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Abstract—Machine learning has received increased interest
by both the scientific community and the industry. Most of the
machine learning algorithms rely on certain distance metrics that
can only be applied to numeric data. This becomes a problem
in complex datasets that contain heterogeneous data consisted of
numeric and nominal (i.e. categorical) features. Thus the need
of transformation from nominal to numeric data. Weight of
evidence (WoE) is one of the parameters that can be used for
transformation of the nominal features to numeric. In this paper
we describe a method that uses WoE to transform the features.
Although the applicability of this method is researched to some
extent, in this paper we extend its applicability for multi-class
problems, which is a novelty. We compared it with the method
that generates dummy features. We test both methods on binary
and multi-class classification problems with different machine
learning algorithms. Our experiments show that the WoE based
transformation generates smaller number of features compared
to the technique based on generation of dummy features while
also improving the classification accuracy, reducing memory
complexity and shortening the execution time. Be that as it
may, we also point out some of its weaknesses and make some
recommendations when to use the method based on dummy
features generation instead.

Keywords—Weight of Evidence, WoE, dummy features, data
transformation, nominal features, categorical features, heteroge-
neous data

I. INTRODUCTION

CLASSIFICATION is one of the most researched problems
in the data mining community. The data mining process is

consisted of business and data understanding, data preparation,
modeling, evaluation and deployment [1]. One of the crucial
parts of this process is the data preparation which has a very
large influence over the success or failure of the classification.
Data preparation is not a trivial task and is dependent on the
nature of the data. There are many problems that need to be
addressed during the data preparation such as the existence
of outliers, errors, noise, missing values etc. It is important
that the data is processed and transformed correctly so that
the problems that exist in the raw data are eliminated or their
influence reduced as much as possible. For this we use different
data transformation methods.

Depending on the data type of the features different trans-
formations are suitable. Some of the most common methods
for data transformation are well described in [2] and [3]. Trans-
forming numeric data, be it continuous or discrete, can be done

in a variety of ways. Then again, transformations of nominal
and categorical data are not as extensively researched. This
issue is also highlighted in [4]. A very common way for trans-
formation of nominal features is by generating dummy features
(i.e. varables). It is characterized by simplicity, independence
of the data domain, and ease of implementation. Authors in
[5, 3, 6] recommend to generate dummy features when there
is no mapping of nominal to numeric data. After the data
transformation the distance between the dummy features of the
instances can be calculated in different ways, as described in
[7]: Euclidean distance, Hamming distance, Jaccard distance,
Levenshtein distance, etc. In this paper we treat binary dummy
features as numeric features, and the distances are calculated
intrinsically in the learning algorithm.

Another similarity measure for nominal features is pro-
posed in [8]. It gives greater weight to uncommon feature value
matches in similarity computations and makes no assumptions
about the underlying distributions of the feature values. Appli-
cation of this measure in an unsupervised setting to define the
similarity metric between pairs of objects is proposed in [9].

The term frequency-inverse document frequency (TF-IDF),
as described in [10] and [11], is often used in text mining prob-
lems as a numerical statistic which estimates the importance of
a word to a document in a collection of documents. In a similar
manner this weight can be used to transform arbitrary nominal
values into numerical just as it assigns weight to words in text
mining and information retrieval. This approach is mentioned
in [12], but using TF-IDF as nominal data transformation
technique during the preprocessing phase has not be widely
researched.

The weight of evidence parameter, originally defined in
[13], can be used for estimating the evidence in support of a
hypothesis. Additionally it can be used for transformation of
nominal data. Its applicability with examples is also discussed
in [14] and [2]. There are some computational limitations of
this method and we have addressed them in [15], so it can
be used even when the preconditions are not met. In [16] we
present an application of this transformation for calculation
of the information value of features, which is consequently
applied for feature selection.

One of the most serious drawbacks of this method is that
it is applicable only to binary classification problems. In this
paper we are providing theoretical foundations in order to
extend the applicability of the WoE method to multi-class
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problems. In order to evaluate its advantages, limitations and
drawbacks we are comparing it against the technique that
generates dummy features. The reason are using this technique
as benchmark is because it is most widely adopted in both
literature and practice. With this in mind, we have tested
both methods on binary and multi-class classification problems
and we have trained Support Vector Machines (SVMs) with
different types of kernels and a feed forward back-propagation
neural network. Finally, we summarize the findings of our
research and discuss the applicability of the proposed extension
of the weight of evidence parameter and give some recommen-
dations of when to use it.

II. TRANSFORMATION WITH GENERATION OF DUMMY

FEATURES

This section describes in more detail the method for
transformation of nominal into numeric features based on
generation of dummy features. By using this technique n new
dummy features are generated from a nominal feature that
has n different values, when n > 2. When n = 2 only
one dummy feature is generated. Equation (1) gives the total
number of generated dummy features where vi is the number
of different values of the i-th nominal features. Each of the
generated features can have a value of 0 or 1, depending on
the occurrence of a particular value of the original feature. This
approach has been published for the first time in [17] and was
mainly used in regression analysis. Also, [18] covers many
aspects related to regression analysis with dummy variables.
Over time, this technique has been added to many software
packages as a common stage before applying various machine-
learning algorithms. When the number of nominal features and
the number of different values they can have is small, this
transformation leads to good performance of the algorithms.
The problems arise when there are a lot of nominal features
that can have many different values. These kinds of situations
lead to rapid increase of the number of generated dummy
features, which in turn, slows down machine-learning algo-
rithms. In fact, the memory requirements or time complexity
of algorithms can expand to that degree that they cannot be
executed in a reasonable time on the computers that we have
today. This issue can be partially addressed by discarding some
of the generated features based on their predictive power. By
doing that, some potentially useful information in the discarded
features is consciously thrown away.

zdummy =

n
∑

i=0

vi (1)

III. WEIGHT OF EVIDENCE

Decision making is mostly based on estimating the proba-
bility that one event might occur. The complexity of decision
making varies from trivial decisions to some complex ones
that require more involved processing of data from multiple
sources. The outcome of this probabilistic decision making
depends on facts that might even have inter dependencies [19].
For each decision we need to weight the influence of the facts
that contribute to it. This provides us means of mapping the
risk associated with a given choice or fact on a linear scale.

The concept of numerically weighting evidence was first
introduced in [13] and is a result of the work performed by
Alan Turing and I.J. Good during World War II. It is a sta-
tistical quantitative method for evaluating the facts (evidence)
in support of a hypothesis. The weighting is performed with
the parameter Weight of Evidence (WoE)[2]. It is a great tool
for estimating the relative risk based on the available data.
In this section we describe the mathematical background of
WoE when used for binary classification problems, originally
described in [15] and subsequently in [20].

Equation (2) defines the weight of evidence (WoE) of the
i-th value of the feature A, where NA

i is the number of data
points (i.e. instances) that were labeled as negative, and PA

i

is the number of data points that were labeled as positive
for the i-th value of the feature A. SN is the total number
of negatively labeled data points, PN is the total number of
positively labeled data points in the training set, and nA is the
number of different values for the feature A.

WoEA
i = ln

(

NA

i

SN

PA

i

SP

)

= ln

(

NA
i

PA
i

)

− ln

(

SN

SP

)

(2)

Values of SN and SP can be calculated with (3) and (4),
respectively:

SN =

nA

∑

i=1

NA
i (3)

SP =

nA

∑

i=1

PA
i (4)

WoE, as illustrated in the second part of (2), has two
components: a variable component and a constant component.
These numbers are independent of the machine learning algo-
rithm that is going to be applied in the data mining process.
They are calculated in the preprocessing phase. The variable
component is calculated based on the data points that have
a particular value of feature A and the constant component
is based on the whole sample (the training data set). In real-
time systems, these values should be calculated at regular tyme
intervals based on the dynamic of the new data input. There are
various statistics that can be monitored so we can determine
the need of updating the WoE parameters.

Equation (2) implies that the values for NA
i and PA

i have
to be different than zero, and given that they represent counts,
these constraints transform to NA

i > 0 and PA
i > 0. However,

these preconditions are not always met in real datasets thus
imposing limited applicability of the WoE parameter. The fol-
lowing section reviews the adjustments of the WoE technique
that overcome these preconditions as they were proposed in
[15].

IV. CALCULATION OF WEIGHT OF EVIDENCE FOR BINARY

PROBLEMS WHEN PRECONDITIONS ARE NOT MET

As mentioned in the definition of WoE, in order to calculate
WoE, we must satisfy the constraints PA

i > 0 and NA
i > 0.
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These conditions must be met for any value of the feature
so that the WoE can be computed. To be able to compute
WoE for all values of the nominal feature that needs to be
transformed, we need to make some adjustments in the way
WoE is calculated for the cases where the preconditions are
not met. The different types of unsatisfied preconditions as
proposed in [15] are listed below.

Case 1: The number of positively labeled data points is
zero (PA

i = 0) and the number of negatively
labeled data points is zero (NA

i = 0). This is
a trivial case when there are no data points (i.e.
instances) with the i-th value of the feature A,
even though this value is valid for this feature. In
such case we assume that WoEA

i is zero, meaning
that this particular value of the feature A will have
no impact on any transformations nor will change
the calculation of some other parameters that are
dependent on WoE. In fact, this value could be
even deleted from the possible set of values for
the current attribute. However, because it does not
have effect on anything, it could be retained in the
set of possible values in case some data points
from the data sets have the i-th value of variable
A, as well as for future analysis.

Case 2: The number of positively labeled data points is
zero (PA

i = 0) and the number of negatively
labeled data points is greater than zero (NA

i > 0).
There are no positively labeled data points, and
only negatively labeled data points with the i-
th value of the feature A. In order to apply (2),
we propose to use the value PA

i = 1 for the
positively labeled data points. At the same time,
we propose to add the appropriate number of
negatively labeled data points, so the overall ratio
of the added positively and negatively labeled data
points will be equal to the ratio of positively
and negatively labeled data points in the whole
data set (SN/SP ). In the following equations
let us denote the artificially added positive data

points (in this case only one) with δpAi = 1 and

with δnA
i denotes the added negative data points.

These artificial “additions” of data points does not
involve actual additions of instances in any data
set, rather it only alters the number of counted
data points of particular type for the purpose of the
calculations. If instead of one “added” data point

(δpAi = 1) we were to add more, then we would
need to add more negatively labeled data points

δnA
i compared to what we are adding now. This,

in turn, may pose a problem because the artificial
data points may become greater than the actual
data points that are negatively labeled. Equations
(5) and (6) define how the number of added data
points will be calculated, as well as, the proposed
estimate of WoE with (10).

δpAi
δnA

i

=
SP

SN
(5)

After applying δpAi = 1 in (5), we can calculate δnA
i with

(6):

δnA
i =

SN

SP
(6)

Now PA
i and NA

i that were defined in section III can be
modified to include the artificially added data points:

∆PA
i = PA

i + δpAi = 1 (7)

∆NA
i = NA

i + δnA
i = NA

i +
SN

SP
(8)

Then, instead of calculating WoE with (2) using NA
i and

PA
i , we can calculate it with their modified values ∆NA

i and
∆PA

i , defined in the two previous equations:

WoEA
i = ln

(

∆NA
i

∆PA
i

)

− ln

(

SN

SP

)

(9)

And if we apply (7) and (8) in (9), finally we get the
proposed estimate of WoE for this case of unsatisfied pre-
conditions:

WoEA
i = ln

(

NA
i × SP + SN

SN

)

(10)

Case 3: The number of negatively labeled data points is
zero (NA

i = 0) and the number of positively
labeled data points is greater than zero (PA

i > 0).
There are only positively labeled data points with
the i-th value of the variable A. We propose to add
one data point that is labeled as negative, so we
can use NA

i = 1 when applying (2), and to add
the appropriate number of positively labeled data
points, so the overall ratio of the added positively
and negatively labeled data points will be equal to
the ratio of positively and negatively labeled data
points in the whole data set (SN/SP ). As in the
previous case, these artificial “additions” of data
points are virtual because the instances in the data
sets are left intact, rather we only alter the number
of counted data points of a particular type. As for
why we are using only one artificial “addition”
the same observation as in Case 2 stands. In this
case the number of artificially added negative data

points is one (δnA
i = 1), so (5) can be transformed

as (11):

δpAi =
SP

SN
(11)

Now PA
i and NA

i that were defined in section III can be
modified to include the artificially added data points:

∆PA
i = PA

i + δpAi = PA
i +

SP

SN
(12)
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∆NA
i = NA

i + δnA
i = 1 (13)

Finally, for this case of unsatisfied preconditions, instead of
calculating WoE with (2) using NA

i and PA
i , we can calculate

it with their modified values ∆NA
i and ∆PA

i , defined in the
two previous equations:

WoEA
i = ln

(

SP

PA
i × SN + SP

)

(14)

In this section we reviewed the enhancement [15] for
estimation of WoE for cases in which the it can not be
calculated by using the original (2). With this approach we
add some data points so that the number of positive and
negative labeled data points is always positive. This has a
very small influence on the data and does not change the
overall distribution of the dataset. There are several benefits
from using the proposed method for WoE estimation:

• It would be computable for all features and all values
in the data set, meaning that WoE could be used to
transform the nominal features into numeric.

• The computed WoE could be used for binning of some
values of the features.

• Information value of all features could be computed,
and later it could be used for feature selection.

• Many classification algorithms have preference of
numeric over nominal features, and sometimes the
distance between different data points cannot be esti-
mated if the values of the features are nominal. After
we calculate the WoE values, the data points can be
compared in terms of WoE.

The proposed transformation could degrade the perfor-
mance of the classification model when significant noise is
present. The estimated risk in such cases could defer from
the real risk. Noisy data, however, poses a serious problem
in the data mining in general and should be addressed before
performing any kind of data transformation and using some
machine learning algorithm.

V. ONE-VS-ALL GENERALIZATION FOR MULTI-CLASS

PROBLEMS OF THE WEIGHT OF EVIDENCE PARAMETER

One of the most constraining properties of the Weight of
evidence parameter is that it is computable only for binary
classification problems. On the other hand, many real data
mining and machine learning applications require classification
into more than two classes. In order for the WoE parameter to
be applicable for such cases, the algorithm for its calculation
needs to be modified accordingly. One way to achieve this
is by representing the multi-class classification problem as
a set of binary problems. After that, we can calculate the
WoE values separately for each of the binary subproblems.
In [21] and [22] is applied a similar approach, known as
one-vs-all or one-vs-rest, for generalization of many machine-
learning algorithms that natively support only two classes (e.g.
SVMs). By applying the one-vs-all technique we can also
generalize the WoE transformation for multi-class problems.

We have followed this idea originally in [23], but without
substantial formal definition nor significant empirical evidence.
Here we explore the idea of one-vs-all generalization of the
WoE transformation in more depth.

Algorithm 1 is repeated for each of the m classes. With
this algorithm from a dataset with k nominal features and m
classes we generate zwoe new numeric features, as defined with
(15).

Algorithm 1 One-vs-all generalization for multi-class prob-
lems of the Weight of evidence parameter

for i = 1 → m do
Temporary label with TempClass1 all instances that

were originally labeled with Classi).
Temporary label with TempClass2 all instances that

were originally labeled with some class different than
Classi).

Calculate the WoE parameters for all instances and
all their nominal features using the temporary labels
(TempClass1 and TempClass2).

Transform all k nominal features using the calculated
WoE parameters in the previous step. This produces k new
numeric features.

Add the k generated numeric features to the transformed
dataset.

Remove the temporary labels of all instances and revert
them to their original labels (classes).
end for

zwoe =

{

m× n, m > 2

n, m = 2
(15)

The same algorithm can be applied for transformation
of the numeric attributes in the original dataset into another
numeric features as well. However, given the fact that there
are plenty of algorithms for transformation of numeric features,
we are not focusing on that kind of application of the WoE
transformation.

VI. RESULTS

In this section we present the experiments that we con-
ducted using the proposed method for data transformation. The
first four subsections describe the performance metric and the
cross-validation process that we used across all subsequent
tests, how and when we performed feature selection and
how we evaluated the performance. The following subsections
describe how we have applied the weight of evidence transfor-
mation on the nominal features in some of the datasets obtained
from the UCI Repository of Machine Learning Databases [24].

A. Performance metric

The choice of performance metric to evaluate any transfor-
mation is very important. Several research papers indicate the
fact that in some cases for a given dataset, the learning method
that obtains the best model according to a given measure, is
not the best method if a different measure is used. In [25] is
shown that Naive Bayes and pruned decision trees are very
similar in predictive accuracy. Later on, applying the same
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algorithms, in [26] the same authors show that Naive Bayes
is significantly better than pruned decision trees in terms of
AUC ROC. As it is said in [27] the different results cannot
be explained by slightly different implementations or variants
of machine learning algorithms, but on the fact that the two
measures (accuracy and AUC ROC) evaluate different things.
The predictive accuracy is perhaps the most popular metric
for classification problems and many researchers have been
publishing papers that show the performance of various algo-
rithms, techniques and transformations in terms of predictive
accuracy on the same datasets that we also use in this paper.
Another property of accuracy is that it can be calculated for
multi-class problems in the same way as it is calculated for
binary problems, while other metrics does not natively support
multi-class problems. Because of these reasons we have also
decided to compare our results in terms of predictive accuracy.

Additionally, we wanted to compare the execution times
of both transformations so we can have insight of that aspect
too. We have implemented all algorithms in Matlab and all
tests have been performed on Windows 7 Professional SP1 64
bit running on a virtual Intel Xeon X5680 at 3.33 Ghz with
8 GB RAM. We have used the built-in implementations of
FFNN and SVMs in Matlab. All listed execution times consist
of the data transformation, the training of the machine learning
algorithm and making the predictions.

B. Cross-validation

Some of the available datasets in the research commu-
nity are consisted of training, validation and testing subset.
However more often they are consisted of only one set that
should be used for training, validation and testing, so the task
of splitting the original dataset is left to the data analysts
and researchers. The most common practice when evaluating
performance in such cases is to perform cross-validation. There
are few alternatives of how can cross-validation be performed
and each of them has advantages and disadvantages. Stratified
10-fold cross-validation in [28] is recommended as the best
model selection method, as it tends to provide less biased
estimation of the accuracy. Following this recommendation
we have decided to perform k-fold cross-validation while
using different values for k: 2, 4, 6, 8 and 10. Usually the
cross-validation is performed after the data is preprocessed.
This means that all data cleaning, data transformations, and
removal of outliers have to be performed, and then different
subsets from the processed datasets are selected as training,
validation and testing. This approach is suitable when the
data transformations depend only on the actual values of
features that should be transformed. Such transformations
techniques are all mathematical functions that can be applied
on numerical features or generation of dummy features from
nominal features.

However, if the data transformations additionally depend
on the relationship between the instances in the training set
this approach is not suitable. Such relationship is present in the
Weight of Evidence transformation because the transformed
values depend on the set of values of the features that are being
transformed and the set of values of all other instances in the
dataset, as it is evident in (2). To review, the transformed value
depends on the number of instances labeled with a particular
class, and the number of instances that have a particular value

of the original feature and are labeled with a particular class.
These counts can vary for different subsets of the original
dataset, thus a different transformed values can be obtained
for the same original value. Ideally, if the dataset is large
enough and if the distribution of values of the nominal features
is nearly uniform, then the transformed values for different
subsets of the dataset would not vary much. However, such
conditions do not occur in real datasets, hence the need of
to modify the cross-validation process. Algorithm 2 describes
how the k-fold cross-validation is performed with repeated
transformation of nominal features. By applying this algorithm
for cross-validation, only the information that is present in the
current set of training folds is used for data transformation.

Algorithm 2 K-fold cross-validation with repeated transfor-
mation of nominal features

Randomly shufle the dataset
Randomly assign Foldi (i = 1 → k) to each instance in the
shuffled dataset
for i = 1 → k do

Assign all instances belonging to Foldi to TestSeti.
Assign all instances not belonging to Foldi to

TrainingSeti.
Calculate WoEi parameters for all nominal features in

TrainingSeti.
Transform all values of all nominal features in

TrainingSeti using the transformation values WoEi, thus
obtaining TransformedTrainingSeti.

Transform all values of all nominal features in TestSeti
using the transformation values WoEi, thus obtaining
TransformedTestSeti.

Train Modeli using TransformedTrainingSeti.
Validate Modeli using TransformedTestSeti, thus

obtaining Resultsi.
end for
Aggregate Resultsi(i = 1 → k)

C. Feature selection

In the machine learning literature there are a lot of
published papers and books about various feature selection
techniques, both for nominal and numeric features. Such paper
is [29], where the most popular algorithms are described and
illustrated with examples. This work focuses on data trans-
formation techniques and therefore we have performed some
basic feature selection, and have not tested more advanced
methods. First thing that is performed for all datasets that
we have worked on, all single-value features were removed.
Also if such features were generated with one of the applied
data transformation techniques they were also removed. This
is because these features have no information value i.e. their
entropy is zero, therefore having no predictive power regardless
of which machine learning algorithm would later be applied.

In the case when some nominal feature has many different
values and the dummy variables generation technique is used,
a lot of dummy features would be generated. This can pose a
serious problem for many machine learning algorithms because
they would demand enormous amount of computer power, even
to the extent that they would not be usable. To overcome this
problem we have used a simple feature selection that restricts
the number of dummy features that can be generated. Namely,
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only for the values of the nominal features that occur in more
than 5% of the instances a dummy feature is generated, while
for all other less frequently occurring values we generate only
one common dummy feature. Choosing the value of 5% as
a threshold provided good balance between retaining a small
number of features while not loosing too much information.
This simple algorithm is very effective in helping prevent the
generation of vast amount of dummy features. Of course, a
more intelligent feature selection can be applied but we did
not want to defocus from the main topic of the paper.

D. Performance evaluation

After applying the proposed transformation we have trans-
formed all nominal features in the datasets into numeric and
then we have trained few machine learning algorithms. In
order to have basis for comparison, we have also generated
dummy features from all nominal features in the original
datasets and afterwards we have trained the same machine
learning algorithms. To decrease the impact of randomness
while making the splits of the data into cross-validation folds
we have repeated the whole process multiple times and then we
have aggregated the results. The following subsections describe
each of the datasets, the performed data transformations and
the performance in more detail. The performance is analyzed
in terms of accuracy and execution time.

E. The Annealing dataset

The annealing dataset was obtained from the UCI Reposi-
tory of Machine Learning Databases [24] and it contains data
for a classification problem. More particularly, it contains 798
instances described with 6 numeric and 32 nominal features.
All instances are labeled with one of the 5 possible classes.
Only the nominal features of the dataset were subject to trans-
formation, while the numeric features were not transformed in
any way.

First, we have generated dummy features for all different
values of all nominal features in the original dataset. Note
that for nominal features that have only 2 different values we
do not generate dummy features rather we only convert their
values to 0s and 1s, because these features are already dummy
features with differently encoded values. By doing that we have
generated 64 dummy features. From them 7 had the same value
for all instances in the training and test sets, therefore they
were removed. Finally, together with the original 6 numeric
features the dataset 1 is comprised of 63 numeric features.

Then we have applied the proposed WoE transformation
thus obtaining 32× 5 = 160 new numeric features, as defined
with (15). From them 40 had the same value for all instances in
the training and test sets, meaning that there is no information
value in them, therefore they were removed. Finally, together
with the original 6 numeric features the dataset 2 is comprised
of 126 numeric features.

Both datasets were tested using a feed forward back
propagation neural network (FFNN), and SVM with a linear,
quadratic, polynomial and RBF kernel. The training and test
partitions of the datasets were obtained using k-fold cross
validation and 2, 4, 6, 8 and 10 were used as k values. An
important thing to mention is that a same value of the original
feature can be transformed into different values. This situation

arises from the nature of the WoE values - they depend not
only on the original values but also on the distribution of the
other values of the same feature in the training dataset. This
in turn require the WoE transformation to be performed for
each training fold separately. In fact for k-fold cross validation
the WoE transformation would be performed k times, once
for each training fold combination. Because the instances that
belong to the folds are chosen randomly, the performance can
vary and may not be consistent. Therefore, the whole process
was repeated 10 times for each value of k. At the end we
have calculated the average, minimum, maximum and standard
deviation of the accuracies and the execution times for each
algorithm and each transformation type using the data from
the 10 repetitions.

Table I shows the accuracies for different values of k of the
10 repetitions when a FFNN was trained with both datasets.
We can see that for all values of k the WoE transformed dataset
produced better average accuracy. Next, table II shows the
execution times when a FFNN was trained with both datasets.
We can see that both transformations together with the training
and test phase needed were completed in similar time, even
though the WoE transformed dataset had about twice more
features.

The next algorithm we trained was SVM with linear kernel.
Tables III and IV show the results of this algorithm using both
datasets. For it we can note that both the accuracy and exe-
cution time are similar to each other for both transformations,
but are much better than the FFNN.

After that, we have trained a SVM with RBF (i.e. Radial
Basis Function) kernel. Tables V and VI show the results of
this algorithm using both datasets. For this algorithm we can
note that both the accuracy and the execution time are similar
to each other for both transformations, are significantly better
than the FFNN and worse than the SVM with linear kernel.

The following algorithm that we have trained was a SVM
with Polynomial kernel. Tables VII and VIII show the results
of this algorithm using both datasets. For this algorithm we
can note that the accuracy is slightly better when dummy
transfomation is used and execution time is slightly better
when WoE transformation is used. Overall the performance is
similar to the SVM with linear kernel and to the performance
of SVM with Quadratic kernel, which are shown with tables
IX and X.

Tables XI and XII show the results of a SVM with MLP
(i.e. multilayer perceptron) kernel using both datasets. For this
algorithm we can note that the accuracy is slightly better
when dummy transfomation is used and execution time is
slightly better when WoE transformation is used. Overall the
performance is similar to the SVM with RBF kernel.

Finally, we can conclude that for this particular dataset
both transformations lead to similar performance in terms of
accuracy and execution time when various machine learning
algorithms are applied. We want to point out again the fact
that the dataset has 1000 instances that are non-uniformly
distributed into 5 classes. As a consequence the execution of
the transformations is very fast and therefore they are very
similar. Additionally the number of different values of the
nominal features is very small therefore the advantages of the
WoE transformation can not be exploited. For datasets like this
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one, where the number of instances, the number of nominal
features and the number of different values are fairly small,
both transformations provide similar results. However, in such
cases we recommend applying the dummy transformation
because it is easier to implement and it is a lot simpler to
interpret and understand.

TABLE I. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with FFNN

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.7617 0.7628 0.7718 0.7862 0.7239

Max 0.8307 0.8364 0.8342 0.8273 0.8230

Mean 0.7951 0.8025 0.7981 0.8081 0.7882

StDev 0.0244 0.0229 0.0191 0.0127 0.0242

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.7550 0.7728 0.7030 0.7917 0.7773

Max 0.8408 0.8954 0.8731 0.8375 0.8430

Mean 0.7989 0.8258 0.8114 0.8116 0.8113

StDev 0.0258 0.0335 0.0420 0.0139 0.0207

TABLE II. ANNEALING DATASET. Execution time in seconds from 10

repetitions of k-fold cross-validation with FFNN

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 1.75 4.56 7.32 10.58 13.45

Max 9.48 6.25 10.99 12.66 18.95

Mean 2.83 5.43 9.02 11.62 14.88

StDev 2.23 0.53 0.96 0.63 1.49

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 1.96 5.33 8.64 12.12 14.35

Max 2.74 6.45 10.27 13.38 18.56

Mean 2.31 5.89 9.21 12.63 15.93

StDev 0.26 0.37 0.44 0.41 1.25

TABLE III. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with SVM with linear kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9755 0.9866 0.9677 0.9732 0.9888

Max 0.9889 0.9922 0.9922 0.9922 0.9922

Mean 0.9825 0.9889 0.9884 0.9892 0.9906

StDev 0.0042 0.0017 0.0071 0.0054 0.0009

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9755 0.9611 0.9866 0.9866 0.9900

Max 0.9911 0.9944 0.9944 0.9944 0.9922

Mean 0.9850 0.9882 0.9914 0.9919 0.9915

StDev 0.0041 0.0092 0.0025 0.0021 0.0007

TABLE IV. ANNEALING DATASET. Execution time in seconds from 10

repetitions of k-fold cross-validation with SVM with linear kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 1.32 2.04 4.22 6.12 6.00

Max 2.07 3.80 6.21 10.46 13.36

Mean 1.49 2.67 5.44 7.69 9.06

StDev 0.21 0.49 0.62 1.38 1.92

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 1.55 3.34 4.74 5.75 8.22

Max 2.56 5.80 6.69 9.64 11.13

Mean 2.01 4.30 5.80 7.79 9.39

StDev 0.33 0.71 0.65 1.15 0.79

TABLE V. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with SVM with RBF kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.8664 0.8953 0.9053 0.9087 0.9064

Max 0.8953 0.9199 0.9198 0.9243 0.9243

Mean 0.8814 0.9081 0.9139 0.9180 0.9187

StDev 0.0086 0.0070 0.0044 0.0054 0.0050

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.8641 0.8942 0.9031 0.9076 0.9064

Max 0.8931 0.9176 0.9176 0.9242 0.9243

Mean 0.8782 0.9067 0.9126 0.9173 0.9177

StDev 0.0088 0.0067 0.0044 0.0054 0.0048

TABLE VI. ANNEALING DATASET. Execution time in seconds from 10

repetitions of k-fold cross-validation with SVM with RBF kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 1.72 4.09 6.44 8.79 11.45

Max 2.03 4.41 7.10 11.14 15.50

Mean 1.83 4.29 6.73 9.44 12.05

StDev 0.08 0.10 0.24 0.60 1.16

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 1.77 4.15 6.26 9.08 11.14

Max 1.97 4.63 7.18 10.44 13.06

Mean 1.84 4.42 6.74 9.49 11.89

StDev 0.06 0.13 0.28 0.42 0.48

TABLE VII. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with SVM with Polynomial kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9788 0.9889 0.9900 0.9900 0.9878

Max 0.9889 0.9933 0.9933 0.9933 0.9933

Mean 0.9860 0.9914 0.9922 0.9920 0.9916

StDev 0.0028 0.0020 0.0011 0.0010 0.0015

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9577 0.9655 0.9654 0.9666 0.9655

Max 0.9755 0.9755 0.9733 0.9744 0.9710

Mean 0.9674 0.9701 0.9695 0.9698 0.9689

StDev 0.0056 0.0028 0.0024 0.0020 0.0019

TABLE VIII. ANNEALING DATASET. Execution time in seconds from

10 repetitions of k-fold cross-validation with SVM with Polynomial kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.98 1.84 2.64 3.44 4.33

Max 1.11 2.14 2.89 4.35 4.93

Mean 1.04 1.97 2.78 3.71 4.50

StDev 0.04 0.08 0.09 0.24 0.19

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.89 1.67 2.40 3.23 3.96

Max 1.03 2.86 2.78 3.84 4.60

Mean 0.95 1.87 2.57 3.45 4.20

StDev 0.04 0.34 0.13 0.17 0.17

TABLE IX. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with SVM with Quadratic kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9766 0.9911 0.9922 0.9900 0.9833

Max 0.9933 0.9956 0.9955 0.9956 0.9956

Mean 0.9874 0.9933 0.9948 0.9947 0.9934

StDev 0.0043 0.0014 0.0012 0.0017 0.0036

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.9744 0.9889 0.9922 0.9889 0.9844

Max 0.9900 0.9944 0.9944 0.9955 0.9956

Mean 0.9840 0.9918 0.9939 0.9929 0.9923

StDev 0.0043 0.0017 0.0009 0.0023 0.0034
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TABLE X. ANNEALING DATASET. Execution time in seconds from 10

repetitions of k-fold cross-validation with SVM with Quadratic kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.97 1.73 2.41 3.33 4.05

Max 1.18 2.21 2.80 3.90 4.45

Mean 1.04 1.91 2.64 3.53 4.21

StDev 0.06 0.15 0.12 0.17 0.12

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.87 1.61 2.30 3.07 3.63

Max 0.99 1.92 2.57 3.65 4.18

Mean 0.94 1.74 2.43 3.26 3.81

StDev 0.04 0.10 0.07 0.15 0.18

TABLE XI. ANNEALING DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with SVM with MLP kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.8664 0.8953 0.9053 0.9087 0.9064

Max 0.8953 0.9199 0.9198 0.9243 0.9243

Mean 0.8814 0.9081 0.9139 0.9180 0.9187

StDev 0.0086 0.0070 0.0044 0.0054 0.0050

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.8641 0.8942 0.9031 0.9076 0.9064

Max 0.8931 0.9176 0.9176 0.9242 0.9243

Mean 0.8782 0.9067 0.9126 0.9173 0.9177

StDev 0.0088 0.0067 0.0044 0.0054 0.0048

F. The PAKDD 2010 dataset

The 14th Pacific-Asia Knowledge Discovery and Data
Mining conference (PAKDD 2010) together with NeuroTech
Ltd. and the Center for Informatics of the Federal University of
Pernambuco (Brazil) co-organized a data mining competition
[30]. This credit risk assessment problem comes from the
private label credit card operation of a major retail chain.
The company has been operating its private label card for
over 10 years and has applied two different methods for risk
assessment with the application’s acceptance rate varying from
50% to 75% within this period. Each accepted application
turns the applicant into a client and gives him/her the access
to credit for purchasing on the retail chain to be billed 10
to 40 days after the purchase, on a monthly basis on a fixed
month day. After his/her credit acceptance, a client would take
some time to make their first purchase and receive their first
bill. During the first year of using the card, the set of monthly
bills and payment behavior is collected and used for credit
risk assessment. If the client had any monthly defaults (delays
longer than the agreed payment periods) he is labeled as bad,
otherwise as good client. The goal is to exploit the information

TABLE XII. ANNEALING DATASET. Execution time in seconds from

10 repetitions of k-fold cross-validation with SVM with MLP kernel

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 1.74 4.19 6.38 9.13 11.33

Max 1.94 4.82 7.09 10.22 12.67

Mean 1.84 4.42 6.70 9.42 11.76

StDev 0.07 0.22 0.19 0.29 0.34

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 1.73 4.25 6.27 8.93 11.03

Max 2.01 6.07 7.09 11.28 12.43

Mean 1.87 4.65 6.69 9.59 11.77

StDev 0.08 0.49 0.24 0.62 0.39

that was available when the applicant applied for credit and try
to predict whether he would be a good or bad client. To achieve
this we have used the training data consisting of various kinds
of information for the applicants like age, profession, sex,
marital status, monthly income etc. and the label (good/bad)
to build prediction models.

For the purpose of the competition there are three available
datasets, but the labels (i.e. target class) of only one of them
are made publicly available. This dataset is named as Modeling
and has 50000 instances, distributed as 26% vs. 74% per class.
The dataset is real and collected manually during a long time
period therefore some of the instances have missing, invalid
or inconsistent data, some of the columns have no information
value or have the same values for all instances etc. We have
addressed these issues by removing some of the instances and
the columns. Additionally, we have generated few nominal
features that capture interactions between the original features:
sex, marital status, age group, profession etc. After this stage
of data cleaning and preparation we ended up with a dataset
with 11 numeric and 24 nominal features and a total of about
42000 instances that were similarly distributed in respect to
the target class.

First, we have generated dummy features for all different
values of all nominal features in the original dataset. Note
that for nominal features that have only 2 different values
we do not generate dummy features rather we only convert
their values to 0s and 1s, because these features are already
dummy features with differently encoded values. By doing that
we have obtained around 4630 dummy features. Obviously a
dataset with such high number of features makes it difficult
to train models on it. That is why we have performed a
simple feature selection as described in subsection VI-C, which
resulted in a dataset with about 140 dummy features. Finally,
together with the original 11 numeric features the dataset 1 is
comprised of about 150 numeric features. The exact number
of features varies depending on the random split during the
cross-validation.

Then we have applied the proposed WoE transformation
and we generated for each nominal features one numeric
feature which resulted in 24 new numeric features, as defined
with (15). Together with the original 11 numeric features the
dataset 2 is comprised of 35 numeric features.

Both datasets were tested using a feed forward back
propagation neural network, and SVM with a linear, quadratic,
polynomial and RBF kernel. The training and test partitions
of the datasets were obtained using k-fold cross validation
and 2, 4, 6, 8 and 10 were used as k values. The whole
process was repeated 10 times for each value of k, so the
influence of randomness during the cross-validations can be
neglected. The official performance metric of the competition
is area under the receiver operating curve (AUC ROC) [26],
but due to the reasons discussed in subsection VI-A, we
have decided to compare the results in terms of accuracy.
The first results were not very useful because the accuracy
of the classifiers built from both datasets was in the most
cases around 74%. Additionally in many cases the machine
learning algorithms could not converge, meaning we could
not compare the both transformations. The WoE transformed
dataset usually provided better accuracy, but the overall results
were insufficient to make firm conclusions. The fact that the
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accuracy was similar to the percentage of the more common
class and the confusion matrices undoubtedly showed that the
unbalanced dataset introduces serious problems for all machine
learning algorithms. The algorithms trained on the dummy
transformed dataset converged twice less often than the ones
trained on the WoE transformed dataset, and in the rare cases
when they both converged the WoE transformation almost
always provided better results.

In order to make better comparisons of the transformations,
it was obvious that a balanced dataset would be more suitable.
While we can artificially generate more instances of the less
common class, the most common way to balance a dataset is
by “throwing away” some of the instances labeled with the
more common class. When data is balanced, accuracy rates
tend to decline [31]. If we balance the dataset by reducing the
training set size, then this can lead to the degeneracy of the
model because we are neglecting potentially useful training
instances. Nevertheless, we have opted for this option because
it was easier to implement the shrinking, but mostly because
this way we can train algorithms much faster because of the
smaller training sets. By doing this we have obtained a bal-
anced dataset with around 22000 instances and afterwards we
have performed all tests described in the previous paragraph.
Important to mention here is that by repeating the whole tests
10 times we were able to select different subsets of instances
of the more common class for each repetition, thus mitigating
the issues of thrown-away information to some extent.

From all algorithms that were tested only the FFNN
converged for all values of k and all repetitions. The achieved
results are shown in tables XIII and XIV. We can conclude
that when FFNN was trained the WoE transformation produced
6% to 9% better accuracy in 10% to 40% more time than the
dummy transformation.

After the training was performed for the SVM with RBF
kernel we noticed that convergence could not be acheived when
k is 4, 6, 8 and 10 when the dummy transformed dataset is
used. Similary, when the WoE transformed dataset was used
the SVM converged when k was 2 and in six of the repetitions
when k was 4. The results that we were able to collect are listed
in tables XV and XVI. The results for SVM with MLP kernel
were so similar that the averages look exactly the same despite
the fact that the individual values were different. This can be
seen in tables XVII and XVIII. From them we can conclude
that when SVM with RBF or MLP kernel was trained the WoE
transformation produced about 2% better accuracy about three
times faster than the dummy transformation and additionally
the SVMs were able to converge more often. Compared to the
the FFNN, the SVMs produced about 20% better accuracy for
k = 2 but were significantly slower - about 6 times.

The other SVMs with linear, polynomial and quadratic
kernel could not converge for none of the repetitions and
different k values. We realize that these issues might be
addressed by parameter tuning, but we cannot concentrate on
this issue at the moment because it is not the focus point of
this paper.

TABLE XIII. PAKDD 2010 DATASET. Accuracy from 10 repetitions of

k-fold cross-validation with FFNN

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 0.5122 0.5443 0.5430 0.5478 0.5536

Max 0.5944 0.5900 0.5903 0.5935 0.5860

Mean 0.5547 0.5711 0.5697 0.5739 0.5706

StDev 0.0246 0.0144 0.0147 0.0149 0.0088

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 0.5028 0.5472 0.5610 0.5868 0.5702

Max 0.6453 0.6561 0.6596 0.6377 0.6567

Mean 0.5894 0.6214 0.6158 0.6111 0.6123

StDev 0.0504 0.0328 0.0262 0.0149 0.0227

TABLE XIV. PAKDD 2010 DATASET. Execution time in seconds from

10 repetitions of k-fold cross-validation with FFNN

Dummy transformation

k=2 k=4 k=6 k=8 k=10

Min 29.59 84.85 141.67 183.26 242.82

Max 45.16 103.84 309.29 223.04 272.56

Mean 35.54 93.86 169.14 207.04 257.37

StDev 4.67 5.61 47.23 12.04 8.53

WoE transformation

k=2 k=4 k=6 k=8 k=10

Min 41.54 104.24 168.24 251.99 302.14

Max 48.07 297.96 200.57 279.83 388.43

Mean 44.21 135.97 190.84 267.72 338.81

StDev 1.69 54.34 9.04 6.94 21.50

TABLE XV. PAKDD2010 BALANCED DATASET. Accuracy from 10

repetitions of k-fold cross-validation with SVM with RBF kernel

Dummy trans. WoE trans.

k=2 k=2 k=4

Min 0.7300 Min 0.7409 0.8044

Max 0.7400 Max 0.7531 0.8089

Mean 0.7336 Mean 0.7453 0.8063

StDev 0.0029 StDev 0.0035 0.0015

TABLE XVI. PAKDD2010 BALANCED DATASET. Execution times in

seconds from 10 repetitions of k-fold cross-validation with SVM with RBF
kernel

Dummy trans. WoE trans.

k=2 k=2 k=4

Min 713.34 Min 254.66 851.89

Max 968.45 Max 274.56 1054.31

Mean 803.70 Mean 262.75 954.75

StDev 82.49 StDev 6.22 88.40

TABLE XVII. PAKDD2010 BALANCED DATASET. Accuracy from 10

repetitions of k-fold cross-validation with SVM with MLP kernel

Dummy trans. WoE trans.

k=2 k=2 k=4

Min 0.7300 Min 0.7409 0.8044

Max 0.7400 Max 0.7531 0.8089

Mean 0.7336 Mean 0.7453 0.8063

StDev 0.0029 StDev 0.0035 0.0015

TABLE XVIII. PAKDD2010 BALANCED DATASET. Execution times
in seconds from 10 repetitions of k-fold cross-validation with SVM with

MLP kernel

Dummy trans. WoE trans.

k=2 k=2 k=4

Min 713.34 Min 254.66 851.89

Max 968.45 Max 274.56 1054.31

Mean 803.70 Mean 262.75 954.75

StDev 82.49 StDev 6.22 88.40
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VII. CONCLUSION

In this study we have proposed a data transformation
method based on the weight of evidence parameter. This
technique is applicable in binary and multivariate supervised
learning problems particularly for the nominal and categorical
features. We have tested this technique on two real datasets.
To verify our results, we have also generated dummy features
from all nominal features in the same datasets and afterwards
we have trained the same machine learning algorithms (i.e.
feed forward neural networks and support vector machines
with different kernels).

The analysis of the results show that in datasets in which
the number of instances, the number of nominal features
and the number of different values are fairly small, both
transformations provide similar results in terms of predictive
performance and execution time. For this reason in such cases
we recommend applying the dummy transformation, because
is easier to implement and it is a lot simpler to interpret and
understand. However, it was the opposite case when we applied
both transformations to a significantly larger dataset (with
more than 10000 instances) that has more nominal features
and they have more different values. Very often machine
learning algorithms could not be trained on the dummy trans-
formed dataset because of the memory complexity or because
convergence could not be achieved. On the same dataset,
but transformed with WoE, the same algorithms achieved
convergence and produced significantly better results both in
terms of predictive performance and execution time.

The presented method can be used without prior knowledge
of the nature of the datasets. In our future work, we plan to
compare the WoE transformation with other techniques for
data transformations for nominal features. Also we will train a
larger set of classifiers and will apply these transformations
on other datasets as well. Additionally when we train the
classifiers we also need to investigate the effect of parameter
tuning, for instance when training SVMs. Our goal is to make
firm and well-explained conclusions of which transformation
is most suitable for what kinds of datasets, so researchers
and practitioners can make apply these transformations more
confidently without having to try out all possible combinations
before deciding which one is most suitable.
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