
More Practical Application of Trust Management
Credentials

Anna Felkner, Adam Kozakiewicz
NASK – Research and Academic Computer Network

Wawozowa 18, 02-796 Warsaw, Poland

Email: {anna.felkner, adam.kozakiewicz}@nask.pl

Abstract—Trust management is an approach to access control
in distributed open systems, where access control decisions are
based on policy statements made by multiple principals. The
family of Role-based Trust management languages (RT) is an ef-
fective means for representing security policies and credentials
in decentralized, distributed, large scale access control systems.
It provides a set of role assignment credentials. A credential
provides information about the privileges of users and the
security policies issued by one or more trusted authorities.

The main purpose of this paper is to show how extensions can
make the RT family languages more useful in practice. It shows
how security policies can be made more realistic by including
timing information, maintaining the procedure or parameterizing
the validity of credentials.

I. INTRODUCTION

T
HE modern human life is heavily reliant on trust. The

complexity of tasks we are dealing with makes it practi-

cally impossible to succeed without delegating some of them.

It is therefore not surprising that the issue of trust became a

very active area of research quite long ago. The trust between

humans has been thoroughly analysed both from the social

sciences and economic point of view, as it is an important

enabler of delegation. Attempts to transfer the concept of

trust to different domains were made by computer scientists,

including security, electronic commerce, semantic web or even

social networks areas. In any network, be it computer or social

one, trust remains an essential factor. The definition of trust

is however not perfectly clear, different authors show slightly

different definitions. Most often it is defined either on the basis

of personal experience, reputation or recommendation.

The concept of trust is closely related to the notion of

reputation – the opinion about a person held by others, e.g. the

opinion about an Internet seller by his customers or the opinion

about the behavior of a node in a wireless sensor network

built by other nodes as a result of previous interactions.

Reliability is another concept related to trust. Originally, this

was a measure of the length of the period during which a

machine can be considered trustworthy. In general, trust can

be presented a a derivation of an entity’s reputation.

Access control systems, based on traditional access con-

trol models (like Mandatory Access Control (MAC), Dis-

cretionary Access Control (DAC) and Role Based Access

Control (RBAC)), are in essence identity based. Authorization

decisions are based entirely on the role or – more directly –

identity of the requesting party and can only be made if the

requester is known to the owner of the resource. The decision

is based on the relation of the only two entities involved –

the owner of the protected resource, who is responsible for

granting access, and the requester, who requires access.

In closed, centralized environments this approach is actually

correct. As identity of the users of the system is established

in advance, basing access decisions on it is a natural and

easy to implement choice. Unfortunately this scenario does

not scale well as the system becomes decentralized and highly

distributed over a network. In such open systems the set of

users is not only large, but may change dynamically, leading

to entirely new challenges, such as the problem of propagation

of information about the changes. A central database of user’s

identities is only a partial solution – although it enables the

implementation of classic approaches to access control, it also

introduces a single point of failure, where temporary lack

of access to the central database makes any authorization

decisions impossible system-wide. In absence of such a central

identity repository it is no longer possible to assume that

the identities of the requester and the resource owner are

mutually recognized. A more flexible approach is needed, one

which enables requesters to cross security domains and access

resources owned by non-related entities. One such solution is

called trust management.

Consider a simple example of a bookstore which offers spe-

cial discounts to returning customers who are students. There

is no obvious way to determine whether a given customer is

eligible based only on his/her identity. Requesting a proof of

identity will not resolve this problem. On the other hand, the

problem can be solved efficiently using credentials, such as

a bookstore card and a student card. The access rights are

then determined not based on the users identity, but on the

sufficiently documented information about the user’s privileges

assigned by other authorities and trust for those authorities.

This requires a new, different approach to access control.

The rest of this paper is organized as follows. Trust man-

agement concept is shown in Section II and Role-based Trust

management family of languages is shown in Section III. Sec-

tion IV presents the Role-based Trust management language

syntax with an example of RTT credentials. Inference system

over RTT language is described in Section V. Section VI

describes a few extensions of RTT language (time validity

and determination of the order). Section VII shows an infer-

ence system over new RTT

+ language time constraints. Final

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1125–1134

DOI: 10.15439/2015F95

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1125

remarks are given in the Conclusions.

II. TRUST MANAGEMENT

Trust management was first introduced as a term by Blaze

et al. [2] in 1996. The term was defined as a unified approach

to specify and interpret security policies, credentials and trust

relationships. The privileges of an entity in such a system

are based not on its identity, but on its attributes. Multiple

principals have the right to issue credentials which are then

used to demonstrate the entity’s attributes. The definition of

a credential is an attestation of authority, competence or

qualification of an individual issued by a third party. The infor-

mation contained in a credential includes privileges of a given

user and/or security policies issued by trusted authorities. Real

life examples of credentials are easy to propose – all sorts of

academic diplomas, driver’s licenses, identification documents,

certificates or membership cards are clearly credentials. In fact,

a real-life credential does not need to be a document in the

traditional sense of the world – e.g. keys can be treated as

a form of credential. In a computer system credentials may

either be records available from one or more repositories, or

– more flexibly – digitally signed documents which can be

provided by the requester on demand. In the first case trust

for the credential follows from trust for the repository and its

own access control, in the second case it is provided by the

signature, obviously requiring a trusted method of propagation

or verification of public keys.

In literature, the earliest described example of a trust

management application was PolicyMaker [3]. An assertion

language defined in this system was capable of expressing lo-

cally trusted policy statements, as well as credentials requiring

a digital signature using a private key. The second generation

of trust management languages includes SPKI/SDSI [6], an

enhanced version of PolicyMaker called KeyNote [4] and

several other languages [7]. In these languages the privileges

were still assigned directly to entities and delegation of permis-

sions through credentials was performed only directly from the

issuer to the subject. This generation still did not provide any

mechanism enabling delegation to be separated from identity

of the entity. Introduction of delegation based on atributes (as

opposed to identity) was introduced in the next generation,

represented by a family of Role-based Trust management (RT)

languages [8], [16], [17]. Security policies are represented by

defining a formalism using credentials to establish trust in

distributed, decentralized access control systems.

III. ROLE-BASED TRUST MANAGEMENT FAMILY

LANGUAGES

The family of Role-based Trust management languages

is used for representing security policies and credentials in de-

centralized, distributed access control systems. Several types

of role assignment credentials are provided in RT languages,

depending on the language. RT0 [17] forms the core of the

family, providing basic abilities – localization of authority for

roles, delegation of that authority, role hierarchies and role

intersections. These features are available in all RT languages,

who extend this set with new features. To represent relation-

ships between entities, parametrized roles were introduced

in RT1. To provide similar flexibility for resources as that

provided for entities by roles, RT2 extends RT1 with the

notion of logical objects, enabling simple assignment of access

rights for entire groups of logically related objects (resources).

Note that both extentions presented so far do not actually

change the expressive power of the language. They allow

much more concise notation, but the same policy can in fact

be expressed in RT0, although with a much larger set of

credentials, mapping each combination of parameters or each

real instance of logical objects to a separate role. The first

language actually adding new capabilities not present in other

members of the family is the RTT language, the main focus of

this paper. The new capabilities include the ability to express

agreement of multiple principals, even from disjoint sets, via

manifold roles and separation of duties or threshold policies,

via role-product operators.

A manifold role differs from a normal (singleton) role

as instead of defining a set of principals, it defines a set

of sets of principals. It is a wider term, since a singleton

role can be expressed as a manifold role, whose principal

sets are singletons, effectively meaning that cooperation is

required from a group consisting of a single entity. Therefore,

introduction of manifold roles does not affect the ability to

express RT0 credentials in the RTT language.

A threshold policy is used to specify a common occurrence,

where agreement of multiple principals is required to initiate

a given action. More formally, at least k entities from a set

satisfying certain conditions must agree on some fact. E.g.

in banking certain transations require authorisation by two

cashiers. Separation of duties policy is similar, but the agreeing

entities fulfill different roles (e.g. in the banking example some

transactions may also require authorisation by a controller).

Both types of policies specify requirements that cannot be

fulfilled by a single entity and therefore cannot be expressed

in RT0.

The RT family includes one more important language,

RTD, which provides mechanisms to describe delegation

of role activations and selective use of role membership.

However, this language is out of scope of this paper. More

in-depth information about the RT family of languages can

be found in paper [16].

The main advantage of trust management approach is

the ability to use delegation. A principal’s authority over a

resource may be transferred in a limited fashion to other

principals by simple means of a credential. The notion of

ownership is no longer central – the access control strategy

and all decisions on who is authorized to use which resource is

defined by a set of credentials. One upside of such approach is

that the authority is easy to transfer over a network – as long as

a credential can be transferred and trusted in another location,

there is no need to involve the identity of the resource owner.

However, although such decentralization of credential storage

is very useful, it does present a variety of new problems.

In the years since its creation, the concept of trust man-

1126 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

agement has evolved significantly, made applicable to new,

broader contexts, such as assessment of reliability or trust-

worthiness of systems and individuals [15]. In this paper

we restrict the meaning of trust management only to its

original context of access control. A lot of different work

connected with the possibility of using RT in different types

of network, eg. Role based Trust management model for Peer-

to-Peer networks [5], a trust management system for Ad-

Hoc Networks [1], or Wireless Sensor Networks [11], and

also Role-based Trust Management Model in Multi-domain

Environment [18] have been studied recently.

Our approach is another type of extension of trust manage-

ment languages. It shows how to make RT family languages

more useful in practice by including time validity constraints

and order of entities which can appear in the execution context.

IV. THE SYNTAX OF RT FAMILY LANGUAGES

RT languages use a set of basic elements, such as enti-

ties, role names, roles and credentials. Entities are principals

controlling access to resources by defining roles and issuing

credentialsas well as requesters willing to access resources.

The entity may be a person, but it might just as well be an

application, identifying itself in a computer system by a user

name or a public key. Role names represent permissions and

can be issued to entities or groups of them by other entities.

Roles represent sets of entities for which the access control

policies grant particular permissions. Credentials define roles

by appointing a new member of the role or by delegating

authority to members of other roles.

RTT includes six different types of credentials, the first

four in common with the less expressive RT languages:

A.r ← B – simple membership: entity B is

a member of role A.r.
A.r ← B.s – simple inclusion: role A.r includes

(all members of) role B.s. This

type of credential involves delega-

tion of authority over role r, since

by issuing new credentials defining

B.s B may add new members to

role A.r. This type of credential is

also used to define role hierarchies.

A.r ← B.s.t – linking inclusion: role A.r in-

cludes role C.t for each C, which

is a member of role B.s. This

is a delegation of authority from

A to all the members of the role

B.s. The expression B.s.t is called

a linked role.

A.r ← B.s ∩ C.t – intersection inclusion: role A.r in-

cludes all members of both roles

B.s and C.t. This is a partial

delegation from A to B and C.

The expression B.s∩C.t is known

as an intersection role.

A.r ← B.s⊙ C.t – role A.r can be satisfied by a union

set containing one member of each

of the two roles (B.s and C.t). A

single entity being a member of

both roles suffices.
A.r ← B.s⊗ C.t – role A.r includes two different en-

tities, one of which is a member

of role B.s and one a member

of role C.t.

Since the models used in practice can be very complex,

this paper uses some simplified examples. We focus on RTT -

specific credentials and intend to illustrate the basic notions

and notation, not the full expressive power of the language.
Example 4.1 (Example of RTT - subject):

Suppose that a university will only activate a subject if at

least two of four students apply and among the applicants at

least one is a PhD student. RT0 would require a long list

of credentials listing all possible satisfactory combinations,

changed whenever the list of students changes. RTT allows

us to express this rule as just two policy credentials and a list

of simple membership credentials, easy to manage along with

the official list of students. The policy credentials are:

F.students← F.student⊗ F.student (1)

F.activeSubject← F.students⊙ F.phdStudent (2)

Now, if the following membership credentials are added::

F.student← {Alex} (3)

F.student← {Betty} (4)

F.student← {David} (5)

F.student← {John} (6)

F.phdStudent← {John} (7)

F.phdStudent← {Emily} (8)

we can conclude that any pair of students from the set

{Alex,Betty,David, John} fulfills the role F.students and

that the subject can be activated if the pair includes John or

if Emily is willing to attend.

Example 4.2 (Example of RTT – signature): Suppose that

we have a situation in which we need to collect the signatures

of the requester, accountant, his official superior, the manager

of financial department and the director of a company to accept

some transaction. Such a policy can be described using the

following credentials:

Company.signature← Company.requester
⊙ Company.accountant ⊙ Company.superior
⊙ Company.fdManager ⊙ Company.director

(9)

Now suppose that we have such people, who play those

roles, so the following credentials have been added to our

security policy:

Company.requester ← {Jacob} (10)

ANNA FELKNER, ADAM KOZAKIEWICZ: MORE PRACTICAL APPLICATION OF TRUST MANAGEMENT CREDENTIALS 1127

Company.accountant← {Jacob} (11)

Company.accountant← {Eliot} (12)

Company.accountant← {Alexander} (13)

Company.superior ← {William} (14)

Company.superior ← {Michael} (15)

Company.fdManager ← {Jacob} (16)

Company.director ← {William} (17)

As we can see, to complete the set of signatures we need

just two people: Jacob, who can play a role of requester,

accountant, fdManager and William who plays the role

of superior and director, but as may be required, groups of

people {Jacob, Eliot, William}, {Jacob, Eliot, Michael,

William}, {Jacob, Alexander, William}, and {Jacob,
Alexander, Michael, William} can also play a manifold

role, and cooperatively complete the set of signatures.

V. INFERENCE SYSTEM OVER RTT CREDENTIALS

RTT credentials define roles, which in turn are used to

represent permissions. The set of member entities for a role

is defined by a set P of RTT credentials. This set can

be more conveniently calculated using an inference system,

which defines an operational semantics of RTT language.

The system consists of a set of inference rules used to derive

credentials from existing ones and an initial set of formulae

considered true.

Let P be a set of RTT credentials. The inference rules can

be applied to create new credentials, derived from credentials

of the set P . A derived credential c will be denoted using a

formula P ≻ c, meaning that credential c can be derived from

a set of credentials P .

The initial set of formulae of an inference system over a set

P of RTT credentials are all the formulae: c ∈ P for each

credential c in P . The inference rules of the system are the

following:
c ∈ P
P ≻ c

(W1)

P ≻ A.r ← B.s P ≻ B.s← X

P ≻ A.r ← X
(W2)

P ≻ A.r ← B.s.t P ≻ B.s← C

P ≻ C.t← X

P ≻ A.r ← X

(W3)

P ≻ A.r ← B.s ∩ C.t P ≻ B.s← X

P ≻ C.t← X

P ≻ A.r ← X

(W4)

P ≻ A.r ← B.s⊙ C.t P ≻ B.s← X

P ≻ C.t← Y

P ≻ A.r ← X ∪ Y

(W5)

P ≻ A.r ← B.s⊗ C.t P ≻ B.s← X

P ≻ C.t← Y X ∩ Y = φ

P ≻ A.r ← X ∪ Y

(W6)

The inference systems of a language may not be unique –

many different systems may be defined. There are however two

properties required for the system to be useful in practice –

the system must be sound an complete. Soundness guarantees

that any formula derived by the system must be valid with

respect to the semantics of the language, while completeness

ensures that any valid formula is derivable.

All the credentials, which can be derived in the system,

either belong to set P (rule W1) or are of the type:

P ≻ A.r ← X (rules W2 through W6). Proof of soundness

of the inference system involves showing that for each new

formula P ≻ A.r ← X , the triple (A, r,X) belongs to

the semantics SP of the set P . Completeness is proved by

showing that every formula P ≻ A.r ← X can be derived

using inference rules for each element (A, r,X) ∈ SP . Both

proofs can be found in [10], showing that the inference

system is a valid alternative way of presenting the semantics

of RTT .

Example 5.1 (Inference system for Example 4.1):

We will now derive the set of entities that can cooperate to

activate a subject using an inference system, using a limited

set of credentials for brevity: ((1), (2), (4), (6), and (7)). Using

credentials (1), (2), (4), (6), and (7) according to rule (W1)
we can infer:

F.students← F.student⊗ F.student ∈ P

P ≻ F.students← F.student⊗ F.student

F.activeSubject← F.students⊙ F.phdStudent ∈ P

P ≻ F.activeSubject← F.students⊙ F.phdStudent

F.student← {Betty} ∈ P

P ≻ F.student← {Betty}

F.student← {John} ∈ P

P ≻ F.student← {John}

F.phdStudent← {John} ∈ P

P ≻ F.phdStudent← {John}

Then, using credentials (1), (6) and (4) and rule (W6) we infer:

P ≻ F.students← F.student⊗ F.student

P ≻ F.student← {John}
P ≻ F.student← {Betty}
{John} ∩ {Betty} = φ

P ≻ F.students← {John,Betty}

These newly inferred credential and (2) and (7) with the rule

(W5):

P ≻ F.activeSubject← F.students⊙ F.phdStudent

P ≻ F.phdStudent← {John}
P ≻ F.students← {John,Betty}

P ≻ F.activeSubject← {John,Betty}
,

we can show that the set of entities {John,Betty} is

sufficient to activate the subject.

1128 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Example 5.2 (Inference system for Example 4.2): We use

the inference system to formally derive a set of entities who

are essential to accept some transaction, i.e. the signatures of

the requester, accountant, his official superior, the manager of

financial department and the director of a company. To make

the notation shorter, let us use C instead of Company.

Using credentials (9)-(17) according to the rule (W1) we

can infer:

C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director ∈ P

P ≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

C.requester ← {Jacob} ∈ P

P ≻ C.requester ← {Jacob}

C.accountant← {Jacob} ∈ P

P ≻ C.accountant← {Jacob}

C.accountant← {Eliot} ∈ P

P ≻ C.accountant← {Eliot}

C.accountant← {Alexander} ∈ P

P ≻ C.accountant← {Alexander}

C.superior ← {William} ∈ P

P ≻ C.superior ← {William}

C.superior ← {Michael} ∈ P

P ≻ C.superior ← {Michael}

C.fdManager ← {Jacob} ∈ P

P ≻ C.fdManager ← {Jacob}

C.director ← {William} ∈ P

P ≻ C.director ← {William}

Then, using credentials (9), (10), (11), (14), (16) and (17) and

rule (W5) we infer:

P ≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

P ≻ C.requester ← {Jacob}
P ≻ C.accountant← {Jacob}
P ≻ C.superior ← {William}
P ≻ C.fdManager ← {Jacob}
P ≻ C.director ← {William}

P ≻ C.signature← {Jacob,William}

showing that the set of entities {Jacob,William} is sufficient

to complete the set of signatures.

Or, using credentials (9), (10), (12), (14), (16) and (17) and

rule (W5) we infer:

P ≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

P ≻ C.requester ← {Jacob}
P ≻ C.accountant← {Eliot}
P ≻ C.superior ← {William}
P ≻ C.fdManager ← {Jacob}
P ≻ C.director ← {William}

P ≻ C.signature← {Jacob,Eliot,William}

showing that here we need more people to complete the set

of signatures, i.e. {Jacob, Eliot,William}.
Or, using credentials (9), (10), (13), (15), (16) and (17) and

rule (W5) we infer:

P ≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

P ≻ C.requester ← {Jacob}
P ≻ C.accountant← {Alexander}
P ≻ C.superior ← {Michael}
P ≻ C.fdManager ← {Jacob}
P ≻ C.director ← {William}

P ≻ C.signature← {Jacob,Alexander,Michael,William}

showing that here we need four people to complete the set of

signatures, i.e. {Jacob, Alexander,Michael,William}.
Depending on which credentials at the moment we have

(because not all the credentials are always available), we can

determine the sets of people who can cooperatively sign the

document.

VI. CREDENTIAL EXTENSIONS

This section shows a few extensions of RTT languages

which make it more useful in practice.

A. Time Validity in RTT

Real security policies involve time restrictions. Allowing

the credentials to have limited time validity can make the

RTT language more useful in practice. Inference rules with

time validity for RT0 were originally introduced in a slightly

different way in [14]. In [13] we tried to extend the potential

of RTT language by adding time validity constraints. Most

permissions are in fact given for fixed periods of time, perma-

nent permissions are less common. Time dependent credentials

take the form: c in v, meaning ”the credential c is available

during the time v”. Finite sets of time dependent credentials

are denoted by CP and the new language is called RTT

+ . c is

used to denote ”c in (−∞, +∞)” to make notation lighter.

Most trust management languages are monotonic: adding

new assertion to a query can never result in canceling an

action, which was accepted before [9]. Therefore, each pol-

icy statement or credential added to the system may only

increase the capabilities and privileges granted to others,

making revocation of rights impossible. Introduction of time

ANNA FELKNER, ADAM KOZAKIEWICZ: MORE PRACTICAL APPLICATION OF TRUST MANAGEMENT CREDENTIALS 1129

constraints does not invalidate the monotonicity of the system,

but achieves some of the utility of negation.

Time validity can be denoted as follows:

[τ1, τ2]; [τ1, τ2); (τ1, τ2]; (τ1, τ2); (−∞, τ]; (−∞, τ);
[τ,+∞); (τ,+∞); (−∞, +∞); v1 ∪ v2; v1 ∩ v2; v1\v2

and v1, v2 of any form in this list, with τ ranging over time

constants.

Example 6.1 (Time validity for Example 4.1):

Assuming that Alex, Betty, David and John in our

scenario will not be student forever seems quite natural. John

and Emily’s PhD student status is similar. Thus, credentials

(3)–(8) should be generalized to:

F.student← {Alex} in v1 (18)

F.student← {Betty} in v2 (19)

F.student← {David} in v3 (20)

F.student← {John} in v4 (21)

F.phdStudent← {John} in v5 (22)

F.phdStudent← {Emily} in v6 (23)

stating that (3) – (8) are only available during v1, v2,

v3, v4, v5, and during v6, respectively. The policy itself,

described by credentials (1) and (2) may however be

permanent. By using (1), (2) and (18)–(23), we want to be

able to derive that for example the set {Alex,Betty, John}
can cooperatively activate the subject during all of the

period: v1 ∩ v2 ∩ v5 or {Betty, John} during the time

v2 ∩ v4 ∩ v5 or {Alex,David, Emily} during the time

intersection v1 ∩ v3 ∩ v6. Another set of people can

cooperatively activate the subject (depending of the time).

Example 6.2 (Time validity for Example 4.2): In our sce-

nario, it is quite natural to assume that Jacob are a requester

only for a fixed period of time. The same with Jacob, Eliot

and Alexander as a company accountants, also Wiliam and

Michael as a superior, and Jacob as a financial department

manager, as well as William as a director. Thus, credentials

(10)–(17) should be generalized to:

Company.requester ← {Jacob} in v1 (24)

Company.accountant← {Jacob} in v2 (25)

Company.accountant← {Eliot} in v3 (26)

Company.accountant← {Alexander} in v4 (27)

Company.superior ← {William} in v5 (28)

Company.superior ← {Michael} in v6 (29)

Company.fdManager ← {Jacob} in v7 (30)

Company.director ← {William} in v8 (31)

stating that (10) – (17) are only available during v1, v2, v3,

v4, v5, v6, v7, and during v8, respectively. On the other hand,

credential (9) can be always valid, as it expresses some time-

independent fact. Now, by using (9) and (24)–(31), we want to

be able to derive that for example the set {Jacob,William}
can cooperatively sign the document during all of the period:

v1 ∩ v2 ∩ v5 ∩ v7 ∩ v8, where Jacob plays the role of

requester, accountant and financial department manager and

William acts as a superior and director of the company. But

during the time v1 ∩ v3 ∩ v6 ∩ v7 ∩ v8 it has to be the

set consisting of {Jacob, Eliot,Michael,William}.

While in both examples the policy defining credentials were

assummed to be permanently valid, this is not required. Some

policies are naturally time-limited (eg. seasonal sales).

B. Determination of the order

Another powerful feature which would be useful to model

more realistic policies is the ability to determine the order in

which a member of a role or an entity (entities) can appear.

If we want to maintain a procedure, we have to add two

new types of credentials at the syntax level. These are:

A.r ← B.s⊙→C.t – role A.r is satisfied by a union

set of one member of role B.s

and one member of role C.t in

this exact order or by one entity

satisfying the intersection role

B.s ∩ C.t.

A.r ← B.s⊗→C.t – role A.r is satisfied by a set of

two different entities: one member

of role B.s and one member of role

C.t in this order.

In our Example 4.1 we can want to have such situation:

F.activeSubject← F.students⊙→F.phdStudent

which means that the order is important. First we need to

have two students and just after that one PhD student.

That extension can be extremely useful in a large variety

of situations. For example, if we have a situation, when

one person is a member of a few roles, it can be useful to

have some restrictions connected with appearing in particular

roles during the execution context when the credential is used.

Example 6.3 (The right order of signature):

When we have a situation in which we need to collect

the signatures of people who are essential to accept some

transaction, we can imagine at least a few scenarios in our

security policy.

Suppose that we need a signature of the requester, accoun-

tant, his official superior, the manager of financial department

and the director of a company, in such order.

Now we can use the data from Example 4.2 and we can

have three different scenarios:

1) The order is strictly obeyed and it is important that

an accountant can give his signature after having

1130 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

received the signature of a requester, and accountant’s

superior can give his signature after having received the

signature of an accountant, even if it is one person. This

means that in a first step Jacob can sign the document

as a requester, in a second step as an accountant,

after that William can give his signature as a Jacob′s

official superior. In the next step Jacob can sign the

document as a financial department manager, and at

the end William can sign the document as a director

of the company. Table I presents the signature order in

our first scenario.

It can be important in some situation to strictly keep the

order of signatures, but in a huge implementation it can

be a little bit inefficient. That is why we can propose

two other scenarios.

2) We can allow signing the document by one person who

plays a few roles at once if the roles appear in credentials

successively without any role between. In our example

it can look like in the Table II (to make our example

easier, we can use just credentials (10), (11), (14), (16),

(17)).

In such a simple example, we have one step less than

in the previous scenario. It shows how such change can

be useful in real large systems.

3) In our third scenario we can allow that one person, who

plays more than one role, can give all the signatures

at once. It can be very useful in an automatic imple-

mentation. Table III shows how it can look in our third

scenario.

That situation means that Jacob accepts his signature

as a financial department manager if William signs the

document as his official superior and William accepts

his signature as a director if Jacob signs the document

as a financial department manager. We have to have a

possibility to accept or not accept our signature, which

is dependent on another person’s signature.

If we want to mandate that the entity can appear in particular

roles during the execution context exactly when the credential

is used, we can put a new type of role denoted by underlined

identifiers (e.g. r, s, t). In such situation, when we change the

credential:

Company.signature← Company.requester
⊙
→ Company.accountant ⊙

→ Company.superior
⊙
→ Company.fdManager ⊙

→ Company.director

into:

Company.signature← Company.requester
⊙
→ Company.accountant ⊙

→ Company.superior
⊙
→ Company.fdManager ⊙

→ Company.director

in our third scenario we will have the situation described

in Table IV, meaning that William has to wait with his

signature as a director untill the time Jacob approves his

signature as fdManager.

All the semantics previously defined for RTT

+ , set-theoretic

(which maps roles to a set of entity names), operational

semantics (where credentials can be derived from the initial

set of credentials using a set of inference rules [13]), and

logic-programming (where credentials are translated into a

logic program [12]), are still valid, meaning that proofs of

the soundness and the completeness of that semantics are also

valid.

This section shows how we can explore the potential of RT

languages. It shows how security policies can be made more

realistic by including timing information or maintaining the

procedure.

VII. INFERENCE SYSTEM FOR RTT CREDENTIALS WITH

TIME VALIDITY

All the semantics previously defined for RT languages are

still valid for determined order, but they have to be changed

for credentials with time validity. Because of that reason we

have to take on it. This section is showing an inference system

for RTT credentials with time validity.

We will now adapt the inference system over RTT

credentials to respect time validity. Let CP be a set of RTT

credentials, from which new credentials may be derived.

A derived credential c valid in time τ will be denoted using

a formula CP ≻τ c, meaning that the credential c can be

derived from a set of credentials CP during the time τ . The

initial set of formulae of an inference system over a set CP
of RTT

+ credentials are all the form: c in v ∈ CP for each

credential c valid in time v in CP . The inference rules of the

system are the following:

c in v ∈ CP τ ∈ v

CP ≻τ c
(CW1)

CP ≻τ A.r ← B.s CP ≻τ B.s← X

CP ≻τ A.r ← X
(CW2)

CP ≻τ A.r ← B.s.t CP ≻τ B.s← C

CP ≻τ C.t← X

CP ≻τ A.r ← X

(CW3)

CP ≻τ A.r ← B.s ∩ C.t CP ≻τ B.s← X

CP ≻τ C.t← X

CP ≻τ A.r ← X

(CW4)

CP ≻τ A.r ← B.s⊙ C.t CP ≻τ B.s← X

CP ≻τ C.t← Y

CP ≻τ A.r ← X ∪ Y

(CW5)

CP ≻τ A.r ← B.s⊗ C.t CP ≻τ B.s← X

CP ≻τ C.t← Y X ∩ Y = φ

CP ≻τ A.r ← X ∪ Y

(CW6)

All the derived credentials either belong to set CP (rule

CW1) or are of the type: CPτ ≻ A.r ← X (rules CW2

through CW6). This new inference system is based on an

extension of the inference rules from section V, where rules

ANNA FELKNER, ADAM KOZAKIEWICZ: MORE PRACTICAL APPLICATION OF TRUST MANAGEMENT CREDENTIALS 1131

TABLE I
SIGNATURE ORDER IN THE FIRST SCENARIO

Step requester accountant superior fdManager director

1 Jacob φ φ φ φ

2 Jacob Jacob, Eliot, Alexander φ φ φ

3 Jacob Jacob, Eliot, Alexander William, Michael φ φ

4 Jacob Jacob, Eliot, Alexander William, Michael Jacob φ

5 Jacob Jacob, Eliot, Alexander William, Michael Jacob William

TABLE II
SIGNATURE ORDER IN THE SECOND SCENARIO

Step requester accountant superior fdManager director

1 Jacob Jacob φ φ φ

2 Jacob Jacob William φ φ

3 Jacob Jacob William Jacob φ

4 Jacob Jacob William Jacob William

TABLE III
SIGNATURE ORDER IN THE SECOND SCENARIO

Step requester accountant superior fdManager director

1 Jacob Jacob φ Jacob φ

2 Jacob Jacob William Jacob William

TABLE IV
SIGNATURE ORDER IN THE THIRD ”UNDERLINED” SCENARIO

Step requester accountant superior fdManager director

1 Jacob Jacob φ Jacob φ

2 Jacob Jacob William Jacob φ

3 Jacob Jacob William Jacob William

(Wi) are replaced with (CWi) and only valid time-dependent

credentials from CP are considered.

The proof of soundness of the inference system requires

showing that for each new formula CPτ ≻ A.r ← X , the

triple (A, r,X) belongs to the semantics SCP of the set CP .

All the formulae CPτ ≻ A.r ← X , such that A.r ← X ∈ CP
are sound, as shown in [12].

Completeness of the inference system over a set CP of RTT

+

credentials can be proved by showing that a formula CP ≻
A.r ← X can be derived using inference rules for each

element (A, r,X) ∈ SCP . The proof is presented in [12].

A. Inferring time validity of credentials

The proposed inference system can also derive the maximal

time validity of a credential c from CP . Formula CP ≻τ c

is modified to CP ≻≻v c, meaning that at any time τ ∈ v

in which CP has a semantics, it is possible to infer the

credential c from CP . The inference rules of the system are

the following:

c in v ∈ CP
CP ≻≻v c

(CWP1)

CP ≻≻v1
A.r ← B.s CP ≻≻v2

B.s← X

CP ≻≻v1∩v2
A.r ← X

(CWP2)

CP ≻≻v1
A.r ← B.s.t

CP ≻≻v2
B.s← C CP ≻≻v3

C.t← X

CP ≻≻v1∩v2∩v3
A.r ← X

(CWP3)

CP ≻≻v1
A.r ← B.s ∩ C.t

CP ≻≻v2
B.s← X CP ≻≻v3

C.t← X

CP ≻≻v1∩v2∩v3
A.r ← X

(CWP4)

CP ≻≻v1
A.r ← B.s⊙ C.t

CP ≻≻v2
B.s← X CP ≻≻v3

C.t← Y

CP ≻≻v1∩v2∩v3
A.r ← X ∪ Y

(CWP5)

1132 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

CP ≻≻v1
A.r ← B.s⊗ C.t

CP ≻≻v2
B.s← X CP ≻≻v3

C.t← Y

X ∩ Y = φ

CP ≻≻v1∩v2∩v3
A.r ← X ∪ Y

(CWP6)

CP ≻≻v1
c CP ≻≻v2

c

CP ≻≻v1∪v2
c

(CWP7)

Rule is (CWP1) claims that CP can be used whenever it is

valid. Rules (CWP2) - (CWP6) simply claim that inference

rules can be used iff all their premises are true. Finally, the

rule (CWP7) is used to join validity periods, meaning that

if c can be inferred both with validity v1 and validity v2,

then it can also be inferred with validity v1 ∪ v2. CP ≻≻v

generalizes CP ≻τ . They are both equivalent whenever v =
[τ, τ]. Note that inferring a certain c from CP may be possible

in several different ways, resulting in different validity periods.

Rule (CWP7) can then be used as many times as necessary

to broaden c’s validity.
Maximal inference is the process, where in each step we

infer with maximal time validity.
An inference terminating in CP ≻≻v c is called maximal

if and only if:

1) there exists no v′ ⊃ v such that CP ≻≻v′ c, and

2) every its sub-inference terminating in CP ≻≻v′′ c′, for

c′ 6= c is maximal.

The first condition ensures that further use of rule (CWP7)
will not extend the validity of c. The second condition ensures

that this property is propagated through the whole inference

tree. Maximal inferences guarantee that v in (CWP1) is the

maximal time validity for A.r ← X .
For these inferences we can prove soundness and

completeness of CP ≻≻v , as shown in [12].

Example 7.1 (Time validity in inference system for Example

4.1): Let us get back to our example and to make long example

shorter, let us use less credentials: (1), (2), (19), (21), and (22).

According to rule (CWP1) we can infer:

F.students← F.student⊗ F.student ∈ CP

CP ≻≻ F.students← F.student⊗ F.student

F.activeSubject← F.students⊙ F.phdStudent ∈ CP

CP ≻≻ F.activeSubject← F.students⊙ F.phdStudent

F.student← {Betty} in v2 ∈ CP

CP ≻≻v2
F.student← {Betty}

F.student← {John} in v4 ∈ CP

CP ≻≻v4
F.student← {John}

F.phdStudent← {John} in v5 ∈ CP

CP ≻≻v5
F.phdStudent← {John}

When we want to check when two different students can

cooperate, from credentials (1), (19), (21) and rule (CWP6)

we infer:

CP ≻≻ F.students← F.student⊗ F.student

CP ≻≻v2
F.student← {Betty}

CP ≻≻v4
F.student← {John}

{Betty} ∩ {John} = φ

CP ≻≻v2∩v4
F.students← {Betty,John}

In next step we use it and additionally credentials (2), (22)

and rule (CWP5):

CP ≻≻ F.activeSubject← F.students⊙ F.phdStudent

CP ≻≻v5
F.phdStudent← {John}

CP ≻≻v2∩v4
F.students← {Betty, John}

CP ≻≻v2∩v4∩v5
F.activeSubject← {Betty,John}

showing that the set of entities that can cooperatively activate

a subject is: {Betty, John} during the time: v2 ∩ v4 ∩ v5.

Example 7.2 (Time validity in inference system for Example

4.2): Let us get back to our example and use credentials (9)

and (24)–(31) (to make the notation shorter, let us use C

instead of Company). According to rule (CWP1) we can

infer:

C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director ∈ CP

CP ≻≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

C.requester ← {Jacob} in v1 ∈ CP

CP ≻≻v1
C.requester ← {Jacob}

C.accountant← {Jacob} in v2 ∈ CP

CP ≻≻v2
C.accountant← {Jacob}

C.accountant← {Eliot} in v3 ∈ CP

CP ≻≻v3
C.accountant← {Eliot}

C.accountant← {Alexander} in v4 ∈ CP

CP ≻≻v4
C.accountant← {Alexander}

C.superior ← {William} in v5 ∈ CP

CP ≻≻v5
C.superior ← {William}

C.superior ← {Michael} in v6 ∈ CP

CP ≻≻v6
C.superior ← {Michael}

C.fdManager ← {Jacob} in v7 ∈ CP

CP ≻≻v7
C.fdManager ← {Jacob}

C.director ← {William} in v8 ∈ CP

CP ≻≻v8
C.director ← {William}

Now, when we want to check when Jacob and William

are the only people, who are necessary to cooperatively sign

the document we use credentials (9), (24), (25), (28), (30),

(17) and rule (CWP5):

CP ≻≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

CP ≻≻v1
C.requester ← {Jacob}

CP ≻≻v2
C.accountant← {Jacob}

CP ≻≻v5
C.superior ← {William}

CP ≻≻v7
C.fdManager ← {Jacob}

CP ≻≻v8
C.director ← {William}

CP ≻≻v1 ∩ v2 ∩ v5 ∩ v7 ∩ v8
C.signature

← {Jacob,William}

ANNA FELKNER, ADAM KOZAKIEWICZ: MORE PRACTICAL APPLICATION OF TRUST MANAGEMENT CREDENTIALS 1133

showing that the set of entities {Jacob,William} is suf-

ficient to complete the set of signatures during the time

v1 ∩ v2 ∩ v5 ∩ v7 ∩ v8.

Or, using credentials (9), (24), (26), (28), (30) and (31) and

rule (CWP5) we infer:

CP ≻≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

CP ≻≻v1
C.requester ← {Jacob}

CP ≻≻v3
C.accountant← {Eliot}

CP ≻≻v5
C.superior ← {William}

CP ≻≻v7
C.fdManager ← {Jacob}

CP ≻≻v8
C.director ← {William}

CP ≻≻v1 ∩ v3 ∩ v5 ∩ v7 ∩ v8
C.signature

← {Jacob,Eliot,William}

showing that here we need more people to complete the set

of signatures, i.e. {Jacob, Eliot,William} during the time

v1 ∩ v3 ∩ v5 ∩ v7 ∩ v8.

Or, using credentials (9), (24), (27), (29), (30) and (31) and

rule (CWP5) we infer:

CP ≻≻ C.signature← C.requester

⊙ C.accountant ⊙ C.superior

⊙ C.fdManager ⊙ C.director

CP ≻≻v1
C.requester ← {Jacob}

CP ≻≻v4
C.accountant← {Alexander}

CP ≻≻v6
C.superior ← {Michael}

CP ≻≻v7
C.fdManager ← {Jacob}

CP ≻≻v8
C.director ← {William}

CP ≻≻v1 ∩ v4 ∩ v6 ∩ v7 ∩ v8
C.signature

← {Jacob,Alexander,Michael,William}

showing that here we need four people to complete the set

of signatures, i.e. {Jacob, Alexander,Michael,William}
during the time v1 ∩ v4 ∩ v6 ∩ v7 ∩ v8.

VIII. CONCLUSIONS

In the paper we model the use of trust management systems

in decentralized and distributed environments. The modelling

framework is a family of Role-based Trust management

language RTT . The core part of the paper is introduction

of time validity constraints and especially maintaining the

procedure – modifications aimed at making the RTT language

more realistic. While the inference systems presented in this

paper are simple, they are well-founded theoretically. The

utility of the proposed extentions is most visible in large-scale

distributed systems, where users have only partial view of their

execution context.

REFERENCES

[1] R. Akbani, T. Korkmaz, G.V.S. Raju, ”Mobile Ad-Hoc Networks Se-
curity”, Z. Qian et al. (Eds.): Recent Advances in in Computer Science

and Information Engineering, Springer-Verlag Berlin Heidelberg 2012,
pp. 659–666. http://dx.doi.org/10.1007/978-3-642-25769-8_92

[2] M. Blaze, J. Feigenbaum, J. Lacy, ”Decentralized Trust Management”,
Proc. 17th IEEE Symposium on Security and Privacy, Oakland CA,
1996, pp. 164–173. http://dx.doi.org/10.1109/SECPRI.1996.502679

[3] M. Blaze, J. Feigenbaum, and M. Strauss, ”Compliance checking in
the PolicyMaker trust management system”, in Proc. 2nd Int. Conf.
Financial Cryptogr., London, UK, 1998, pp. 254–274. http://dx.doi.org/
10.1007/BFb0055488

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis, ”The role of trust
management in distributed systems security” in Secure Internet Program-
ming, J. Vitek, C. Damsgaard Jensen, Eds. London: Springer, 1999, pp.
185–210. http://dx.doi.org/10.1007/3-540-48749-2_8

[5] S. Chithra, ”A Role Based Trust Model for Peer to Peer Systems
Using Credential Trees”, International Journal of Computer Theory and

Engineering, Vol.3, No.2, April 2011, ISSN: 1793-8201, pp. 234–239.
http://dx.doi.org/10.7763/IJCTE.2011.V3.310

[6] D. Clarke et al., ”Certificate chain discovery in SPKI/SDSI”, J. Comp.
Secur., vol. 9, pp. 285–322, 2001.

[7] P. Chapin, C. Skalka, and X. S. Wang, ”Authorization in trust manage-
ment: Features and foundations”, ACM Comput. Surv., vol. 3, pp. 1–48,
2008. http://dx.doi.org/10.1145/1380584.1380587

[8] M. R. Czenko, S. Etalle, D. Li, and W. H. Winsborough, ”An In-
troduction to the Role Based Trust Management Framework RT”,
Tech. Rep. TR-CTIT-07-34, Centre for Telematics and Information
Technology University of Twente, Enschede, The Netherlands, 2007.
http://dx.doi.org/10.1007/978-3-540-74810-6_9

[9] M. R. Czenko et al., ”Nonmonotonic Trust Management for P2P
Applications”, in Proc. 1st Int. Worksh. Secur. Trust Manag. STM 2005,
Milan, Italy, 2005. http://dx.doi.org/10.1016/j.entcs.2005.09.037

[10] A. Felkner, K. Sacha, ”Deriving RTT Credentials for Role-Based Trust
Management”, e-Informatica Software Engineering Journal, Volume 4,
No 1, 2010, pp. 9–19.

[11] A. Felkner, ”How the Role-based Trust Management Can be Applied
to Wireless Sensor Nnetworks”, Journal of Telecommunications and

Information Technology, Volume 4, 2012, pp.70–77.
[12] A. Felkner, A. Kozakiewicz, ”RTT

+
-Time Validity Constraints in RTT

Language”, Journal of Telecommunications and Information Technology,

Volume 2, 2012, pp. 74–82.
[13] A. Felkner, A. Kozakiewicz, ”Time Validity in Role-based Trust Man-

agement Inference System”, Secure and Trust Computing, Data Man-

agement, and Applications Communications in Computer and Informa-

tion Science, Volume 187, 2011, pp. 7–15. http://dx.doi.org/10.1007/
978-3-642-22365-5_2

[14] D. Gorla, M. Hennessy, V. Sassone, ”Inferring Dynamic Credentials for
Role-Based Trust Management”, Proc. 8th Conference on Principles

and Practice of Declarative Programming, ACM, 2006, pp. 213–224.
http://dx.doi.org/10.1145/1140335.1140361

[15] W. M. Grudzewski, I.K. Hejduk, A.Sankowska, M. Wańtuchowicz,
”Trust Management in Virtual Work Environments: A Human Factors
Perspective”, CRC Press Taylor & Francis Group, 2008.

[16] N. Li, J. Mitchell, W. Winsborough, ”Design of a Role-Based Trust-
Management Framework”. Proc. IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, Oakland CA (2002), pp. 114–
130. http://dx.doi.org/10.1109/SECPRI.2002.1004366

[17] N. Li, W. Winsborough, J. Mitchell, ”Distributed Credential Chain
Discovery in Trust Management”. J. Comput. Secur. 1 (2003), pp. 35–
86.

[18] H. Liu, Q. Zhang, J. Zheng, X. Guo, ”Role-based Trust Management
Model in Multi-domain Environment”, TELKOMNIKA Indonesian Jour-

nal of Electrical Engineering, Vol 11, No 1: January 2013, pp. 417–424

1134 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

