody [3],

1The condition number characterizes the numerical stability of a
problem [2].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 721–728

DOI: 10.15439/2015F86

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 721



Real-time simulation [4], accurate reduction scheme [5],
or SQL query [6]. In these applications, floating-point
atomic addition is used to accumulate values while
preserving memory consistency.

In this article, we will use two concepts regarding
numerical reproducibility in the context of data paral-
lelism. Weak numerical reproducibility consists in being
able to reproduce the same result between two execu-
tions when input parameters are identical. Strong numer-
ical reproducibility consists in being able to reproduce
the same results between two executions independently
of the execution parameters or the architecture. Strong
numerical reproducibility can be further subdivided in
two classes of algorithms. Those which are producing
correctly rounded results such as the one based on long
accumulators [7], and others which provide reproducible
results without any guaranty on accuracy [8].

Following these two definitions, we propose two
solutions to address reproducibility involving floating-
point atomics addition in the context of GPU program-
ming by attacking the problem at its two roots. The
first solution, work reassignment, consists in enforcing
an evaluation order by overloading the block index as-
signment. With this solution, results are identical among
runs for identical execution parameters. It is considered
weakly reproducible as the number of threads per block
affects the evaluation scheme and therefore the result.
The second solution, fixed-point accumulation, avoids
the rounding errors that occur during floating-point
addition by using a long accumulator. As the addition
is now exact, thus associative, the result is independent
on the evaluation order or the hardware. In addition, the
result is as accurate as possible as the accumulation is
performed exactly. This solution is considered strongly
reproducible.

The rest of this article is organized as follow. Section
II introduces the necessary background about floating-
point arithmetic and model of execution of GPUs.
Section III presents the first solution we propose, based
on block reordering. Section IV presents the second
solution based on long accumulators. Section V analyses
the theoretical cost of both methods and Section VI
presents performance measurements on Nvidia GPUs.

II. BACKGROUND

A. Floating-point arithmetic

Floating-point (FP) numbers approximate real num-
bers with a significand, an exponent, and a sign. The
IEEE-754 standard, which was revised in 2008, specifies
floating-point formats and operations. In this paper, we
consider the binary32 or single precision format. The
floating-point number system can represent a wide range
of numbers with nearly-constant precision.

Floating-point addition is not associative, due to
the rounding error that occur when adding numbers
with different exponents. It leads to the absorption
of the lower bits of the sum. For example the exact
mathematical result of (1 + 2100 − 2100) is equal to 1
whereas the computed result is either 0 or 1 depending
on the order of operations. Thus, the final accuracy
of a floating-point summation depends on the order
of evaluation. More details can be found in the main
references related to floating-point arithmetic [9], [10].
This problem of numerical reproducibility linked to the
order of floating-point operations, is amplified when
executed in massively parallel environments like GPUs.

B. GPU execution model

In this article we consider CUDA capable Nvidia
GPUs used for the execution of tasks exhibiting data
parallelism. These tasks are divided in threads operating
in SIMT mode and executed by specific hardware. We
must distinguish the software and hardware organization
of threads. From the developer point of view, threads are
divided into three hierarchical levels: a grid of blocks
of threads. The same code, or kernel, is executed by
multiple threads running in parallel on different data.
Threads are grouped in set of block size elements in
order to make so-called blocks. Blocks are packed in set
of grid size elements in order to make a so-called grid.
Threads in a block and blocks of a grid are uniquely
identified by their coordinates in the blocks and the grid.
In this model, threads in a block and the blocks of a grid
are virtually launched in parallel, which implies that no
assumption shall be made regarding the execution order.

In CUDA terminology, GPU hardware consists of
CUDA cores organized hierarchically. These CUDA
cores are grouped in streaming multiprocessors (SMs).
The number of SMs varies depending on the architec-
ture of the GPU and the CUDA compute capability.
An additional and transparent level of grouping is
introduced at the hardware level: the warp. These warps,
corresponding to 32 threads, are created, managed,
launched and executed by SIMT units. Multiprocessors
share the instruction fetch, decoding and control logic
across all the threads in a warp, so they run in lock-
step [11].

Blocks are dispatched among the available multi-
processor by the block schedulers. This step consists in
launching a new block with a unique identifier accord-
ing to available resources. The number of concurrent
blocks depends on the number and version of SMs
and the resources such as registers and shared memory
required by the executed kernel. This step impacts
determinism as no assumption can be made on how
indexes are generated and is subject to variations from
one run to another [12].

2

722 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



Traditional thread synchronization primitives used
in concurrent programming such as mutexes, barriers,
and semaphores are limited on GPU to intra-block
synchronizations. Atomic operations provide basic sup-
port for inter-block communication. Atomic instructions
were first introduced on Nvidia hardware with compute
capability 1.1, and atomic addition operating on 32-
bit floating-point values in global and shared memory
were introduced with compute capability 2.0. Atomic
floating-point operations are necessary, first to provide
the substrate for high performance floating-point opera-
tions, and second, to preserve the memory consistency
necessary to deal with thousands of threads in flight.

The variety and performance of synchronization
primitives available on GPUs have continuously in-
creased over the years. This has lead to numerous
works that have been focusing on efficient inter-block
synchronization. For example, in [13] Volkov et al.
propose a global software synchronization method that
does not use atomic operations to accelerate dense
linear-algebra constructs. In [14], [15], Xiao and Feng
propose a mechanism for inter-block communication via
global memory. In [16], Stuart and Owens are evaluat-
ing various implementations of barriers, mutexes and
semaphores applied to Nvidia’s GPU. Collange et al.
use long accumulators to enable reproducible floating-
point reductions [7]. However, none of those works have
addressed the problem of reproducible atomic floating-
point addition.

III. ENFORCING EXECUTION ORDER

As discussed in the introduction, atomic operations
enforce memory consistency, but not execution order.
This means that atomic additions ensure that all data
will be considered, but do not guarantee the order
of operations. This is problematic for floating-point
addition. The first solution we propose is to enforce an
execution order for atomic addition, similarly to what
can be achieved using a reduction algorithm. Threads
and blocks are spawned and scheduled by hardware,
following unspecified and implementation-specific poli-
cies. Thus, no assumption can be made on their real
execution order. Therefore, we cannot rely on CUDA
thread and block identifiers used at software level. Such
solution would leads to an inefficient execution scheme
and most likely to a deadlock situation [15].

The proposed solution uses two key concepts. The
first one is based on a new software assignment of the
block index, in order to guarantee a fine control over
blocks effectively executed by the hardware. The second
concept is based on atomic locks in order to ensure
uniqueness of accesses at block level. We extend the
solution proposed in [17] in order to control the order
of execution. The lock used is similar to a fetch-and-add

mutex algorithm in which the block index corresponds
to the token acquired by a block.

A. Block re-ordering

Block synchronization is challenging, as the CUDA
programming model does not support it. The only safe
solution consists on splitting kernels into subkernels, as
a kernel launches involves an implicit synchronization
barrier. Alternatively, resident kernel techniques take ad-
vantage of the fact that once launched, a block continue
its execution until completion, freeing resources only
at the end. For example, the block barrier proposed
by Feng in [14] is working only when the number of
launched blocks is less than the number of blocks that
could be executed concurrently on the hardware. In case
this assumption is not met, deadlocks may occur. For
example, consider a GPU and a kernel such that only
8 blocks can run concurrently. If the kernel is launched
on more than 9 blocks, then at least 1 block will not be
scheduled. In that case running blocks will be waiting
on the barrier for every block to complete, which will
never happen as resources taken by those running block
will never be released for others to complete.

In our case, we want to ensure that blocks are exe-
cuted in a reproducible manner. This requires defining
an execution order, which corresponds to a statically
known order. This order can be, for example, the one
corresponding to their block index. Besides requiring
a known order, we need to prevent deadlock situation,
which involves restrictions on the real scheduling of
blocks.

The proposed solution consists in overriding the
index generated by the block scheduler. This can be
done by using a global variable oBlkId set to 0 at kernel
launched which will be queried by one thread of each
block at the beginning of the execution. The resulting
index is stored in a shared variable sBlkIdx accessible
by every thread of the block they belong to, and can be
used as the new block index. An overview of the code
is given in listing 2.

// Shared BlockIdx within a block

__shared__ uint sBlkIdx;

// Reindexing Block

struct BlkIdx{

// New ordered index for BlockIdx

uint *oBlkId;

BlkIdx(void){

cudaMalloc((void**) &oBlkId, sizeof(uint));

cudaMemset(oBlkId, 0, sizeof(uint));

}

˜BlkIdx(void){

cudaFree( ordBlockId );

}

3

DAVID DEFOUR, SYLVAIN COLLANGE: REPRODUCIBLE FLOATING-POINT ATOMIC ADDITION 723



__device__ uint get_ordered_blockId(){

if (threadIdx.x == 0)

sBlkIdx = atomicInc(oBlkId, gridDim.x-1);

__syncthreads();

return sBlockIdx;

}

};

Listing 2. Block reindexing

Thanks to this new block index, we can ensure
a known execution order for block, which will be
deadlock-free. With this technique, we chain together
running blocks following a well-defined order. There-
fore the overhead is solely concentrated in the access
to the global index sBlockIdx. We now have to set
a floating-point atomic addition which is reproducible
within each block, which we will describe next.

B. Atomic completion

Threads of blocks are scheduled as set of 32 consec-
utive threads, or warps. Again, as we do not have any
control over the execution order of threads, we need
to make sure that threads of a given block are always
scheduled in a similar fashion when they are atomically
accessing the destination address.

A solution is to encapsulate the atomic addition
within a fetch-and-add mutex (FA) algorithm similarly
to the one described in listing 3. With this solution,
each thread of a given block is waiting for its turn on a
variable shared at block level. These results ultimately
to a serialization of each atomic addition at both thread-
level and block-level as there are launched in an order
corresponding to their global identifier. This solution is
simple and provides strong numerical reproducibility.
However accesses cannot happen concurrently and will
perform poorly. We should mention that a syncthreads
barrier is required at the end of the outer loop to ensure
that no warp will go faster than any other warp with
lower thread identifier.

struct Lock{

uint *g_lock;

Lock(void){

cudaMalloc( (void**) &g_lock, sizeof(uint));

cudaMemset( g_lock, 0, sizeof(uint));

}

˜Lock(void){

cudaFree( g_lock );

}

__device__ void acquire_lock(int goalval){

if (threadIdx.x == 0)

while(atomicAdd(g_lock, 0) != goalval);

__syncthreads();

}

__device__ void release_lock(){

__syncthreads();

if (threadIdx.x == 0){

(*g_lock) = ((*g_lock)+1)%(gridDim.x);

}

}

};

Listing 3. Fetch-and-Add mutex

To improve performance of the previous solution,
we can relax the constraint on the execution order in
order to allow the atomic additions within a block to
be replaced by simple additions executed in parallel.
This results in a reduction scheme that only depends
on the block size and is therefore considered as weakly
reproducible. This solution requires 6 steps as described
in listings 4. First, floating-point atomic data and ad-
dresses are stored in parallel in two tables located in
shared memory. Then, both tables are sorted using the
corresponding destination address as sorting key. In our
implementation we used a bitonic sort as it preserve the
order in case of equality. Once data are sorted according
to their address, we perform a segmented sum for data
with identical address. Then additions to the destination
adresses are done in parallel for each different addresses
within a block. We should mention that the number
of additions is bounded by the number of threads per
block. Those additions do not require atomic operations
as atomic access is guaranteed with a FA lock on the
new block identifier.

__device__ void ordered_concurrent_ AtomicAdd(

float *dest, float val, Lock &lock){

int tidx = threadIdx.x;

// 1: Store in shared mem

s_adr[tidx] = dest;

s_val[tidx] = val;

__syncthreads();

// 2: Sort Element

bitonicSort( s_adr, s_val);

// 3: Segmented Sum

segmented_sum_per_block(s_adr, s_val);

// 4: Aquire the lock in order

lock.acquire_lock(sBlockIdx);

// 5: Final write in

if (threadIdx.x < blockDim.x-1){

if (s_adr[tidx] != s_adr[tidx+1]){

*(s_adr[tidx]) += s_val[tidx];

}

}else{

// For the last thread !

*(s_adr[tidx]) += s_val[tidx];

}

// 6: Release the lock

lock.release_lock();

}

Listing 4. Second solution: Serialization of atomic access at block
level

4

724 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



IV. MAKING ADDITION ASSOCIATIVE

To achieve numerical reproducibility of atomic ad-
dition, we have seen in section III a solution based on
enforcing an execution order. This section describes an
alternative solution that consists in avoiding rounding
errors to compute the correctly-rounded result.

To enforce strong reproducibility, we replace
floating-point additions by fixed-point additions, which
are associative. To avoid losing any precision com-
pared to the floating-point format, we use a fixed-
point accumulator that covers the whole range of values
representable in the considered floating-point format.
For instance, an accumulator with 127 integral bits
and 127 fractional bits covers the range of single-
precision floating-point. Such counter is known as a
long accumulator or superaccumulator [18].

While the use of such a wide accumulator may
seem extremely costly at first sight, three considerations
make its performance actually attractive in the context
of atomic operations:

• First, the average complexity of adding one
floating-point value to a superaccumulator does
not depend on the width of the superaccumu-
lator [7]. Assuming the accumulator is repre-
sented as a vector of machine words (32-bit
in the single-precision case), an accumulation
generally only affects two words in the vector.
Although carries may need to be propagated,
the probability that a carry propagates across
multiple words quickly gets negligible assum-
ing low-order digits follow a uniform distribu-
tion [19].

• Second, updates to individual words of the
superaccumulator can happen in any order with-
out bearing any impact on the result, as long as
all carries are detected and eventually propa-
gated (including carries that occur during carry
propagation). This enable regular integer atomic
operations to update each part of the accumu-
lator independently, without the need to imple-
ment any locking or coarser-grain transactions.
Carries are detected a posteriori from the older
value returned by the atomic operation and the
value that was accumulated. Carries that occur
are iteratively propagated to the higher-order
words of the superaccumulator. Atomic opera-
tions from other threads may modify the super-
accumulator during carry propagation; however,
it bears no impact on the final result as all carry
are eventually propagated in an arbitrary order.

• Third, this solution only requires hardware sup-
port for atomic integer addition, and does not

need support for atomic floating-point addi-
tion. Therefore, the long accumulator allows
to design reproducible atomic addition for any
floating-point representation format (e.i. half,
single or double precision of the IEEE-754
standard). By contrast, current GPUs only sup-
port floating-point atomic operations on single-
precision data. The only difference lies in the
size of the long accumulator.

We propose a thread-safe generalization of the long
accumulation algorithm [20]. This accumulation algo-
rithm is illustrated on Figure 1. The exponent and
mantissa are extracted from the input number. High-
order bits eh of the exponent are used to select the
words that are affected in the superaccumulator. Lower-
order bits el select a cutoff point to split the mantissa
into (at most) two parts, mh and ml, whose weights
are aligned with the words of the superaccumulators.
This has the effect of shifting the mantissa to align
it with the superaccumulator words. Words mh and
ml are independently accumulated atomically to their
respective accumulator words. Carries are detected and
propagated using independent atomic operations.

Fig. 1. Accumulation of a floating-point number to a superaccumu-
lator.

V. COST

In this section we details the memory and operation
cost of the two proposed solutions.

A. Work reassignment

The solution based on enforcing an execution order
requires one integer for the global index, one for the
lock and one integer in shared memory for each block
to store the shared index. In addition to these elements
it requires a table of N integers and N floating-point
numbers in shared memory per block to store temporary
values, with N corresponding to the number of threads
per block.

In terms of computational overhead, this solution
first requires to get a new block index at the beginning of
the kernel. This involves one atomic instruction. Then,
the kernel is left unmodified except when floating-point
atomic additions need to be performed. In that case,

5

DAVID DEFOUR, SYLVAIN COLLANGE: REPRODUCIBLE FLOATING-POINT ATOMIC ADDITION 725



each atomic addition is replaced by a write of both the
address and the value to shared memory, plus a bitonic
sort and a segmented sum per block over N elements
achieved in O(log(N)).

Then, threads of each block are waiting for their turn
by spinning over the lock index. Once this condition
is met, threads with the last address to be written
send their write to global memory along the normal
store path. As mentioned before these writes do not
require atomic addition and can be done in parallel with
an increased probability that global memory accesses
are coalesced as data are sorted according to their
destination addresses. For these reasons, this solution
will perform well when many threads of the same block
attempt to atomically add a value to the same location.

B. Fixed-point accumulation

The fixed-point accumulator solution adds overhead
in storage, computation, memory transfers and adds an
extra rounding step. The most obvious cost of a long
accumulator is its memory overhead. An accumulator
able to represent exactly every single-precision floating-
point value requires 280 bits of storage, as opposed
to 32 bits using a floating-point accumulator. Likewise,
a double-precision long accumulator needs about 2100
bits. Fortunately, long accumulators often contain sparse
data: when accumulating numbers of the same order of
magnitude, only a small part of the accumulator will be
accessed, while the remaining part stays null. The hot
parts can fit inside caches and benefit from fast cached
atomic operations, while the cold part will remain in
the large, off-chip memory.

Adding a floating-point value to a long accumulator
also requires extra computations. The algorithm de-
scribed in section IV extracts the exponent and mantissa
of the floating-point number, then splits the mantissa
by scaling and rounding it twice. However, binning
algorithms are memory intensive and their performance
is usually not limited by computations. This means the
computational of long accumulation may be hidden by
the memory access delays.

In terms of memory accesses, fixed-point accumu-
lation requires two atomic operations per number in the
common case, while a floating-point accumulation will
only need one atomic add on platforms that support it
in hardware. On the other hand, conflicts are reduced
as atomic accesses span a larger memory area.

Finally, the fixed-point result has to be rounded to
floating-point at the end of the accumulation. Rounding
involves finding the first significant bit, then scanning
the rest of the accumulator to compute the round,
guard and sticky bits, that are necessary for IEEE-
754 compliant rounding. The rounding phase can be

performed in parallel between accumulators as they
have no dependencies.

VI. RESULTS

We tested both methods on a GTX480, a GTX560
and a GTX680 architectures with characteristics de-
scribed in Table I. We made comparisons for a number
of output addresses ranging from 1 (which corresponds
to an accumulation) to 16384 different addresses ran-
domly generated. Each thread was responsible for the
accumulation of one floating-point value at a given
address in global memory. Each kernel was launched
with 100 blocks of 512 threads.

We compared the proposed methods against the
unordered solution which consists in atomically adding
the generated data at a given address as described in
listing 1. For comparison purposes, we also included the
fully sequential solution (block and warp sequential).
Both block and warp sequential and block sequential
methods relies on enforcing an execution order whereas
superaccumulators avoid rounding errors altogether.

Figure 2(a), 2(b) and 2(c) describes the execution
time on the GTX480, GTX560 and GTX680 respec-
tively. One can observe that the execution time of the
unordered solution quickly decreases as the number
of output addresses increases. This is due to reduced
contention : as the atomic accesses are spread across
a wider range of accesses, the probability of conflicts
decreases and the global performance improves. On
the other hand, both sequential methods exhibit an
execution time that is almost insensitive to the number
of output addresses. The solution based on the long
accumulator has an execution cost that decreases on the
GTX480 and GTX560 and quickly increases after 64
to 128 different addresses. The decrease is due to con-
current accesses that can happen simultaneously as the
number of different accumulators increases. However
after a certain bound, the overhead of the accumulator
do not compensate the gain obtained by the increase in
concurrent accesses.

On the GTX 680, the unordered algorithm is always
best according to figure 2(c), which is consistent with
the fact that atomic operations were improved on this
architecture compared to previous generations. Atomic
performance is less sensitive to conflicts. The long
accumulator also benefits from the improving atomic
performance.

On GTX480 and GTX560, one can notice that the
block sequential solution can even be faster than the un-
ordered solution for small numbers of output addresses.
This is because the small number of atomic access
compensates the overhead of the segmented summation
and sorting. By contrast, for the unordered solution

6

726 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



almost every atomic access generated by each thread
is conflicting on the output address, leaving no room
for concurrent execution.

Out of these results, we can observe that enforcing
strong numerical reproducibility is between 1.3 and 21
times more expensive than the unordered summation,
whereas weak numerical reproducibility corresponds to
0.4 to 10 times the execution time of the unordered
summation.

We should mention that the solution based on en-
forcing execution order uses block-wide synchroniza-
tion barriers. This implies that atomics using the weakly
reproducible solution need to be invoked from uniform
control-flow regions. Every thread has to execute the
instruction FPatomicAdd, otherwise the behavior is un-
specified.

VII. CONCLUSION

Atomic operations are very helpful in data parallel
programming to enforce memory consistency. However
when dealing with floating point values, this concur-
rency can lead to high variability, even when input data
and execution parameters are identical. This behavior,
due to rounding errors combined with the lack of
control over execution order, is problematic as it causes
validation and debugging issues, as well as producing
hard-to-diagnose bugs in distributed environments.

In this article we propose two solutions to tackle this
problem, each one addressing one source of the prob-
lem. We have described a first solution that enforces an
execution order at block level thanks to new block syn-
chronization primitive. We have shown that this solution
is competitive in terms of performance (0.4-10 times)
with the traditional hardware-based solution which is
not reproducible. However, numerical reproducibility is
ensured only for similar execution parameters as this
solution depends on the number of threads per block
and is therefore considered weakly reproducible.

We have proposed another solution based on a
very long accumulator, which eliminates every rounding
error and makes floating-point addition associative. This
solution avoids the need to enforce an execution order
and provides strong numerical reproducibility. It pro-
vides a correctly-rounded result with optimal accuracy.
We have shown that this solution is between 1.3 and 21
times more expensive than the unordered solution. On
the other hand, this solution does not require hardware
support for floating-point atomic addition and can be
applied to any floating-point representation format.

REFERENCES

[1] K. Doertel, “Best known method: Avoid heterogeneous preci-
sion in control flow calculations,” Intel, Tech. Rep., 2013.

(a) GTX480

(b) GTX560

(c) GTX680

Fig. 2. Execution time to atomically add 1 floating-point value per
threads to a number of different addresses ranging from 1 to 16384.
Kernel are launched with 100 blocks of 512 threads.

[2] N. J. Higham, Accuracy and stability of numerical algorithms.
SIAM, 2002, second edition. [Online]. Available: http:
//www.maths.manchester.ac.uk/∼higham/asna

[3] (2014, july) N-body: Fp atomics v. recomputation.
[Online]. Available: http://blog.cudahandbook.com/2012/11/
02/n-body-fp-atomics-v-recomputation.aspx

[4] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer,
C. Duriez, H. Delingette, and L. Grisoni, “Sofa an open source
framework for medical simulation,” in Medicine Meets Virtual

7

DAVID DEFOUR, SYLVAIN COLLANGE: REPRODUCIBLE FLOATING-POINT ATOMIC ADDITION 727



Reality (MMVR’15), Long Beach, USA, February 2007.
[5] W.-F. Chiang,  G.  Gopalakrishnan,  Z.  Rakamari   c,  D.  H.  Ahn,  and

G. L.  Lee,  “Determinism  and  reproducibility  in  large-scale  HPC
systems,”  in  Informal  Proceedings  of  the  4th  Workshop  on
Determinism  and  Correctness  in  Parallel  Programming  (WoDet
2013), 2013.

[6] P. Bakkum and K. Skadron, “Accelerating SQL database operations
on a GPU with CUDA,” in Proceedings of 3rd Workshop on General
Purpose  Processing  on  Graphics  Processing  Units, GPGPU 2010,
Pittsburgh,  Pennsylvania,  USA,  March  14,  2010,  ser.  ACM
International  Conference  Proceeding  Series,  D.  R.  Kaeli  and  M.
Leeser, Eds., vol. 425. ACM, 2010, pp. 94–103. [Online]. Available:
http://doi.acm.org/10.1145/1735688.1735706

[7] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk,  “Full-Speed
Deterministic  Bit-Accurate  Parallel  Floating-Point  Summation  on
Multi- and Many-Core Architectures,” INRIA, DALI–LIRMM, LIP6,
ICS, Tech. Rep. HAL: hal-00949355, Feb. 2014.

[8] J.  Demmel and  H.  D.  Nguyen,  “Parallel reproducible  summation,”
IEEE  Trans.  Computers, vol.  64,  no.  7,  pp.  2060–2070,  2015.
[Online].  Available:  http://doi.ieeecomputersociety.org/10.1109/TC.
2014.2345391

[9] N. J. Higham,  Accuracy and stability  of numerical algorithms, 2nd
ed. Philadelphia, PA: Society for Industrial and Applied Mathematics
(SIAM), 2002.

[10] J.-M.  Muller  and  al.,  Handbook  of  floating-point  arithmetic.
Birkhäuser, 2010.

[11] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol.  30,  pp.  56–69,  March  2010.  [Online].  Available:
http://dx.doi.org/10.1109/MM.2010.41

[12] D.  Defour,  “Impacting  predictability  of  gpu’s,”  HAL-CCSD,  Tech.
Rep.  hal-00951920,  2013.  [Online].  Available:  http://hal.archives-
ouvertes.fr/hal-00951920

[13] V. Volkov and J. W. Demmel, “LU , QR and Cholesky factorizations
using  vector  capabilities  of  GPUs,”  Department  of  Electrical
Engineering  and  Computer  Science,  University  of  California,
Berkeley,  inst-UCB-EECS:adr,  LAPACK Working  Note  202,  May
2008.  [Online].  Available:  http://www.netlib.org/lapack/lawnspdf/
lawn202.pdf

[14] W.  chun  Feng  and  S.  Xiao,  “To  gpu  synchronize  or  not  gpu
synchronize?” in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, 2010, pp. 3801–3804.

[15] S. Xiao and W. chun Feng, “Inter-block GPU communication via fast
barrier synchronization,” in IPDPS. IEEE, 2010, pp. 1–12. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2010.5470477

[16] J. A. Stuart and J. D. Owens, “Efficient synchronization primitives for
GPUs,”  CoRR,  vol.  Abs/1110.4623,  2011.  [Online].  Available:
http://arxiv.org/abs/1110.4623

[17] J.  Sanders and  E. Kandrot,  CUDA by example:  an  introduction  to
general-purpose  GPU programming. pub-AW:adr:  Addison-Wesley,
2010.

[18] U.  W. Kulisch,  Computer  arithmetic  and  validity, 2nd  ed.,  ser. de
Gruyter  Studies  in  Mathematics.  Berlin:  Walter  de  Gruyter  & Co.,
2013, vol. 33, theory, implementation, and applications.

[19] T. Grandlund,  “GNU MP: The GNU Multiple  Precision  Arithmetic
Library,” http://gmplib.org.

[20] G.  Bohlender  and  U.  Kulisch,  “Comments  on  fast  and  exact
accumulation  of  products,”  in  Applied  Parallel  and  Scientific
Computing. Springer, 2012, pp. 148–156.

TABLE I.

DESCRIPTION OF NVIDIA GPU’ S OF DIFFERENT GENERATIONS .

GPU Arch. CUDA
Cap.

#MP/
GPC

#MP CUDA
Core
 /MP

Warp.
Scheduler

/MP

GPU
Clock
(Mhz)

Memory
Clock
(Mnz)

GTX 480 GF100 2.0 4 15 32 2 1401 1848

GTX 560 GF114 2.1 4 7 48 2 1620 2004

GTX 680 K10 3.0 3 8 192 4 1059 3004

728 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015


