
Ruby Benchmark Tool using Docker

Richard Ludvigh, Tomáš Rebok
Faculty of Informatics, Masaryk University

Botanická 68a, 60200, Brno, Czech Republic

Email: 409737@mail.muni.cz, xrebok@fi.muni.cz

Václav Tunka, Filip Nguyen
Red Hat Czech, JBoss Middleware

Purkyňova 111, 61245 Brno, Czech Republic

Email: {vtunka,fnguyen}@redhat.com

Abstract—The purpose of this paper is to introduce and
describe a new Ruby benchmarking tool. We will describe the
background of Ruby benchmarking and the advantages of the
new tool. The paper documents the benchmarking process as well
as methods used to obtain results and run tests. To illustrate the
provided tool, results that were obtained by running a developed
benchmarking tool on existing and available official ruby bench-
marks are provided. These results document advantages in using
various Ruby compilers or Ruby implementations.

I. INTRODUCTION

R
UBY IS A PURE OBJECT-ORIENTED interpreted lan-

guage. The language itself has three major implementa-

tions: MRI written in C, JRuby written in Java, and Rubinius

written in Ruby. These are often compared in different ways

such as usage, performance, and memory requirements. The

non-functional attributes of the implementations vary signifi-

cantly.

Our goal was to develop a benchmarking tool for these

implementations that would wrap all of the provided versions

and run benchmarks against them. It is important to mention

that this paper does not focus on developing benchmarks,

but merely on providing a tool capable of taking any kind

of existing benchmark, running it against all available Ruby

versions, and testing its usability.

To ensure complete isolation of all tested Ruby versions,

we used Docker [2] to pack each configuration inside a

Docker container. Docker is a open-source tool that enables

a Linux application and its dependencies to be packaged

as a lightweight container. The benchmarking tool was then

developed to handle these containers as well as to validate

their content (correct versions, compilation flags, compilers

used). It is also responsible for running selected benchmarks

and storing their results. In section III, we describe the basic

practices used while developing the benchmark tool as well

as all of its responsibilities, methods used to collect data, and

available Ruby versions.

In our research, we used official available benchmarks from

the Ruby repository1 and a parallelism benchmark from the

Rubinius repository2 to point out some basic characteristics

of Ruby implementations and their power. The tool was run

Access to the CERIT-SC computing and storage facilities provided un-
der the programme Center CERIT Scientific Cloud, part of the Opera-
tional Program Research and Development for Innovations, reg. no. CZ.
1.05/3.2.00/08.0144, is greatly appreciated.

1https://github.com/ruby/ruby
2https://github.com/rubinius/rubinius-benchmark

on a baremetal and virtual server to provide results from both

environments. In section III-D, we describe both environments

and their configuration in detail.

The results we present are also available online. The results

are in three main areas:

• MRI Versions overview - we have compared multiple

MRI Ruby versions to determine the progress mainly in

memory usage as new MRI (2.2.0) has announced a new

garbage collection algorithm.

• A comparison of MRI compilers determined the differ-

ences in using different C compilers to compile Ruby

(2.2.0 used in benchmarks). Our results proved that the

widely used, also default for a dominant group of linux

distributions, version 4.8 of GCC is the best choice for

prime performance.

• Running benchmarks on different Ruby implementations

not only proved that MRI is best for short single-threaded

executions (these tests were extremely short prohibiting to

start the just-in-time compilers for JRuby and Rubinius)

while JRuby and Rubinius are better for longer or multi-

thread runs, but it also showed the progression and power

of JRuby in handling parallel tasks and improving in

performance from version to version.

II. STATE OF THE ART

Ruby [1] is an interpreted object-oriented programming

language which was designed and released by Yukihiro Mat-

sumoto, known as Matz, in 1995. Ruby is a pure object-

oriented language in which even values of primitive types

(true, false, nil) are represented as objects. It is also suitable

for functional programming and capable of powerful metapro-

gramming.

There are three major Ruby implementations.

The oldest - original implementation - is known as MRI

("Matz’s Ruby Interpreter") or CRuby (since it is written in

C). CRuby does support native threads, but it uses Global

Interpreter Lock [3] (known as GIL) which allows data to be

modified only one thread at the time, thus prohibiting true

concurrency.

JRuby, as the title suggests, is a 100% Java implementation

of Ruby. This allows for Ruby applications to be run on a

Java Virtual Machine (JVM), thus utilizing its just-in-time

(JIT) compiler, garbage collection, and mainly its concurrent

threads. It also allows us to use any library that is compatible

with JVM.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 947–952

DOI: 10.15439/2015F99

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 947

Rubinius is the Ruby version of Python’s PyPy. Much of

its source is written in Ruby making it easier to understand.

It also includes a just-in-time compiler on a virtual machine

written in C++.

In December 2013, Sam Saffron published a call for an

official long-running Ruby benchmark [4]. At the beginning

of development, in November 2014, Ruby still had no long

term running benchmarks like Pypy speed center3 for Python.

At that time, there was just one Ruby benchmarking suite that

was used by the community to test different configurations

and experiment with their performance. The Ruby Benchmark

Suite [5] by Antonio Cangiano was developed between the

years 2008 and 2013. It uses a host OS and installed rubies

to perform tests. During the development of our benchmark

tool, Rubyfy.ME, Guo Xiang Tan4 presented his own bench-

mark tool in cooperation with Sam Saffron. This became the

official ruby long-term running benchmark5. His tool uses

a single docker image containing all tested Ruby versions.

It also provides tests for individual commits in the official

Ruby repository acting more like performance CI (Continuous

Integration) solution.

III. BENCHMARK TOOL

In this section we describe the benchmark tool that we have

developed. The main aim during development was to ensure

the separation of all Ruby versions so they did not share a

library or resource that could affect the results. To ensure

complete isolation, docker images were created for each Ruby

version or compiler. Since this tool is written in Ruby, there

are only two system requirements that are required to run the

developed benchmarking tool:

• Ruby of version 2.0 or above

• Docker of version 1.0.1 or above

A. Docker integration

Docker [2] is an open-source program which is capable

of packing linux applications and their dependences as a

container. Container-based virtualization isolates applications

from each other. It runs in userspace on the host operating

system utilizing resource isolation and allocation benefits

while being much more efficient.

The tool automatically downloads all required docker im-

ages and validates a correct Ruby presence. This means that

the correct Ruby version, the correct compiler and its version,

and the correct compilation flags are present in each docker

image. It is also responsible for running benchmarks in correct

containers.

Table I lists Ruby versions and implementations that are

present in the benchmarking tool.

3http://speed.pypy.org/
4https://github.com/tgxworld
5http://rubybench.org/

B. Running Benchmarks

All benchmarks must be located inside exactly one sub-

folder in the benchmarks folder. This hierarchy allows to track

the origin or divide the benchmarks into groups. There is

one special category of benchmarks located inside the bench-

marks/custom folder (we will call them custom benchmarks

from now) which is handled differently compared to the

others. By default, official Ruby benchmarks are present in

the benchmarks/ruby-official.

Every benchmark that is not from a custom category is,

before its execution, wrapped inside an additional code that

captures all of the needed information. Memory usage is stored

before code execution. Then, using the official benchmark

library for Ruby, time consumption is tracked. At the end,

garbage collection is triggered manually and memory usage is

tracked once more. This way, the needed time, used memory,

and total executable memory are tracked for each benchmark.

Custom benchmarks do not undergo the described flow.

Code is executed without modification and standard and error

output is captured, thus allowing us to store any kind of

information.

Rubinius and JRuby implementations of Ruby contain a

just-in-time compiler which results in slower code execution

during program startup. For these versions, it is important to

warm up the virtual machine (JVM for JRuby) by running

the code multiple times or for a short period of time before

actually benchmarking. There is still no support because

benchmarks need to be adapted to run in loops in order to

ensure warm-up. For now, we do not use suitable benchmarks

so all benchmarks are run without a warm-up, resulting in

slower times for JRuby and Rubinius. However, we plan to

add this feature after we ensure enough benchmarks that are

able to run in loops.

C. Storing and Publishing Results

Each run stores a record in a csv file named after the Ruby

version used for that run. Each record contains information

about the executable benchmark, Ruby version, compiler, and

current time. Standard output and standard error output are

stored for custom benchmarks while time and memory usage

are stored for others.

After providing information about the web interface of this

benchmark tool, the user is able to push results from csv files

to Ruby on Rails application which provides complex results

and graphs.

The feature to publish stored results allows us to build an

easy and user friendly presentation. Using the highcharts6

library, simple graphs were created to simplify collected

results. These graphs were split into three main categories: an

MRI versions comparison, an MRI C compilers comparison,

and a Ruby implementations comparison. Overall, graphs were

created for each category as well as for each benchmark.

This tool was developed for community use so its main

characteristic is easy usability and extensibility allowing users

6http://www.highcharts.com/

948 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
RUBY VERSIONS AND IMPLEMENTATIONS

Implementation Versions Details

JRuby 9.0.0.0.pre1 OpenJDK 64-Bit Server, Virtual machine version 1.7.0_75-b13

JRuby 1.7.12, 1.6.8 OpenJDK 64-Bit Server, Virtual machine version 1.7.0_65

Rubinius 2.2.10, 2.3.0, 2.4.0, 2.4.1

MRI Ruby 2.2.0 Multiple images with different compilers: GCC 4.8, GCC 4.9, Clang 3.3, Clang 3.4,
Clang 3.5, all on both -O2 and -O3 flags

MRI Ruby 1.6.8 - 2.1.5 (12 versions) All compiled using GCC 4.8 -O2

to easily add new benchmarks, test their own code, or even

add more Ruby versions. This tool also comes with its own

Rails web application which allows users to see their results

in no time. However, this approach makes it harder to specify

or focus on some deeper characteristics of Ruby. For example,

the user is currently unable to set or change runtime flags, but

we are planning to provide this feature in the near future.

D. Environment

Benchmarking was performed in two independent environ-

ments.

• Baremetal Ubuntu 14.04, kernel version 3.13.0-36-

generic x86_64 GNU/Linux, with Intel(R) Core(TM) i5-

2450M CPU @ 2.50GHz, 2x 8GB Samsung SODIMM

DDR3 Synchronous 1333 MHz RAM located on an Intel

Emerald Lake motherboard.

• A virtual private server provided by CERIT-SC, config-

ured to 16GB RAM and 8 virtual CPU running Debian

3.16.7-ckt4-3 bpo70+1. This virtual machine is hosted

on 2x Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

(12 cores) 96 GiB DDR3 1333 MHz. Center CERIT-SC

(CERIT Scientific Cloud) offers computing resources and

also participates in research and development activities.

Each Ruby implementation was run with its default settings.

We did not use any runtime command flags as there is no

support for this feature yet. The only exception was made

during a parallelism test when JRuby and Rubinius were run

with JIT disabled.

This tool was developed as an open-source project and its

sources are publicly available on Github7.

IV. RESULTS

Using benchmarks from the official Ruby repository enables

us to present results in the following categories:

• MRI Ruby Compilers - a comparison of Ruby compilers

(Clang, GCC) tested on MRI Ruby Versions 2.2.0.

• Ruby Implementations - the difference between various

implementations and between handling single-thread vs.

multi-thread tasks.

• Ruby 2.2.0 Garbage collection - the progress of new

incremental Garbage collection announced in Ruby 2.2.0.

Each benchmark was successfully run ten times to provide

stable and usable results from both environments. During

7https://github.com/Ryccoo/rubyfy-me-docker-suite

the benchmarking and development process, the most recent

versions of selected implementations were: 2.2.0 for MRI,

2.4.1 for Rubinius, and 9.0.0.0.pre1 for JRuby.

A. MRI Ruby Compilers

As MRI Ruby (also called CRuby) is written in C, the

choice of a C compiler and its compilation flags can affect

the performance of a Ruby interpreter.

In December 2014, Peter Wilmott published an article [6]

about MRI Ruby compilers. All of his tests were run on

AWS from an m3.medium EC2 instance and he used Ruby

version 2.1. Using benchmarking suite developed by Antonio

Cangiano, his results show a great performance increase from

GCC 4.8 to GCC 4.9 and he also pointed out that optimization

on level 2 works better than on level 3.

Running all of the official Ruby benchmarks on the Ruby

version 2.2.0 on both a baremetal and a virtual server provided

by CERIT-SC group resulted in our results being different

than those obtained by Peter. Both sets provided us with the

same result (Fig. 1 and Fig. 2), thus showing that GCC 4.8

on optimization level 3 (the default shipped for Ubuntu 14.04)

is still ahead by a small amount (1-2% faster than GCC 4.9

-O3). The results also provided that level 3 optimization is

currently faster for Ruby 2.2.0 (an almost 4% speed increase

from GCC 4.8 -O2 to GCC 4.8 -O3).

B. Ruby Implementations

The main difference between MRI Ruby and Rubinius,

JRuby, is that MRI Ruby uses GIL (global interpreter lock)

which makes single threaded tasks run faster, but does not

permit real concurrency. This is why MRI Ruby is significantly

better in overall results (official ruby benchmarks that are used

for each category are single thread simple tests and often too

short to start a JIT compiler on JRuby and Rubinius, thus

making their results even worse) as is shown on Fig. 3 and

Fig. 4

Although we used the parallelism benchmark provided in

the Rubinius repository8 to determine the differences in han-

dling parallel tasks. In this benchmark we manually edited the

tool to pass command line arguments disabling JIT compilers

for JRuby and Rubinius (-X-C for JRuby and -Xint for Ru-

binius) because this benchmark is built to run multiple times

and provide the best results gathered. This would allow the JIT

compilers to activate and radically reduce the execution times.

8https://github.com/rubinius/rubinius-benchmark/blob/master/parallelism.rb

FILIP NGUYEN ET AL.: RUBY BENCHMARK SUITE USING DOCKER 949

Fig. 1. Overall results for MRI compilers run on CERIT-SC virtual server

Fig. 2. Overall results for MRI compilers run on a baremetal Ubuntu machine

On Fig. 5 we can see the true power of JRuby parallelism as

well as its progression.

The benchmark first computes the amount of work needed

to keep the thread busy for two seconds, then runs the same

amount of work on each of four threads. Because virtualization

(the usage of virtual CPUs) makes it harder to compute and

calibrate needed work amount, we present only results from

the baremetal machine.

C. MRI 2.2.0 Incremental garbage collection

The MRI Ruby version 2.2.0 has announced new incre-

mental garbage collection. From this version, symbols are

also garbage collectable. Symbols are now divided into two

categories: mortal and immortal. Immortal symbols are defined

inside code while mortal symbols are created dynamically dur-

ing execution. MRI Ruby 2.2.0 now collects mortal symbols

allowing to free up more memory. We were able to watch the

decrease of memory usage compared to the previous version

as shown on Fig. 6.

These tests were also run separately and aimed at the last

950 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 3. Overall time performance on different Ruby implementations tested on a baremetal Ubuntu machine

Fig. 4. Overall time performance on different Ruby implementations tested on a CERIT-SC virtual server

Ruby versions which confirmed the gap between ruby 2.1.x

and 2.2.0 as shown on Fig. 7.

V. CONCLUSION

Our results show that in the case of compiling the newest

version of MRI Ruby (currently 2.2.0 during benchmarking)

for normal, non-experimental or special use cases, the choice

of GCC 4.8 with an O3 flag will provide the best available

performance. While this version of a GCC compiler is the

default for the predominant group of linux distributions, there

is no need to make any changes during Ruby installation.

MRI Ruby is the best choice for computing single threaded

simple and short tasks while the GIL (Global Interpreter Lock)

is prohibiting to starting real concurrency. This is when the

choice of other implementations like JRuby and Rubinius is

important. As shown on Fig. 5, JRuby provides us with the best

concurrency. This ability increases from version to version.

Therefore, JRuby is the best choice for big cloud computations

offering multiple virtual CPUs.

It is important to remind that used benchmarks and bench-

marking techniques did not allow the warm-up required by JIT

compilers, thus results with proper and long enough warming

FILIP NGUYEN ET AL.: RUBY BENCHMARK SUITE USING DOCKER 951

Fig. 5. Rubinius parallelism benchmark - running 4 parallel threads

Fig. 6. Memory usage difference from the average

Fig. 7. Difference from average memory usage on recent Ruby versions

could differ on JRuby and Rubinius.

The introduction of new garbage collection in MRI 2.2.0

with the ability to collect mortal symbols can fix a common

programmer mistake as a side effect. The problem occurred

when the program was converting user inputs to symbols.

These symbols were not garbage collectable and the program

often drained the entire system memory and ended up freezing.

Symbols converted from MRI 2.2.0 are tagged as mortal and

garbage collected after being unused, thus not draining the

entire memory.

REFERENCES

[1] Hirschfeld, Robert, and Kim Rose, eds. Self-Sustaining Systems: First
Workshop, S3 2008 Potsdam, Germany, May 15-16, 2008, Proceedings.
Vol. 5146. Springer Science & Business Media, 2008.

[2] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent
development and deployment. Linux J. 2014, 239, pages.

[3] Rei Odaira, Jose G. Castanos, and Hisanobu Tomari. 2014. Eliminating
global interpreter locks in ruby through hardware transactional memory.
In Proceedings of the 19th ACM SIGPLAN symposium on Principles
and practice of parallel programming (PPoPP ’14). ACM, New York,
NY, USA, 131-142.

[4] Call for official long running Ruby benchmark, http://samsaffron.com/
archive/2013/12/11/call-to-action-long-running-ruby-benchmark

[5] Antonio Cangiano Ruby Benchmark, https://github.com/acangiano/
ruby-benchmark-suite

[6] MRI Ruby Compilers Benchmark, https://www.p8952.info/ruby/2014/
12/12/benchmarking-ruby-with-gcc-and-clang.html

952 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

