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ELCOME  to  the  LQMR  Workshop  on  Logics  for
Qualitative Modelling and Reasoning. It is our great

pleasure  and honour  to hold LQMR Workshop collocated
with Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS) as a part of the Advances in Arti-
ficial  Intelligence and Applications (AAIA) thematic area,
taking place in Łódź, Poland, on September 13, 2015. On
behalf of the LQMR Workshop Organizing Committee we
cordially welcome all participants.

W

The idea of organizing this workshop originated from the
project Logics for Qualitative Reasoning funded by the Na-
tional  Science  Centre  (DEC-2011/02/A/HS1/00395).  The
project is concerned with the logical foundations of qualita-
tive representation and reasoning applied in artificial intelli-
gence.  Qualitative Reasoning (QR) has emerged as a sub-
field of Artificial Intelligence to deal with representation and
reasoning about continuous aspects of entities and systems
in a symbolic, but human-like manner. The main issue in the
QR approach is to develop an adequate tool for modeling
situations in which information is not sufficiently precise or
cannot be described by numerical values.

The project aims to develop logical theories and tools for
qualitative representation and reasoning, with applications to
many domains for which qualitative inference methods are
significant.

The project  is also aimed at analysis of model-theoretic
properties of qualitative logics, such as definability and ex-
pressive  power,  finite  model  property,  and  decidability,
among others. The third research objective is the construc-
tion and implementation of deduction systems for the logics
developed in the project. We focus on decidable logics and
their automated decision procedures in the style of relational
dual tableaux.

The LQMR workshop categorically addresses the theory
and application of logical formalisations of qualitative rea-
soning  within  engineering,  technical,  and  computational

cognitive  systems.  The  workshops  will  build  bridges  be-
tween  different  research  groups  interested  in  qualitative
modelling  and  reasoning.  In  particular,  perspectives  from
logic and computer science employing formal methods for
QR, formal methods for spatial reasoning,  and researchers
dealing with fundamental philosophical aspects of QR are of
focus. Additionally, problems of more applied nature in the
filed of engineering and artificial intelligence are also em-
phasised.

The contributed papers focus on three main areas: qualita-
tive spatial reasoning, its possible applications, and applica-
tions of qualitative methods to philosophical problems.

In addition to the contributed papers, four invited keynote
talks  were  delivered:  by prof.  Thomas  Bittner  from State
University of New York at Buffalo, who spoke on vague re-
gion-based  geometry,  by dr  Ian  Pratt-Hartmann  from The
University of Manchester, who devoted his presentation to
topological  logics  of  Euclidean  spaces,  by  prof.  Kenneth
Forbus, who spoke on three frontiers for qualitative reason-
ing, and by prof. Ivan Bratko, whose lecture was concerned
with the problem of learning qualitative models.

These Proceedings will augment state of the art in Quali-
tative Reasoning with several excellent references.

We thank all authors and participants for their contribu-
tions. 

LQMR Workshop Co-Chairs:

Tomasz Lechowski, Institute of Philosophy, University of 
Warsaw, Poland

Przemysław Wałęga, Institute of Philosophy, University of 
Warsaw, Poland

Michał Zawidzki, Department of Logic, University of 
Łódź, Institute of Philosophy, University of Warsaw, Poland
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HE AAIA'15 will bring researchers, developers, practi-
tioners, and users to present their latest research, results,

and ideas in all areas of artificial intelligence. We hope that
theory and successful applications presented at the AAIA'15
will be of interest to researchers and practitioners who want
to know about both theoretical advances and latest applied
developments  in  Artificial  Intelligence.  As  such  AAIA'15
will provide a forum for the exchange of ideas between theo-
reticians and practitioners to address the important issues.

T

TOPICS

Papers  related  to  theories,  methodologies,  and  applica-
tions in science and technology in this theme are especially
solicited.  Topics covering industrial issues/applications and
academic research are included, but not limited to:

• Knowledge Management
• Decision Support Systems
• Approximate Reasoning
• Fuzzy Modeling and Control
• Data Mining
• Web Mining
• Machine Learning
• Combining Multiple Knowledge Sources in an

Integrated Intelligent System
• Neural Networks
• Evolutionary Computation
• Nature Inspired Methods
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We are proud to announce that we will continue the tradi-
tion started during the AAIA'06 Symposium and award two
"Professor Zdzislaw Pawlak Best Paper Awards" for contri-
butions which are outstanding in their scientific quality. The
two award categories are:

• Best Student Paper - for graduate or PhD students.
Papers qualifying for this award must be marked
as "Student full paper" to be eligible for considera-
tion.

• Best Paper Award for the authors of the best paper
appearing at the Symposium.

Candidates for the awards can come from AAiA and all
workshops organized  within its  framework (i.e.  AIMaViG,
AIMA, ASIR, CEIM, LQMR, WCO).

In addition to a certificate, each award carries a prize of
300 EUR provided by the Mazowsze Chapter of the Polish
Information Processing Society.

IFSA AWARD FOR YOUNG SCIENTIST

During the Advances in Artificial Intelligence and Appli-
cations (AAIA) Symposium, the International Fuzzy Systems
Association (IFSA) Best  Paper Award for Young Scientist,
will be presented.

Candidates for the awards can come from AAiA and all
workshops organized  within its  framework (i.e.  AIMaViG,
AIMA, ASIR, CEIM, LQMR, WCO).
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A Qualitative Model for Reasoning about 3D Objects
using Depth and Different Perspectives

Zoe Falomir
Cognitive Systems (CoSy) Department

Spatial Cognition Centre
Universität Bremen

Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
Email: zfalomir@informatik.uni-bremen.de

Abstract—A qualitative model for describing 3D objects (Q3D)
using depth and different perspectives is presented in this paper.
The front, right and up perspectives are considered as canonical.
The Q3D model allow reasoning through logics defined to test the
consistency of descriptions. The maximal volume of the object
is also obtained logically using its Q3D description. Moreover,
this model infers some features of the unknown perspectives of
the object by defining logics based on the continuity of holes
and the relative depth presented by opposite perspectives. The
Q3D logics are implemented in Prolog and promising results
are obtained, which can inspire approaches to solve 3D spatial
problems computationally.

I. INTRODUCTION

QUALITATIVE Spatial and Temporal Representations and
Reasoning (QSTR) [1]–[3] models and reasons about time

(i.e. coincidence, order, concurrency, overlap, granularity) and
also about properties of space (i.e. topology, location, direc-
tion, proximity, geometry, intersection, etc.) and their evolution
between continuous neighbouring situations. Maintaining the
consistency in space and time are the basics in qualitative
reasoning when solving spatial and temporal problems. Spatio-
temporal reasoning models deal with imprecise and incomplete
knowledge on a symbolic level and have been successful in
many areas and applications such as robotics [4], [5], computer
vision [6], [7], ambient intelligence [8], [9], 2D shape descrip-
tion and recognition [10], colour naming and similarity [11],
architecture and design [12], spatial query solving in geographic
information systems [13], [14], etc. Furthermore, qualitative
representations are thought to be closer to the cognitive domain,
as shown in cognitive models of sketch recognition [15], spatial
problem solving tasks (i.e. visual oddity tasks) [16]. However,
further research is still needed to combine more aspects of
QSTR with cognitive spatial thinking.

In the fields of computer vision, robotics and ambient intelli-
gence, 3D object description and recognition are challenging
tasks nowadays. Dealing with three dimensional data is a
challenge because they usually suffer from distortions due to
noisy sensors, viewpoint changes and point density variations. In
the computer vision literature, approaches for object recognition
usually use 3D descriptors to encode their shapes from different
perspectives [17], [18]: feature-based approaches describe the
local or global properties of the surface of the object (i.e., colour,
curvature, texture, etc.); graph-based approaches describe the
structure or skeleton of the object, that is, the relations between
the object parts; and other approaches use other techniques like
extended gaussian images, 3D moments, volumetric errors, etc.

Research in the field of 3D object recognition has been
fostered by the availability of low-cost depth cameras based
on structured infrared light (also called RGB-Depth cameras)
such as the Microsoft Kinect and the Asus Xtion1. Since the
development of these sensors, diverse techniques have appeared
to recognise real objects which learn their shape from the
thousands of points which describe their surface from different
perspectives [19]–[21]. Although these techniques are successful
and applied in robotics and ambient intelligent systems, they
are quite computational expensive, and they are not exploiting
constraints in space to reduce this cost.

In the field of psychology, spatial cognition studies have
demonstrated that there is a strong link between success in
Science, Technology, Engineering and Math (STEM) disciplines
and spatial abilities [22], [23]. Thus, it is important to maintain
and train these abilities from the early stages. For example,
children at 4 years old have already informal awareness of
spatial relations such as parallel relations for two dimensional
shape identification before they are properly taught about par-
allelism [24]. For this reason, researchers in US and Canada
study the actualities and possibilities of training/including spa-
tial reasoning in contemporary school mathematics [25], also
because spatial learning and reasoning can be taught easily
using visual and kinetic interactions offered by new digital
technologies [26]. For example, touchscreen digital devices
can facilitate geometrical expression for young children [27].
High spatial skills are also required in space teleoperation [28]
(mental rotation and perspective-taking strategies are proved to
be used by the operator-astronaut to move a robot arm around
the workspace) and they are also decisive in Medicine [29].

Moreover, in cognitive psychology, games like Upside Down
World are used to evaluate students’ spatial skills when they are
challenged to recreate buildings composed of multilink cubes
and to use spatial language to describe the composition of these
buildings so that their colleagues can build accordingly [25].
A test of the German Academic Foundation to find children
with gifted brains among candidates for scholarships consists
in finding out the consistent view/projection for a 3D object
usually corresponding to a technological drawing2.

This paper explores the challenge of describing 3D objects
qualitatively and it is based on the levels of depth each object

1Trade and company names are included for benefit of the reader and imply
no endorsement or preferential treatment of the product by the author.

2Test der Studienstiftung: Gehirnjogging für Hochbegabte, see Spiegel On-
line: http://www.spiegel.de/quiztool/quiztool.249771.html
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has at each perspective. This approach is inspired in designs
of pieces which abstract the main features of the object from
all their properties in the real world and describe them using 3
canonical views (top, lateral and front). Moreover, this approach
is cognitively based, since in experimental psychology there
is support for the general idea that human object recognition
involves view-dependent representations, that is, people prefer
to imagine, view, or photograph objects from certain “canonical”
views [30]. Also this approach has been motivated by the
fact that the German Academic Foundation uses consistent
view/projection of a 3D object corresponding to a technological
drawing to measure intelligence in humans2. An example of
a question in this test and the instructions given may be that
provided in Fig. 1. Note that this example is made up for this
paper to avoid copyright issues, and that real examples can be
obtained online2.

(a) Intructions provided to participants

(b) Example of a question

Fig. 1. (a) Intructions of the test translated to English; (b) Plausible example
of a question regarding 3D projections in the German Academic Foundation
test.

The rest of the paper is organised as follows. In Section II,
properties of spatial substrates are explained. Section III presents
a model for Qualitative Description of 3D objects. Section IV
explains the logics encountered, and the consistency conditions
for the Q3D model are described in Section V. Section VI
presents a logic approach to obtain the maximal volume of an
object described by the Q3D model. Section VII explains how
to infer some features of the occluded views (back, down and
left) from their opposite views (front, up and right). In Section
VIII, the implementation of the model is described. Section IX
discusses the closer related work. And conclusions and future
work are presented in Section X.

II. SPATIAL SUBSTRATES AND THEIR PROPERTIES

As Freksa [31] mentions, properties of spatial objects and
configurations are intrinsically highly interdependent. If we
modify one spatial aspect (e.g. distance, orientation, topological
relation) in a spatial structure, other spatial aspects will be

changed automatically, as well. We call such a structure a
spatial substrate. If we move an object in space, the spatial
locations of all its parts as well as their relations to other objects
will change. If we change a single spatial aspect in a spatial
substrate, all these changes take place (for free); no computing
(or otherwise) effort is required.

As far as we are concerned, there is no related literature about
which are the properties spatial substrates may have. Here, we
appeal to the intuition of the reader to formulate some properties
which we envision they help in solving spatial problems:

• Abstraction: people abstract dimensions in space (i.e., by
assuming one dimension as constant) and re-represent data
in a way that helps visualising a problem. For example,
a map represents 3D space in a 2D paper, sometimes
assuming relief or altitude as constant.

• Continuity: dimensions in space are continuous. They can
be abstracted or considered as constant in a representation,
but this representation must be coherent with the space and
transmit changes in the dimension abstracted, if produced.
For example, if a change in relief is produced (i.e., a road
is cut) this change should be transmitted to the dimensions
not abstracted (i.e., an interactive or up-to-date map should
represent this discontinuity in the road).

• Interrelation: most dimensions in space are relative or
interrelated to each other. For example, when comparing
roads in a map, people usually look for the shorter-path (wrt
another) or the quicker path (wrt another). If the roads are
represented by abstracting the same dimension, then they
can be compared directly. If one road considers relief while
the other does not, then they are not comparable.

In 3D engineering object design (see Fig. 2), objects are
usually abstracted or re-represented using 3 canonical views.
In each view, the object is abstracted by considering a dimension
as constant. For example, in the front view/perspective, the
dimensions involved are the width and height of the object,
while the depth dimension is assumed as constant; in the right
view, the dimensions depth and height are represented, whereas
the width dimension is assumed as constant; and in the up view,
the dimensions represented are width and depth, while height
is assumed as constant.

Note that, in contrast to the 3D projection test by the German
Academic Foundation where views are provided disconnected
from each other, in 3D technological drawings, engineers as-
sume continuity in their abstractions or re-representations of
the object. When assuming a constant value for a dimension, it
is assumed also that this dimension is continuous. If a change
is produced in the dimension abstracted, this change has to be
reflected in the other representations. In Fig. 2 this continuity
is represented as grey lines.

Moreover, as Fig. 2 shows, in 3D technological drawings, per-
spectives are relative to each other. For example, the dimension
height is involved in the views front and right; similarly, the di-
mension depth is involved in the views right and up; and the di-
mension width is involved in the views up and front. Therefore,
following the continuity principle, a change in each common
dimension must be reflected in the other two views involved.

After observing these properties in the spatial substrates,
the following model for qualitative 3D object description was
defined.

4 PROCEEDINGS OF THE LQMR WORKSHOP. ŁÓDŹ, 2015



Fig. 2. Example of a 3D object in a technological drawing which shows the
corresponding relationships among perspectives.

III. A QUALITATIVE DESCRIPTOR FOR 3D OBJECTS

When thinking qualitatively about real objects in space, hu-
mans usually think about volumes. For example, in pictures and
paintings, observers assume sometimes depth in objects/scenes
–differentiating foreground from background [11]– which is not
easy to see in the absence of shadows. As a consequence, the
minimal unit for the qualitative description presented here is
considered a volume, specifically a cube of side x ∈ R, which
may be used to build an object similarly to how pixels are used
to build digital images.

Therefore, a reference system for qualitative 3D object de-
scription is defined as follows:

Q3DRS = {F,R,U ∈ P | P ⊆ Ndepths}

Ndepths = {a,b,c,d, · · · ,∗}

where F, R and U are the Front, Right and Up perspectives
(P) or views of the object, and N is the total number of cubes
which compose each edge of the object. That is, the edges of
the object in each perspective are described by the volume of
cubes of equal size, being the basic unit of measure considered
a cube of side x ∈ R (i.e., x = 1cm, x = 0.75cm, x = 5m, etc.).

Thus, each perspective has N levels of depth, which can be
named differently and sequentially as {a,b,c,d, · · · ,∗} where a
is the surface of the cube, b is the first level of depth (a previous
cube in the row has been removed), c is the second level of
depth (two previous cubes in the row have been removed) and
so on, until ∗ is reached, which indicates that all the cubes in
a row have been removed. The description is started from the
upper-left part at each perspective.

As a first example, let us consider the object in Fig. 3 and its
corresponding description according to the views: Front (F) in
red, Right (R) in blue, and Up (U) in yellow. Starting from the

Front Right Up
[c,c,∗] [∗,∗,b] [a,a,b]
[b,a,c] [b,b,a] [b,b,c]
[a,a,a] [a,a,a] [c,b,c]

Fig. 3. Example of 3D object divided by a 3x3x3 grid of cubes showing
the front (red), right (blue) and up (yellow) views, and its corresponding Q3D
description.

upper-left part of the front perspective, it can be observed that

2 cubes were removed in the first row, and also in the second
row, so this is represented by the parameters c,c in the Q3D
description. Then, all the cubes have been removed in the third
row, so this is represented by the parameter ∗. Going down a
level, it can be observed that only one cube is left in the first
row (represented by b), then all the cubes are filling the second
row (represented as a) and, in the third row, two cubes are
missing (represented as c). Finally, in the basis of the object,
all the rows are complete, which is represented as a,a,a. The
perspectives right and up are explained similarly.

As a second example, let us consider the object in Fig.
4 extracted from the technological drawing in Fig. 2. The
proportions of the object show that it can be modelled by a
grid of 4x4x3 cubes to be described qualitatively according to
the different levels of depth at each perspective. Fig. 4 shows
its corresponding Q3D description according to all the possible
views.

Right Front Up Left Back Down
[∗,∗,∗,a] [d,d,d] [d,c,c,a] [a,∗,∗,∗] [a,a,a] [a,a,a,a]
[∗,∗,∗,a] [d,d,d] [d,c,c,a] [a,∗,∗,∗] [a,a,a] [a,a,a,a]
[∗,a,a,a] [b,b,b] [d,c,c,a] [a,a,a,∗] [a,a,a] [a,a,a,a]
[a,a,a,a] [a,a,a] [a,a,a,a] [a,a,a]

Fig. 4. Three dimensional object representation extracted from the technolog-
ical drawing in Fig. 2 which can be divided into a 4x4x3 grid of cubes to be
described qualitatively by the Q3D approach.

It is important to notice that a change in a parameter or
letter in the Q3D description in Fig. 4 corresponds to a line
of the sketch drawing in Fig. 2. This is easily seen in the up
perspective descriptor, where a line may be drawn vertically
separating all d letters from c letters and another line may
be drawn vertically separating c letters from a letters (since
each different letter correspond to a different depth), so that the
technological drawing related to up perspective shown in Fig.
2 would be obtained. Therefore, some hints about the shape of
the object are obtained. However, note that the complete shape
of the object is not described at this stage, and also that circular
or squared holes in an object would be represented equally by
∗, described by the change in depth they produce.

IV. Q3D LOGICS FOR DESCRIBING OBJECTS

The Q3D description of an object can be also described
logically, as follows:

∀X Q3DOb ject(X) → view( f ront,X ,N,N′,Q3D)∧
view(right,X ,N,N′,Q3D)∧
view(up,X ,N,N′,Q3D)

(1)

where X is a particular object; N is the dimension in cubes of
the edge of the object; and Q3D is the qualitative description
corresponding to each of the perspectives front, right and up,
which is built by N lists of N′ elements of depth each.
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The Q3D logic description for the object in Fig. 3 is provided
as follows:

Q3DOb ject(ob ject1) →
view( f ront,ob ject1,3,3, [[c,c,∗], [b,a,c], [a,a,a]])∧
view(right,ob ject1,3,3, [[∗,∗,b], [b,b,a], [a,a,a]])∧
view(up,ob ject1,3,3, [[a,a,b], [b,b,c], [c,b,c]])

(2)

The Q3D logic description for the object in Fig. 4 is provided
as follows:

Q3DOb ject(ob ject2) →
view( f ront,ob ject2,4,3,

[[d,d,d], [d,d,d], [b,b,b], [a,a,a]])∧
view(right,ob ject2,4,4,

[[∗,∗,∗,a], [∗,∗,∗,a], [∗,a,a,a], [a,a,a,a]])∧
view(up,ob ject2,3,4,

[[d,c,c,a], [d,c,c,a], [d,c,c,a]])

(3)

V. REASONING WITH THE Q3D: CONSISTENT AND
INCONSISTENT PERSPECTIVES

According to spatial reasoning, from the perspectives Front
(F), Right (R) and Up (Up), an object can be built in a three-
dimensional space. In mechanical engineering, it is assumed as
a convention that this canonical views correspond to the more
detailed views. So, which are the common sense facts in spatial
reasoning which guide this building? What are the 3D spatial
facts which can or cannot happen?

Let us consider the representation in Fig. 5 to exemplify the
following cases:

• Case 1: a change in an edge affects 2 perspectives at least.
For example, if the cube {F1,2,U3,2} disappears, this must
be reflected at both perspectives F and U.

• Case 2: a change in a vertex affects 3 perspectives. For
example, if the cube {F1,3,R1,1,U3,3} disappears, this must
be reflected at perspectives Front and Up, but also at Right.

• Case 3: each hole affects 2 perspectives at least, two of
them corresponding to opposite views. For example, a hole
in the middle of the object (i.e., cube {F2,2} and follow-
ers disappear) would affect Front and Back perspectives,
whereas a hole involving cubes {F2,3, R2,1, R2,2, R2,3}
would affect 3 perspectives: Front, Right and Back.

F1,1
F1,2

F1,3
F2,1

F2,2
F2,3

F3,1
F3,2

F3,3

R1,1

R1,2

R1,3

R2,1

R2,2

R2,3

R3,1

R3,2

R3,3

U
3,1

U
3,2

U
3,3

U
2,1

U
2,2

U
2,3

U
1,1

U
1,2

U
1,3

Fig. 5. Example of an object showing the constraints at the boundary of the
canonical perspectives.

The spatial constraints appear along the boundary of the
perspectives or the edges of the object, since a change in
a perspective must be consistent with a change in another

perspective. In Fig. 5, each cube is named according to the
perspectives Front (F), Right (R) and Up (U). Therefore, the
descriptions must be consistent where the edges meet at F-R,
F-U, and R-U perspectives:

consistent Q3D(F,R,U) →
consistent perspective(F,R)∧
consistent perspective(F,U)∧
consistent perspective(R,U)

(4)

Note that the problem is simplified by abstracting one dimen-
sion/view in each comparison, that is, the views meeting at each
edge are those related and those that must be consistent.

Let us consider the edges meeting at cube {F1,3,R1,1,U3,3},
then the consistent conditions for front (F) and right (R)
perspectives can be defined as:

consistent perspective([[F11,F12,F13], [F21,F22,F23], [F31,F32,F33]],
[[R11,R12,R13], [R21,R22,R23], [R31,R32,R33]]) →
consistent side(F13, [R11,R12,R13])∧
consistent side(F23, [R21,R22,R23])∧
consistent side(F33, [R31,R32,R33])∧
consistent side(R11, [F11,F12,F13])∧
consistent side(R21, [F21,F22,F23])∧
consistent side(R31, [F31,F32,F33])

(5)

The conditions to obtain a consistent perspective in the sides
R-U and F-U are defined similarly. It has been observed that
the same constraints must be fulfilled for each edge, F-R, R-U
and F-U, so they can be generalised:

consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level a(Fi3) ∧ level a(Ri1)

(6)

The logic rule (6) is explained as follows: if any cube exists
on the right edge at front perspective, then it must exist also a
cube on the left edge at right perspective, since a cube involves
a volume which continues in both dimensions or perspectives.
Note that i means some row and 1,2,3 means column 1,2,3,
respectively. Note also that nothing is constrained on the Ri2
and Ri3 cubes.

consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level b(Fi3) ∧ level a(Ri2)∧
(level b(Ri1) ∨ level c(Ri1) ∨ no exist(Ri1))

(7)

The logic rule (7) is explained as follows: if only a cube
disappear on the right edge at front perspective (that is,
Fi3 ≡ b in Q3D), then it must exist also a cube located on
the second column at right perspective, since this is the cube
seen from the front (that is, Ri2 ≡ a). And the constraints
on the cubes located on the left edge at right perspective
(Ri1) are that: they cannot be level a of depth since that
would mean that missing cubes, appeared again, which is
inconsistent. For Ri1 all the other possibilities can happen:

Note that nothing is constrained on the Ri3 cubes.
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consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level c(Fi3) ∧ level a(Ri3)∧
(level b(R1i) ∨ level c(R1i) ∨ no exist(R1i))∧
(level b(R2i) ∨ level c(R2i) ∨ no exist(R2i))

(8)

The logic rule (8) is explained as follows: if two cubes
disappear on the right edge at front perspective (that is, Fi3 ≡ c
in Q3D), then it must exist also a cube located at the third
column at right perspective, since this is the cube seen from
the front (that is, Ri3 ≡ a). And the constraints on the cubes
located on the left edge at right perspective (Ri1 and Ri2) are
that: they cannot be level a of depth since that would mean
that the missing cubes appeared again, and that is inconsistent.
For Ri1 and Ri2 all the other possibilities can happen:

consistent side(Fi3, [R1i,R2i,R3i]) →
no exist(Fi3)∧
(level b(R1i) ∨ level c(R1i) ∨ no exist(R1i))∧
(level b(R2i) ∨ level c(R2i) ∨ no exist(R2i))∧
(level b(R3i) ∨ level c(R3i) ∨ no exist(R3i))

(9)

The logic rule (9) can be explained as follows: if all the
cubes disappear on the right edge at front perspective (that
is, Fi3 ≡ ∗ in Q3D), then no cube on the first row at right
perspective must exist (Ri1 6= a, Ri2 6= a, Ri3 6= a) but all
the rest of possibilities can happen for Ri1, Ri2 and Ri3:

Note that Fi3 denotes F1,3, F2,3 or F3,3; that R1i denotes R1,1,
R1,2 or R1,3; also R2i denotes R2,1, R2,2 or R2,3; and R3i denotes
R3,1, R3,2 or R3,3, and also,

∀X level a(X) → a
∀X level b(X) → b
∀X level c(X) → c
∀X no exist(X) → ∗

(10)

If information is given about the rest of perspectives (Back
-B-, Left -L-, Down -D-), the consistency conditions between
the edges at each perspective are defined similarly.

Note that, as each vertex is proving consistency in 3 edges,
only by proving the consistency conditions in 4 opposite vertices
in the cube, all the edges of the cube are covered. Let us show
an example:

(B,R,D)(F,L,D)

(B,L,U)

(F,R,U)

Proving the consistency at the 4 vertices in the draw-
ing above (consistent Q3D(F,R,U), consistent Q3D(B,L,U),
consistent Q3D(F,L,D), consistent Q3D(B,R,D)) is enough to
cover the 12 edges of a complete consistent description of a 3D
object.

The computational complexity of the consistency algorithm
is calculated as follows. When choosing 4 opposite vertices in
the cube where to apply the consistent Q3D function, all the
12 edges of the cube are covered, since the consistent Q3D
function checks the consistency of the 3 edges meeting at a
specific vertex. Then, the final computational complexity is 12
times the complexity of the consistent perspective function.
And the complexity of this function is 2N where N is the edge
size in volume-cubes. In summary, 12 · 2 ·N = 24 ·N, thus the
computational cost is O(N).

VI. INFERRING THE MAXIMAL VOLUME OF THE OBJECT
FROM THE Q3D

The maximal volume of an object described by a Q3D can
be obtained as:

Q3Dvolume = min(volumeP(F),volumeP(R),volumeP(U)) (11)

where Q3Dvolume refers to the volume of the object measured
in cubes of side x ∈ R; and min refers to the minimum of the
volumes corresponding to each perspective F,R,U ∈ P, that is
(volumeP) which is defined as follows.

The volume of a perspective is the opposite to its levels of
depth. If an object is described by N cubes, then the volume is
calculated as:

volumeP(P) =
N·N
∑
i=1

volume(σ) (12)

where, the volume of an element σ is defined as:

volume(σ) =
σ

∑
i=1

N − i (13)

that is, for example, for N=3, volume(a)≡ N, volume(b)≡ N−
1, volume(c)≡ N −2 and volume(∗)≡ 0.

As an example, the volume of the object in Fig. 3 is
calculated as follows:

Object 1 Front view Right view Up view
if N=3, [c,c,∗] =1+1+0 [∗,∗,b] =0+0+2 [a,a,b] =3+3+2

a=3, b=2 [b,a,c] =2+3+1 [b,b,a] =2+2+3 [b,b,c] =2+2+1
c=1, ∗=0 [a,a,a] =3+3+3 [a,a,a] =3+3+3 [c,b,c] =1+2+1

= 17 = 18 = 17

Note that the minimal result obtained is 17, which is the
correct volume of the object, as it can be checked in Fig. 3.

The minimum volume of all canonical perspectives is cal-
culated, since, for example, some holes may only be seen
from a specific perspective. Then, it is important to notice that
the volume obtained is the maximal that the object can have
when being observed from the FRU perspective. Note that it is
important to select the canonical perspectives as FRU, otherwise
the correct volume might not be obtained since an object might
have a hole at a side which would not be appreciated.

The computational cost of the maximal volume algorithm is
obtained as follows. The complexity of calculating the volume
of a Q3D view is the complexity of getting the value of the N
depths at each row and the N depths at each column, being N
the size of the edge, thus the cost is N ·N. This volume must
be computed using the 3 views at a vertex (i.e., FRU), that is
3 ·N ·N, so the computational complexity of the algorithm is
O(N2).
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VII. INFERRING SOME DEPTHS IN UNKNOWN
PERSPECTIVES FROM OPPOSITE VIEWS

Taking into account the spatial relations showed by the
drawing in Fig. 6, from the views Front (F), Right (R) and
Up (Up), how much can we deduce logically from the rest of
the object? Can the rest of the views be computed?

Front Right Up
[c,c,∗] [∗,∗,b] [a,a,b]
[b,a,c] [b,b,a] [b,b,c]
[a,a,a] [a,a,a] [c,b,c]

Fig. 6. Q3D description of object 1 used to explain inferences.

According to the properties of continuity and relativity of
spatial substrates, some features of the unknown views can be
inferred:

Hole Continuity: all the holes observed in a view affect the
opposite views of the object, that is, front-back, right-left, up-
down. Taking into account this property, the following features
could be inferred regarding the back, left and down views of
object 1:

Back Left Down
[∗, , ] [ ,∗,∗] [ , , ]
[ , , ] [ , , ] [ , , ]
[ , , ] [ , , ] [ , , ]

Note that features that remain unknown are represented by ‘ ’.

Depth Relativity: features indicating the last level of depth in
a view (i.e., level c in a 3x3x3 description), involve the existence
of the first level of depth in the opposite view (always level a).
Taking into account this property, the following features could
be inferred regarding the back, left and down views of object 1:

Back Left Down
[∗,a,a] [ ,∗,∗] [ , , ]
[a, , ] [ , , ] [a, , ]
[ , , ] [ , , ] [a, ,a]

The consistency properties mentioned in Section V must be
fulfilled also by the unknown perspectives and they can be used
to infer the depths in them. For example, the neighbouring
perspectives of back are right, up, and left. If Right and Up
perspectives are known (R, U) or given by a Q3D, some
features regarding the perspective Left can be inferred. These
inference inter-relationships between neighbouring perspectives
to discover more features in unknown views are currently under
study.

VIII. IMPLEMENTATION

First-order logic knowledge bases are usually built using
Horn clauses [32], which contains at most one positive literal.
Prolog programming language [33] is based on Horn clause
logic and it was selected as the logic programming language
for implementing the logics of the Q3D description. SwiProlog3

was the testing platform [34], and the Prolog Contest book [35]
was a guide.

3SWI-Prolog: http://www.swi.2prolog.org/

The Q3D description of objects was written using Prolog
facts as: view(View, Object, N, Q3D).

For example, the Q3D description of the object in Fig. 3 is
described as:
view(front,obj1,3,[[c,c,*],[*,*,b],[a,a,b]]).
view(right,obj1,3,[[b,a,c],[b,b,a],[b,b,c]]).
view(up,obj1,3,[[a,a,a],[a,a,a],[c,b,c]]).

The correctness of the input Q3D was checked. The consis-
tency logics were also programmed and tested. The maximal
volume of the objects regarding the Q3D was also programmed
and tested. And the inference of some features of the unknown
perspectives from their opposite perspectives were also pro-
grammed and checked.

As an example, the results of the Prolog implementation for
the Q3D description of the object in Fig. 3 are given:
?- qualitative_3D(object1).
Front:[[c,c,*],[b,a,c],[a,a,a]] Correct description.
Right:[[*,*,b],[b,b,a],[a,a,a]] Correct description.
Up:[[a,a,b],[b,b,c],[c,b,c]] Correct description.
Consistent Q3D F,R,U views.
Maximal volume:17
Back constrained wrt Front:[[*,a,a],[a,?,?],[?,?,?]]
Left constrained wrt Right:[[?,*,*],[?,?,?],[?,?,?]]
Down constrained wrt Up:[[?,?,?],[a,?,?],[a,?,a]]
true.

More examples of the testings are provided in the Appendix.
All the Prolog code corresponding to the Q3D is available for
downloading4. For easily testing, the on-line platform Pengines5

can be used.

IX. DISCUSSION ABOUT RELATED WORK

In the literature, objects are also described using 3D shape
grammars [36]. As linguistic grammars build sentences and
paragraphs, shape grammars follow also rules (i.e., recursively
subdivision) to build 3D objects. In these grammars, although
the rules applied are logical, the obtained description of the
object is not qualitative, in contrast to the one proposed in this
paper.

Moreover, another approach related to shape grammars is
constructive solid geometry [37] (or computational binary solid
geometry), that is, a technique used in solid modelling which
can define the steps of building/synthesising complex objects
by combination of other objects and Boolean operations (i.e.,
intersection, union, difference). It has a broad application in
computer graphics for generating objects in computer games
[38].

Both shape grammars and constructive solid geometry meth-
ods are useful for object building/synthesis, but challenging to
use for object description/analysis because they sometimes use
not-reversible operations. Moreover, there is not a specific set
of grammar rules or constructive geometry methods to obtain
a specific object, since different methods can produce the same
result. Therefore, the descriptions obtained might be not unique
and then difficult to use for object identification. The Q3D
model defined here can be useful for designing the plan to

4Data download: https://sites.google.com/site/zfalomir/projects/cognitive.
2ami

5Pengines by SWI-Prolog: http://pengines.swi.2prolog.org/apps/swish/index.
html
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synthesise/build the object, but also to uniquely describe that
object when it is created.

In the literature, the main theoretical approaches in qualitative
3D representation which are studied in psychology of object
perception are:

• Marr and Nishihara’s approach [39] which uses a 3D
composition of generalised cylinders to describe a sketch or
skeleton of the objects and their parts. This model is hier-
archical, that is, component parts can also be decomposed
into parts and recognition is achieved when matching a
description derived from an image to a previous stored 3D
object type. The Q3D approach presented in this paper is
similar to Marr and Nishihara’s approach [39] in the sense
that it uses a generalised cube to describe the structure
of the object, similarly to Marr and Nishihara’s cylindre.
However the Q3D approach represented the whole object,
not only its skeleton.

• Biederman’s approach [40] describes 3D objects using
more geometric shapes or geons, not only cylinders or
cubes. However, they are obtained from a 2D image repre-
sentation rather than from a 3D representation as in Marr
and Nishihara’s approach [39]. According to Biederman,
geons are detected on the basis of certain properties of
contours in the image (i.e., linearity, parallelism, curvi-
linearity, symmetry) or at regions of concavity. Therefore,
Biederman’s approach tries also to represent the different
shapes of the components of the object, not only the volume
parts.

• Guesgen’s approach [1] approximate objects to polygons
with parallel sides which are projected to a coordinate
axis. The relations between the objects (or intervals in the
axis) are represented qualitatively (i.e., left of, attached to,
overlapping, inside) similarly to the relations between tem-
poral intervals defined by Allen’s model [41]. This model
is similar to the Q3D in the sense that both approximate
objects, Guesgen’s approach to polygons and the Q3D to
arrangements of cubes. However, the Q3D uses the cube
as a unit which allows to calculate the volume of the
object, whereas Guesgen’s method do not obtain it, but
it is independent of it.

The approaches above describe objects based on their 3D
structural skeletons or sides and produce object centred de-
scriptions. That is, view-independent descriptions are obtained
which are not designed to detect inconsistencies in object per-
ception from different views. The Q3D approach presented here
describes the depth of 3D objects in its canonical views. The
representation obtained is object-centred, but allows comparison
between perspectives in order to detect inconsistencies and also
in order to infer unknown perspectives, which is a novel aspect
in the literature, as far as we are concerned. Moreover, there
is support for the general idea that human object recognition
involves view-dependent representations, that is, people prefer
to imagine, view, or photograph objects from certain “canonical”
views [30]. Therefore, the Q3D has a cognitive basis.

X. CONCLUSION AND FUTURE WORK

This paper presents the definition of a qualitative 3D object
descriptor based on a qualitative concept of depth which con-
siders a cube as the minimal unit of volume. This representation

can be considered a spatial substrate [31], since if a single cube
is added or removed at an edge, this change is produced for free
to 3 perspectives (i.e., front, right and up) without no computing
effort needed to readjust the views.

Abstraction, continuity and interrelation properties are pro-
posed in this paper as the basis to define spatial substrates. The
logics to test the consistency of the Front, Right and Up Q3D
descriptions corresponding to real 3D objects are presented.
Then, the maximal volume of an object is calculated logically
from the Q3D obtained. Moreover, logics to infer some features
of the unknown back, down and left views are proposed.

All the Q3D logics described above have been implemented
in Prolog and tested using the SwiProlog platform. Results are
promising and they inspire future work towards an approach
which could give humans a hint about which projections of
a 3D object are impossible when solving spatial problems, so
that they could understand and reason about 3D object repre-
sentations such as those in the test by the German Academic
Foundation for scholarships2.

As future work, it is intended to: (i) implement further
reasoning methods to infer the rest of features of depth of
the unknown back, left and down perspectives, from the data
known regarding its neighbouring perspectives; (ii) extend the
Q3D description to include hidden concavities; and (iii) define
an approach to describe the boundary shape of each of the
perspectives of the object taking into account the Q3D as a
basis.

Applications in education are envisioned when helping stu-
dents in engineering to understand conventions in technical
drawing. Other applications in computer vision would be in-
teresting, for example when computing 3D attention saliency in
proto-objects [42], a Q3D description could help to store a short
memory narrative of the evolution of the proto-objects in these
attention artificial systems.
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APPENDIX

Other examples of Q3Ds implemented in Prolog and used in
the testings.

Object 2:

Front Right Up
[c,∗,∗] [∗,∗,c] [a,b,b]
[a,b,c] [c,b,a] [b,b,c]
[a,a,b] [b,a,a] [b,c,∗]

Back Left Down
[∗,∗,a] [a,∗,∗] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]
[a,a,a] [a,a,a] [∗,a,a]
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?- qualitative_3D(object2).
Front:[[c,*,*],[a,b,c],[a,a,b]] Correct description.
Right:[[*,*,c],[c,b,a],[b,a,a]] Correct description.
Up:[[a,b,b],[b,b,c],[b,c,*]] Correct description.
Consistent Q3D F,R,U views.
Maximal volume:15
true .

Object 3:

Front Right Up
[a,∗,a] [a,∗,a] [a,b,a]
[a,a,a] [a,a,a] [b,b,b]
[a,a,a] [a,a,a] [a,b,a]

Back Left Down
[a,∗,a] [a,∗,a] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]

?- qualitative_3D(object3).
Front:[[a,*,a],[a,a,a],[a,a,a]] Correct description.
Right:[[a,*,a],[a,a,a],[a,a,a]] Correct description.
Up:[[a,b,a],[b,b,b],[a,b,a]] Correct description.
Consistent Q3D F,R,U views.
Maximal volume:22
true .

Object 4:

Front Right Up
[b,a,a] [a,b,a] [a,a,a]
[b,a,a] [a,b,a] [a,a,∗]
[a,a,a] [a,b,a] [c,a,a]

Back Left Down
[a,a,a] [a,a,b] [a,a,a]
[a,a,a] [a,a,b] [∗,a,a]
[a,a,a] [a,a,a] [a,a,a]

?- qualitative_3D(object4).
Front:[[b,a,a],[b,a,a],[a,a,a]] Correct description.
Right:[[a,b,a],[a,b,a],[a,b,a]] Correct description.
Up:[[a,a,a],[a,a,*],[c,a,a]] Correct description.
Consistent Q3D F,R,U views.
Maximal volume:22
true .
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[5] Z. Falomir, L. Museros, V. Castelló, and L. Gonzalez-Abril, “Qualitative
distances and qualitative image descriptions for representing indoor
scenes in robotics,” Pattern Recognition Letters, vol. 38, pp. 731–743,
2013. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2012.08.012
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Abstract—Sketch maps are an externalization of an indi-
vidual’s mental images of an environment. The information
represented in sketch maps is schematized, distorted, generalized,
and thus processing spatial information in sketch maps requires
plausible representations based on human cognition. Typically
only qualitative relations between spatial objects are preserved
in sketch maps, and therefore processing spatial information on
a qualitative level has been suggested. This study extends our
previous work on qualitative representations and alignment of
sketch maps. In this study, we define a set of spatial relations
using the declarative spatial reasoning system CLP(QS) as an
approach to formalizing key spatial aspects that are preserved
in sketch maps. Unlike geo-referenced maps, sketch maps do
not have a single, global reference frame. Rather, the sketched
elements themselves act as referencing objects. Using the declara-
tive spatial reasoning system CLP(QS), we define constraint logic
programming rules that formalize various key spatial aspects of
sketch maps at a local level, between nearby objects. These rules
focus on linear ordering, cyclic ordering, and relative orientation
of depicted objects along, and around, salient reference objects.

I. INTRODUCTION

SKETCH maps are used to externalize an individual’s men-
tal image of the environment. The information represented

in sketch maps is based on observation rather than measure-
ments. Therefore, information in sketch maps is schematized,
distorted, and generalized. Freehand sketch maps contain
objects and spatial relations between these objects which
enable users to use sketch maps to communicate and reason
about actions in environments. During the last two decades,
several approaches [7, 9, 21, 32] attempt to capture spatial
configurations between depicted objects qualitatively. These
approaches use different aspects of space such as topological
relations, cardinal directions, relative orientations, and relative
distances.

Throughout a series of experiments [27, 33, 34], Wang
et al. identify a set of sketch aspects which are not subject
to schematizations, distortions or any other cognitive impact.
These sketch aspects represent: linear ordering, cyclic order-
ing, relative orientations, and topological relations between
spatial objects. The identified sketch aspects are categorized
into local and global levels [27]. The local level relations
refer to the relations between nearby objects while global level
relations represent possible relations between all objects in a
map. During the last two decades, a series of qualitative spatial
calculi have been proposed in the area of Qualitative Spatial
Reasoning (QSR) [11] to formalize some of these aspects

such as representations for the topological relations [6, 23],
orderings [1, 22, 25], directions [10, 24], relative position of
points [19, 20, 24] and others.

In our previous studies [14, 15, 16, 27], we propose a
set of plausible representations and their coarse versions to
qualitatively formalize key sketch aspects. We use several
qualifiers to extract qualitative constraints from geometric
representations of sketch and geo-referenced maps [13] in
the form of Qualitative Constraint Networks (QCNs). QCNs
are complete graphs representing spatial objects and relations
between them. However, in order to derive more cognitively
accurate QCNs, we require greater flexibility in being able to
define qualitative spatial relations for our particular application
domain, i.e. geographic-scale sketch maps. Specifically, sketch
maps require qualitative constraints at a local level between
particular types of adjacent objects such as linear ordering,
cyclic ordering, and orientation information of nearby land-
marks with respect to reference objects.

In this study, we propose the utilisation of the declarative
spatial reasoning system CLP(QS) [2, 26] as an alternative
approach to deriving cognitively plausible constraints between
nearby objects. The system is capable of modeling and reason-
ing about qualitative spatial relations within the context of the
constraint logic programming. Using the CLP(QS) framework,
we define logic programming rules over qualitative spatial
domains in order to express and solve declarative, high-level
constraints between spatial objects depicted in sketch maps.

The remainder of this paper is structured as follows: In the
following section, we briefly introduce related work. In Section
3 we discuss spatial objects and cognitively plausible aspects
found in sketch maps. In Section 4 we present CLP(QS) rules
that formalize the cognitively salient aspects of sketch maps.
Section 5 concludes the paper with an outlook on future work.

II. RELATED WORK

The information in sketch maps is based on observations
rather than measurements. Therefore, processing spatial in-
formation on a qualitative level has been suggested [5, 27].
During the last two decades, several approaches [7, 9, 21, 32]
attempt to capture spatial configurations between depicted
objects qualitatively. Egenhofer et al. [8] propose Spatial-
Query-by-Sketch, a sketch-based user interface that focuses
on enabling a user to specify spatial relations (topology and
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cardinal directions) by drawing them. Volker et al. [31] pro-
pose the visual query system VISCO. It offers a sketch-based
query language for defining approximate spatial constellations
of the objects. Forbus et al. [9] develop a sketch understanding
system CogSkech which is a space search system that focuses
on topological relations among sketched elements, and reasons
about these relations to infer new knowledge. Nedas et al. [21]
propose a similarity measure methodology for comparing two
spatial scenes by identifying cognitively-motivated similarities
between objects, relations among spatial objects, and the ratio
of the total number of objects in both scenes to the number
of objects that have been correctly matched.

These approaches share our motivation of using abstract
qualitative relations to represent spatial configurations between
objects depicted by a user. In a previous study [27], we propose
a framework to preprocess, align and integrate sketched spatial
information on a qualitative level. The framework addresses
the extraction of objects from sketch maps, computing QCNs
from geometric representations of sketch and geo-referenced
maps, and aligning them qualitatively.

This study extends our previous work on qualitative repre-
sentations of spatial objects. As the outline of spatial objects
in freehand sketches are imprecise, the qualitative represen-
tation of spatial objects with imprecise boundaries leads to
different qualitative relations when compared to relations in
geo-referenced maps. In this study, we present spatial rules
defined using the CLP(QS) system as an alternative approach
to compute qualitative relations (on a conceptual level) which
are preserved in freehand sketch maps. These rules address
linear ordering, cyclic ordering, and orientation information
of adjacent objects along and around key reference objects.

III. SPATIAL OBJECTS AND THEIR CONFIGURATIONS IN
SKETCH MAPS

A. Spatial objects

Inspired by the Lynch’s seminal work [18] and Tversky’s
analysis of mental structures [30], we characterize the depicted
objects in sketch maps into four elements: streets segments,
junctions, landmarks, and city-blocks. These elements are
automatically extracted using the object recognition method
proposed in [4].

Street segments are connected, and mostly linear, features
in sketch maps. They are represented as line segments and
are connected to other street segments at junctions. The con-
nectivity of street segments and the street-network is central
for human path planning [12]. Junctions are the end-points
of street segments. The end-points, where street segments are
not connected to other street segments, are called hanging
end-points. At the boundary of the sketching medium, street
segments are left unconnected to any further street segment,
resulting in hanging end-points. In sketch maps, junctions
capture the connectivity of various street segments forming
a street network. In our approach, both hanging end-points
and junctions are spatially represented as 2D points.

Landmarks are the most salient elements in an environment
and are therefore essential to characterize an environment. In

freehand sketches, landmarks are vectorized and approximated
by polygons which represent spatial entities such as water
bodies, buildings, and parks. Landmarks and road entities are
the most frequently depicted spatial objects in sketch maps [3],
while city-blocks are the smallest regions. They are delimited
by a lineal representation of connected street segments. People
do not always sketch complete city-blocks, in particular at the
edge of the sketch medium. Therefore, we define city-blocks
as areas either bounded by the street segments, or bounded by
street segments and the boundary of the medium [14].

B. Invariant spatial aspects in Sketch Maps

Processing sketch information at a qualitative level requires
explicit knowledge about certain aspects of sketches that
are not subject to schematizations, distortions, or any other
cognitive impact [29]. That is, these aspects are preserved
in freehand sketches. Throughout a series of experiments
[27, 33, 34], Wang et al. identified a set of seven invariant
sketch aspects. These aspects consist of: linear ordering of
landmarks and street segments along a route, cyclic ordering of
landmarks and street segments around reference junctions, rel-
ative orientation of landmarks with respect to street segments,
topological and orientation relations between street segments
in street network, and topological relations between extended
objects (landmarks, and city-blocks). This paper focuses on the
formalization of ordering and relative orientation of adjacent
objects using spatial rules defined in the context of the
CLP(QS) system.

IV. SPATIAL RULES FOR QUALITATIVELY EQUIVALENT
CONFIGURATIONS

Using the CLP(QS) framework, we define spatial rules to
compute qualitative information between nearby objects. For
the linear ordering and orientation information of adjacent
landmarks, we use connected street segments as reference
objects, while junctions are used as reference objects for cyclic
ordering. The adjacency of landmarks is defined via relative
metric distances.

A. Preliminaries

CLP(QS) includes a library of qualitative spatial relations
encoded as polynomial constraints over a set of real variables
X , which are solved via constraint logic programming [2].
In this subsection we present the CLP(QS) library implemen-
tations of projection, distance, and orientation relations that
we build on in subsequent sections. A set of spatial relations
is consistent in CLP(QS) if there exists some assignment of
reals to the variables X such that all of the corresponding
polynomial constraints are satisfied. CLP(QS) uses a variety of
polynomial solvers including CLP(R), SAT Modulo Theories,
quantifier elimination by Cylindrical Algebraic Decomposi-
tion, and geometric constraint solvers.

Projection. A point is projected onto a line using the dot
product. This is extended to segment-line projection by pro-
jecting both end points. Polygons are projected onto lines by
projecting all vertices and taking the maximum and minimum
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projected values as the projected interval. Points are projected
onto segments by clamping the projected value to lie within
the projection of the segment and the line collinear with the
segment, i.e. let v, a, b be reals such that a ≤ b then

CLAMP(v, a, b) =





v if a ≤ v ≤ b

a if v < a

b if v > b

CLP(QS) projection predicates are implemented as follows.

projection(value(V), point(Xp,Yp),
line(point(Xa,Ya),point(Xb,Yb)) ) :-

{(Xp - Xa) * (Xb - Xa) + (Yp - Ya) * (Yb - Ya) =:= V}.

projection(interval(Prj1,Prj2),
segment(Pa1,Pa2), segment(Pb1,Pb2)) :-

projection(value(Prj1), Pa1, segment(Pb1,Pb2) ),
projection(value(Prj2), Pa2, segment(Pb1,Pb2) ).

projection(value(V), point(Xp,Yp),
segment(point(Xa,Ya),point(Xb,Yb)) ) :-

{(Xp - Xa) * (Xb - Xa) + (Yp - Ya) * (Yb - Ya) =:= PrjV},
{Max =:= (Xb - Xa)^2 + (Yb - Ya)^2},
clpqs_utils:clamp_(0, Max, PrjV, V).

The CLP(QS) predicate for obtaining the coordinates of the
projection onto a segment (or line) is:

reconstruct_projection(point(Xp,Yp), value(V),
segment(point(Xa,Ya),point(Xb,Yb))) :-

{Limit =:= (Xb - Xa)^2 + (Yb - Ya)^2},
{Limit > 0},
{NormV =:= V / Limit},
{Xp =:= (Xb - Xa) * NormV + Xa},
{Yp =:= (Yb - Ya) * NormV + Ya}.

Euclidean distance. We employ CLP(QS) Euclidean distances
between points, and between points and segments.

distance(value(V), point(Xa,Ya), point(Xb,Yb)) :-
{(Xa - Xb)^2 + (Ya - Yb)^2 =:= V^2, V > 0}.

distance(nearer_than,
point(Xa,Ya), point(Xb,Yb), point(Xr,Yr)) :-

{(Xa - Xr)^2 + (Ya - Yr)^2 < (Xb - Xr)^2 + (Yb - Yr)^2}.

distance(equidistant,
point(Xa,Ya), point(Xb,Yb), point(Xr,Yr)) :-

{(Xa - Xr)^2 + (Ya - Yr)^2 =:= (Xb - Xr)^2 + (Yb - Yr)^2}.

distance(farther_than,
point(Xa,Ya), point(Xb,Yb), point(Xr,Yr)) :-

{(Xa - Xr)^2 + (Ya - Yr)^2 > (Xb - Xr)^2 + (Yb - Yr)^2}.

distance(value(V), point(Xp,Yp),
segment(point(Xa,Ya), point(Xb,Yb)) ) :-

projection(point(Xpj, Ypj), point(Xp,Yp),
segment(point(Xa,Ya),point(Xb,Yb)) ),

distance(value(V), point(Xpj, Ypj), point(Xp,Yp)).

Relative Orientation. We employ CLP(QS) relative orienta-
tion predicates between points and lines.

orientation(left_of, point(Xp,Yp),
line(point(Xa,Ya), point(Xb,Yb)) ) :-

{(Xb - Xa) * (Yp - Ya) > (Yb - Ya) * (Xp - Xa)}.

a

b

c

Fig. 1. Inconsistent relative orientation relations between triangle edges
A,B,C and a point D: the point D must occupy the intersection of the red
regions. As the red regions are disconnected, the constraints are unsatisfiable.

orientation(collinear, point(Xp,Yp),
line(point(Xa,Ya), point(Xb,Yb)) ) :-

{(Xb - Xa) * (Yp - Ya) =:= (Yb - Ya) * (Xp - Xa)}.

orientation(right_of, point(Xp,Yp),
line(point(Xa,Ya), point(Xb,Yb)) ) :-

{(Xb - Xa) * (Yp - Ya) < (Yb - Ya) * (Xp - Xa)}.

Spatial reasoning with incomplete numerical information.
We emphasise that, using CLP(QS), it is possible to reason
about sets of spatial relations in the partial or complete absence
of numerical information. For example, we can define an anti-
clockwise triangle with vertices A,B,C with the constraint
that C is on the left of line (A,B). A point D can then be
constrained by relative orientation relations with the triangle
edges:

?- orientation(left_of,C,line(A,B)),
| orientation(left_of,D,line(A,C)),
| orientation(right_of,D,line(A,B)),
| orientation(right_of,D,line(B,C)).
false.
...
| orientation(left_of,D,line(B,C)).
true.

Even though we have not provided any numerical informa-
tion about the positions of the points A,B,C,D, CLP(QS)
correctly determines that D cannot be simultaneously left
of (A,C) and right of (A,B) and (B,C) as illustrated in
Figure 1. We use this feature to reason about possible scenarios
in sketch maps in cases where only incomplete numerical
information is available.

B. Rules for Linear Ordering as Constraints

In sketch maps, linear ordering of spatial objects is an
invariant sketch aspect [33]. It describes the linear ordering of
adjacent landmarks and street segments along a route. A route
is defined as a set of connected street segments. In [33, 34]
Wang et al. found the linear ordering of both landmarks and
street segments as a suitable representation for sketch map
alignment. In our previous studies [16], we proposed a coarse
version of Allen’s interval algebra [1] to extract the linear
ordering of spatial objects along a route.

We define spatial rules to compute the linear ordering of
adjacent landmarks and connected street segments along a
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Fig. 2. (a) Spatial objects in the sketch map (b) Ordering of adjacent
landmarks and connecting street segments along the route (AB,BC).

route. The adjacency of landmarks is computed using the rela-
tive metric distance between street segments and landmarks. A
landmark is considered adjacent or local if its footprint inter-
sects with the buffer around the reference street segment. Next,
adjacent landmarks are projected from both sides of a route
onto the street segments. As proposed in our previous studies
[16], the ordering between intervals of projected landmarks
and street segments are represented using both Allen’s Interval
relations and a coarse version of Allen’s interval relations [1].
This is accomplished by encoding qualitative spatial relations
as rules and facts using CLP(QS), as illustrated in Figure 2.
Figure 2b shows the linear ordering of the depicted objects in
terms of Allent’s relations such as meets(m), before(<), and
during(d).

ordering(Rel, St,Lm) :-
object(St, type(street)),
object(Lm, type(landmark)),
relation(proximity(adjacent,Lm,St)),
oriented_representation(St,segment(Pa,Pb)),
representation(Lm,GLm),
projection(PrjLm,GLm,line(Pa,Pb)),
projection(PrjSt,segment(Pa,Pb),line(Pa,Pb)),
allen(Rel, PrjSt,PrjLm).

Buffer Size. In sketch maps, the distances between depicted
objects are distorted. The distances between landmarks and ad-
jacent street segments are always variant between sketch maps
of the same location. Therefore, defining a common buffer
size for all freehand sketch maps is not possible. In order
to compute relative buffer, we define an automatic method
as rule in CLP(QS) which computes minimum distances
between landmarks and street segments and then considers the
maximum distance as buffer size from the computed minimum
distances.
set_buffer_distance :-

max_landmark_street_distance(value(D)),
retractall(buffer(_)), assert(buffer(D)).

max_landmark_street_distance(value(D)) :-
setof(Dist,

L^nearest_street_distance(value(Dist), L),Dists),
sort(Dists,SDists), reverse(SDists,[D|_]).

nearest_street_distance(value(MinD), L) :-
object(L, type(landmark)), representation(L,LG),
setof(D,

S^SG^( object(S, type(street)), representation(S,SG),
distance(value(D), LG, SG) ),Ds),
sort(Ds,[MinD|_]), write(’.’),flush.

Adjacency. We define a rule for adjacency as a qualitative

constraint between landmarks and street segments. A landmark
is considered adjacent when the polygonal footprint of the
landmark intersects with the buffer of the reference street
segment. The adjacency rule is used to define linear ordering
locally, between nearby objects.

adjacent(Lm, St) :-
object(Lm, type(landmark)),
object(St, type(street)), buffer(Buf),
representation(St, StreetGeom),
representation(Lm, LandmarkGeom),
distance(value(Dist), LandmarkGeom, StreetGeom),
Dist < Buf.

Linear Projection. This spatial rule projects landmarks onto
adjacent street segments. The projections of landmarks onto
street segments are represented as pairs of intervals with
start and end points. The rule also projects spatial entities
such as point-to-line, line-to-line, and polygon-to-line objects.
The projected intervals together with the intervals of street
segments provide ordering information between spatial objects
along a route.

projection(point(Xpj, Ypj), point (Xp,Yp),
segment(Pa,Pb)) :-

projection(
value(V), point(Xp,Yp), segment(Pa,Pb)),

reconstruct_projection(
point(Xpj,Ypj), value(V), segment(Pa,Pb)).

Qualitative Interval Ordering. These spatial rules define
linear ordering relations between projected intervals. The
rule compares the start and end points of two intervals and
represents them as relations as defined in Allen’s Interval
Algebra (IA).

allen(before, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A2 < B1}.

allen(after, interval(A1,A2), interval(B1,B2)) :-
allen(before, interval(B1,B2), interval(A1,A2)).

allen(meets, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A2 =:= B1}.

allen(met_by, interval(A1,A2), interval(B1,B2)) :-
allen(meets, interval(B1,B2), interval(A1,A2)).

allen(overlaps, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A2 > B1, A1 < B1, A2 < B2}.

allen(overlapped_by, interval(A1,A2), interval(B1,B2)) :-
allen(overlaps, interval(B1,B2), interval(A1,A2)).

allen(starts, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A1 =:= B1, A2 < B2}.

allen(started_by, interval(A1,A2), interval(B1,B2)) :-
allen(starts, interval(B1,B2), interval(A1,A2)).
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Fig. 3. (a) Orientation of adjacent landmarks with respect to street segments
(b) Qualitative constraints representing orientation relations.

allen(during, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A1 > B1, A2 < B2}.

allen(contains, interval(A1,A2), interval(B1,B2)) :-
allen(during, interval(B1,B2), interval(A1,A2)).

allen(finishes, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A1 > B1, A2 =:= B2}.

allen(finished_by, interval(A1,A2), interval(B1,B2)) :-
allen(finishes, interval(B1,B2), interval(A1,A2)).

allen(equal, interval(A1,A2), interval(B1,B2)) :-
{A1 < A2, B1 < B2},
{A1 =:= B1, A2 =:= B2}.

C. Rules for Relative Orientation of Landmarks

It is common to use points as basic entities in positional
reasoning [11, 19]. In [14], we investigate different qualitative
representations in order to formalize orientation information
of landmarks with respect to adjacent street segments and
relations defined in the Left-Right (LR) calculus [28]. The
LR calculus deals with point type entities in the plane R2.
It describes the position of a point C with respect to two
other points A (the origin) and B (the relatum). However,
in sketch maps landmarks are extended objects approximated
by polygons and considering the centroids of landmarks loses
shape information of the depicted objects.

We propose the following relations for representing relative
orientation of landmarks and street segments at a conceptual
level in sketch maps (see Figure 3). Our representation consists
of six binary relations between two objects: left_of , right_of ,
crosses, crossed_by, front_of , and back_of . These relations
capture key equivalence classes of spatial configurations that
are preserved in sketch maps.

Orientation Relations. These rules define six orientation
relations between depicted landmarks and street segments. A
landmark is considered to be on the left of a street segment
if all of the vertices of the polygonal representation of the
landmark are on the left side of the street segment. The
landmark crosses an adjacent street segment if some vertex
of the landmark is left_of the street segment, some vertex is
right_of the street segment, and the projection of the landmark

onto the line collinear with the street intersects the street
segment.

orientation(left_of, polygon(Pts), line(A,B)) :-
orientation_all_(left_of, Pts, line(A,B)).

orientation(crosses, polygon(Pts), line(A,B)) :-
projection(PrjLm,polygon(Pts),line(A,B)),
projection(PrjSt,segment(A,B),line(A,B)),
not(allen(before, PrjSt, PrjLm)),
not(allen(after, PrjSt, PrjLm)),
orientation_some_(left_of, Pts, line(A,B)),
orientation_some_(right_of,Pts, line(A,B)).

A landmark is in front_of an adjacent street segment if
some vertex of the landmark is on the left_of the street
segment, some vertex is on the right_of the street segment,
and the projection of the landmark onto the line collinear
with the street is not on the street segment (see Figure 3b).
The respective inverse orientation relations are: right_of ,
crossed_by and back_of .

orientation(front_of, polygon(Pts), line(A,B)) :-
orientation_some_(left_of, Pts, line(A,B)),
orientation_some_(right_of,Pts, line(A,B)),
projection(PrjLm,polygon(Pts),line(A,B)),
projection(PrjSt,segment(A,B),line(A,B)),
allen(before, PrjSt, PrjLm).

D. Rules for Cyclic Ordering as Constraints

This sketch aspect describes the angular ordering of nearby
landmarks and connected street segments as referent objects
around a street junction. Similar to linear ordering, Wang
et al. [33, 34] find the cyclic ordering of both landmarks
and street segments around reference junctions as a suitable
representation for sketch map alignment.

In [16], we proposed a coarse version of the Cyclic Interval
Algebra (CIA) [22] to formalize cyclic ordering of depicted
sketch map objects around reference junctions. The c-intervals
of landmarks and street segments are their projections onto a
central point, i.e. a reference junction. The projection is given
by sweeping the 360o view at a junction in a counter-clockwise
direction. We define spatial rules in CLP(QS) for deriving the
cyclic ordering of depicted objects. As with linear ordering,
the spatial rule is used to generate a qualitative constraint
network between landmarks and street segments based on
adjacency, cyclic projections, and qualitative relations between
cyclic intervals.

Adjacency Buffer Size. Analogous to the computation of
buffer size around a street segment, this rule defines the buffer
size around a reference object. The buffer size around junc-
tions is used to define adjacency relations between landmarks
and reference junctions.
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Fig. 4. (a) Cyclic ordering of adjacent landmarks with respect to junction
B (b) qualitative constraints representing cyclic ordering relations

set_buffer_distance :-
max_landmark_junction_distance(value(D)),
retractall(buffer(_)), assert(buffer(D)).

max_landmark_junction_distance(value(D)) :-
setof(Dist,

L^nearest_junction_distance(value(Dist), L),Dists),
sort(Dists,SDists), reverse(SDists,[D|_]).

nearest_junction_distance(value(MinD), L) :-
object(L, type(landmark)), representation(L,LG),
setof(D, S^SG^(

object(S, type(junction)),
representation(S,SG),
distance(value(D), LG, SG)

),Ds),
sort(Ds,[MinD|_]).

Cyclic Projection. This rule projects the adjacent start and end
points of landmarks onto reference junctions. The projected
points represent c-intervals of adjacent landmarks. In order to
further constrain the relative positions of landmarks around
junctions, we also consider the c-intervals of street segments
connected at the reference junctions. Each projected point in
a c-interval represents a pair of connected street segments at a
junction. The relations between these intervals represents the
cyclic ordering of connected street segments.
cyclic_ordering(Rel, Lm1, Lm2, Jun) :-

object(Jun, type(junction)),
object(Lm1, type(landmark)),
object(Lm2, type(landmark)),
representation(Lm1,GLm1),
representation(Lm2,GLm2),
representation(Jun,GJun),
cyclic_projection(PrjLm1, GLm1, GJun ),
cyclic_projection(PrjLm2, GLm2, GJun),
cyclic_ordering(Rel, PrjLm1,PrjLm2).

Qualitative Cyclic Ordering. These rules define the cyclic
ordering of landmarks and connected street segments using the
projected c-intervals. It captures a panoramic view of objects
around junctions in the form of cyclic ordering constraints.
As illustrated in Figure 5, cyclic intervals are represented as
a centre angle θ (measured counter-clockwise from the origin
direction (1, 0)) and an angular half-distance h between the
centre and the end-points of the cyclic interval.1 Figure 4
illustrates the disconnected (dc), during (d), met-by (mi), and
meets (m) cyclic relations between two c-intervals of objects
around a junction.

1The half-distance of an interval is analogous to the radius of a circle being
half of the circle’s diameter.

cyclic origin (1,0)

landmark

junction

projected
cyclic interval

h
h

ϑ

Fig. 5. Projected cyclic interval of a polygonal landmark onto a junction
point. The cyclic interval is represented as a centre angle θ (relative to the
angular origin (1, 0)) and angular half-distance h.

cyclic_ordering(disconnected,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

distance(radian(Dab),
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{Dab > Ha + Hb}.

cyclic_ordering(externally_connects,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

distance(radian(Dab),
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{Dab =:= Ha + Hb}.

cyclic_ordering(partially_overlaps,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

distance (radian(Dab),
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{Dab < (Ha + Hb), Dab > abs(Ha - Hb)}.

cyclic_ordering(tangential_proper_part,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

distance (radian(Dab),
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{Dab =:= (Hb - Ha), Ha < Hb}.

cyclic_ordering(nontangential_proper_part,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

distance (radian(Dab),
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{Dab < (Hb - Ha), Ha < Hb}.

cyclic_ordering(meets,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

cyclic_ordering(externally_connects,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)),

{(Ca + Ha) modulo 2*pi =:= (Cb - Hb) modulo 2*pi}.

cyclic_ordering(met_by,
cyclic_interval(centre(Ca),Ha),
cyclic_interval(centre(Cb),Hb)) :-

cyclic_ordering(meets,
cyclic_interval(centre(Cb),Hb),
cyclic_interval(centre(Ca),Ha)).
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V. DISCUSSION AND USE CASE

In this section we discuss preliminary results of using our
representations for matching. We have conducted a simple
pilot study to investigate the ways in which various represen-
tations can be combined and utilised for the task of matching
(i.e. aligning) spatial objects from sketch maps with geo-
referenced maps.

The objective of the alignment task is to accurately match
objects from the sketch map with objects in the geo-referenced
map according to their relevant qualitative spatial relations.
This is a challenging task in general [27], and we are investi-
gating the use of a “mosaic” of different representations that
can be combined to increase the accuracy of the matching pro-
cess, e.g. a combination of topological relations between city
blocks, linear representations between landmarks along street
segments, cyclic representations between landmark around
junctions, and so on.

In this simple pilot study we explore the combination of
topological relations between city blocks and linear relations
between landmarks based on a real, user-generated sketch map
of Münster, Germany (see Figures 6 and 7). That is, we firstly
match the maps based on city blocks using topological rela-
tions (primarily adjacency), as reported in [17]. As we report
in [17], city blocks can often be matched accurately based
on topological information. Figure 8 illustrates the extract of
the sketch map (Figure 6) and geo-referenced map (Figure 7)
comparing landmarks within a correctly matched city block.

We employ our linear representation to match landmarks
within each city block. Landmarks are linearly ordered based
on their projection onto the streets that define the city block.
Figure 8 illustrates the derived ordering of the landmarks; for
clarity, only the upper horizontal street in the sketch map is
shown. The light grey region indicates the proximity threshold
used to define adjacency of landmarks with respect to street
segments. Projection of the landmark is based on the region of
the landmark within the proximity threshold. Based on these
projections, landmarks r2, r3, r4 maintain a similar ordering
in both the sketch and geo-referenced maps, thus assisting in
the matching between landmark objects within a city block.

This pilots study also highlights the complexity of the
matching task: observe that landmark r1 was not sketched
by the participant (i.e. r1 is missing from the sketch map,
Figure 8(a)). Moreover, according to our projection represen-
tation in the geo-referenced map (Figure 8(b)), r1 overlaps
r2 in the first street of the geo-referenced map, but is also
projected onto the last street that defines the block. We need
to formalise further spatial domain knowledge in order for a
matching algorithm to correctly interpret such combinations
of qualitative relations between landmarks along a path.

The evaluation of proposed representations based on qualita-
tive matching of sketch maps with geo-referenced maps is on-
going research work. In future work we are also investigating
alternative landmark projections. For example, the front face
of the polygon may be better indication of how people perceive
the ordering information of landmarks along a particular route,

Fig. 6. Sketch map of a region in Münster, Germany.

Fig. 7. Geo-referenced map of Münster, Germany.

rather than the projection of the entire polygon within the
proximity threshold.

VI. CONCLUSIONS

In this paper we introduce a set of spatial relations that
formalize key equivalence classes of spatial configurations
preserved in sketch maps; the relations have been defined
using the declarative spatial reasoning system CLP(QS). Our
rules address: (1) the linear ordering of landmarks and street
segments along any route; (2) the cyclic ordering of landmarks
and connected street segments around reference junctions;
(3) the orientation of landmarks with respect to nearby street
segments. The rules also define an appropriate buffer size in
sketch maps using the minimum distances between landmarks
and street segments. The buffer size is used to define proximity
and adjacency relations as qualitative relations between nearby
objects.

We derive ordering and relative orientation relations as sets
of Prolog facts using CLP(QS). We then use these facts to
generate Qualitative Constraint Networks (QCNs) of sketch
and geo-referenced maps. These qualitative networks are used
in a range of tasks, for example (a) to provide a high-level
qualitative query interface to both sketched and geo-referenced
maps, and (b) to facilitate matching sketched maps to geo-
referenced maps i.e. aligning qualitative spatial information in
sketch maps with corresponding spatial information in geo-
referenced maps. The evaluation of proposed representations
based on qualitative matching of sketch maps with geo-
referenced maps is ongoing research work.
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Fig. 8. Deriving linear ordering relations of projected landmarks per block in
the sketch and geo-referenced map; only the projection of adjacent landmarks
onto the upper horizontal street is illustrated.
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Abstract—In this paper we explore how bintrees can function
as a suitable representation for mereological objects, and how
such objects can be used to construct correct representations of
geometries, with respect to qualitative queries constructed from
a given set of mereological relations. We will show how these
correct representations can be stored and queried by a traditional
relational database using relational algebra, or similar tuple-
based databases.

We will define a model theoretic semantics for the bintrees
and show how we can construct these correct representations
as solutions to constraint networks with variables ranging over
bintrees. Furthermore, we make an algorithm for solving the
constraints and prove its correctness.

The framework presented in the paper is not limited to only
constructing representations of geometries, but representations
of any objects where a part-of relationship is natural.

I. INTRODUCTION

GEOSPATIAL and temporal data is ubiquitous in today’s
software, with a growing number of spatially aware de-

vices gathering and publishing data. Spatial and temporal data
is used in a great number of highly valuable applications, like
route planning, automatic navigation, modelling of physical
processes, etc. However, temporal and especially geospatial
data are normally represented as complex numerical objects
that are difficult to represent in information storing software.
The relationships between objects are in these numerical
representation implicit, and one needs advanced numerical
algorithms for exacting this data. Storing such data with
regards to efficient information retrieval is also difficult, as
indexing these objects are far from easy.

During the last decades, several temporal and geospatial
database systems have been developed, featuring advanced
indexing mechanisms and efficient numerical algorithms for
answering queries over such data (see e.g. [1]). Despite these
advances, geospatial and temporal data is still a lot more
difficult to handle than more traditional data. These data types
also often lag behind when new knowledge representations are
introduced and often need special treatment.

We therefore want to create a framework for constructing
non-numerical representations of numerically represented ge-
ometries (and other numerically represented elements). These

representations should be in a format that we can store and
query in a relational database and other tuple based storage
structures (e.g. a triple store) where properties of the elements
are stored explicitly. In addition to qualitative query answering,
we also want to be able to pose window queries, that is queries
involving geometrical constants, and have efficient insert of
new objects.

The queries we want our system to handle are qualitative
queries, that is, queries that consist of only non-numerical
predicates (e.g. Overlaps(a, b) and Contains(a, b)). Such
relationships tend to be closer to how humans generally
think, and are often sufficient for a geospatial database. These
relations are naturally expressed using the part-of relation (see
example 11). The part-of relation is the base relation in the
theory of mereology in the same way the element-in relation
is the base relation of set theory. We will therefore base our
framework around mereological queries.

Our approach will solve the problem above by using a type
of geospatial index structures called linear bintrees [2], which
is a type of trie. Each node in the tree represents an area,
with the root node representing some universe. Every node
has two children, each representing half of the area of its
parent node. Furthermore, every node is denoted by a bit-
string. The root node is represented with the empty bit-string,
and each left and right child-node of a node is represented
with its parent bit-string s but with a 0 or a 1 appended to the
end of s respectively. A spatial object can then be represented
as a union (i.e. as a set) of bit-strings, which then represents
the union of the areas each node with the given bit-strings
represents.

Bintrees index geometries by constructing a set of nodes
from the bintree that represents an approximation (from above)
of the area of each geometry. Such an index structure can then
be used to quickly compute a complete (but not sound) ap-
proximation of the answers to a query, that can then be filtered
by using the actual geometries. Bintrees have the convenient
property that they can be stored as a regular database relation,
and indexed by normal database index structures, like B-trees,
since they only consists of sets of bit-strings. Another nice
feature of bintrees is that they allow variable resolution, so we
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can have low resolution (small bit-strings) for homogeneous
areas and high resolution (long bit-strings) for homogeneous
areas where more detail is necessary.

We will use bintrees as a representation, but fix the ap-
proximation by constructing mereological constraints over the
bintrees, such that any solution will give correct representa-
tions with respect to mereological queries. The framework we
develop throughout this paper is not restricted to only geome-
tries, but can be used for any type of data that satisfies the
axioms of Classical extensional mereology (see Definition 6).

The paper is organised as follows. Section
II gives a naive approach and explains why this is unfeasi-

ble, and why using an index structure is desirable;
III properly defines the bintrees, the mereological relation ≺

and the models we will be using throughout this paper;
IV introduces the relations we will allow our queries over

the representations to contain;
V defines how our mereological models can be interpreted

geometrically, and defines what correct representations
are with respect to the geometries;

VI introduces mereological constraints that we can use to
state the properties we want our representations to have.
The constraints is our main tool for constructing correct
representations;

VII explains how we can construct constraints that properly
describe correctness, and we will here define functions
for automatic construction of such constraints;

VIII describes an algorithm for solving the constraints, and
contains a proof of correctness of the solver;

IX outlines the details of query answering over our repre-
sentation, and how we can answer mereological queries
in relational algebra, Datalog, and SPARQL;

X examines the time complexity of the solver and the
bounds of the storage space of the representations;

XI contains a summary of the results, and ideas for exten-
sions of the framework.

Throughout this paper, we will assume that G is a finite
set of names of objects that we want to represent. They can
either be temporal, spatial, or other types of objects for which
part-of relationships are natural. We put no restriction on the
number of dimensions these elements have, as long as they all
have the same (finite) number of dimensions.

II. A NAIVE APPROACH AND THE OUTLINE OF A
SOLUTION

Assuming we have a numerical representation of the ele-
ments we want to describe, a naive approach to the problem
could be to simply construct a table for each relation, compute
all possible relations between the elements and store the tuples
in the tables. However, this would require storing tables with
an exponential number of tuples in each. Furthermore, if we
do not have an index structure, every time you insert a new
element you will have to compute all relationships between
the new element and every geometry already in the database.
Furthermore, such a solution would not allow us to pose
window queries.

Hence, a feasible solution needs a spatial index structure
that allows us quickly to look up which objects are potentially
spatially related to the new element. Such a structure could
then also be used for posing window queries, as it gives an
approximate location of each object.

Index structures are complete, so the elements returned from
a look-up for a query q should contain at least all the answers
to q. However, spatial index structures are often not sound.
The main idea behind our approach is to construct sound and
complete index structures, such that we only have to make an
index look-up to answer a query.

III. MEREOLOGY OVER BINTREES

As we saw from previous section, we will use a spatial
index structure for representing the objects of G. As stated in
the introduction, a data structure that is well suited for our use
is the linear bintree [2] index structure.

In this section we will properly define this data structure,
and see how the mereological part-of relation, denoted ≺, can
be defined over bintrees.

Definition 1. Define
• B to be the set of bit-strings called blocks, and where ε

is the empty bit-string (that is B = {0, 1}∗);
• s ◦ s′ to be the concatenation of the bit-strings s and s′

from B, with ε as identity;
• s1 2 s2 ⇔ ∃s(s2 ◦ s = s1), that is, s1 2 s2 states that the

block s2 is a (string) prefix of the block s1;
• two blocks s1, s2 ∈ B to be neighbours if there exists an
s ∈ B s.t. s1 = s ◦ 0 and s2 = s ◦ 1.

Since the prefix relation on strings is a partial order, so is
2.

Definition 2. Define the set of bintrees M be the set of α ∈
Pfin(B) \ {∅} (where Pfin is the set of finite subsets) such
that α contains no neighbours and no two (unequal) elements
s1, s2 where s1 2 s2.

Furthermore, define the depth of an element α ∈ M to be
the length of the longest bit-string in α, denoted ∆(α).

The set B will represent the blocks in a bintree, while
each α ∈ M will be a set of such blocks, representing an
area. Notice that there is no assumption on the number of
dimensions in the representation (except for finiteness). Notice
that disallowing neighbours and pairs of 2-related elements
gives us the optimal representation for each area.

We will need a formal framework for studying the properties
of different representations. First order logic with model
theoretic semantics is a suitable language for studying such
properties. The models we are going to work with and the
model semantics we will use is defined below.

Definition 3. Let a mereological model Q be a first order
model for the language with a binary relation symbol ≺, and
constants G ∪M, such that

(i) the model’s universe is M;
(ii) aQ = a for any a ∈ M, i.e. bintree literals are

interpreted as themselves; and
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(iii) ≺Q= ≺̇ where

a ≺̇ b⇔ ∀s ∈ a ∃s′ ∈ b (s2 s′)

The interpretation of the constants in G is not constrained.

Note that the only difference between two mereological
models is their interpretations of the constants in G, everything
else is fixed. Since our models are just special instances of
first order models we will use the regular notation of first
order logic, such as the satisfaction relation � and first order
formulas.

Definition 4. Let �M be the mereological consequence rela-
tion, such that ϕ �M ψ holds iff for any mereological model
Q we have Q � ϕ⇒ Q � ψ.

Throughout this article we will often use the relation
O(a, b)⇔ ∃v(v ≺ a ∧ v ≺ b), which is the overlaps relation.
We will sometimes abuse notation and state the truth value of
O(a, b) outside a model when a, b ∈ M. In these cases we
will assume that by O(a, b) we mean ∃v ∈M (v ≺̇a∧v ≺̇ b).

We will also use the shorthand a ⊀ b and a ⊀̇ b instead of
¬(a ≺ b) and ¬(a ≺̇ b) respectively.

Example 5. Let’s construct a toy example with three two-
dimensional areas, so let G = {A,B,C}.

A

B
C

A
B
C

The above image is a visualisation of the model Q where

AQ = {000011, 00011, 0011, 00101, 001001},
BQ = {00111, 10010, 1001011, 11, 011111},
CQ = {110011, 110110}

We can see that Q � ∃v(v ≺ A ∧ v ≺ B) (since {00111} is
part of both) and Q � C ≺ B.

We will now take a brief look at the mereological system
our definitions satisfy.

Definition 6. Classical extensional mereology [3] (CEM) has
the following axioms for ≺:

(i) Reflexive:
∀x(x ≺ x);

(ii) Transitive:
∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z);

(iii) Anti-symmetric:
∀x∀y(x ≺ y ∧ y ≺ x→ x = y);

(iv) Top:
∃y∀x(x ≺ y);

(v) Strong supplementation:
∀x∀y(y ⊀ x→ ∃z(z ≺ y ∧ ¬O(z, x)));

(vi) Sum:
∀x∀y∃z∀v(O(v, z)↔ (O(v, x) ∨O(v, y)));

(vii) Product:
∀x∀y(O(x, y)→ ∃z∀v(v ≺ z ↔ (v ≺ x ∧ v ≺ y))).

The framework we will construct in this paper will be
able to construct correct representations with respect to any
relation constructed from a base relation satisfying the axioms
of Definition 6.

Lemma 7. Our definition of ≺̇ over bintrees satisfies the
axioms for CEM.

Proof. We will use the same enumeration of the axioms as in
Definition 6:
(i) Reflexivity: Follows easily from the reflexivity of 2.
(ii) Transitivity: Assume ∀s ∈ x∃s′ ∈ y(s 2 s′) and ∀s′ ∈

y∃s′′ ∈ z(s′2s′′), then we have that ∀s ∈ x∃s′ ∈ y∃s′′ ∈
z(s2s′∧s′2s′′). By transitivity of 2, the result follows.

(iii) Anti-symmetric: If ∀s ∈ x∃s′ ∈ y(s2s) and ∀s′ ∈ y∃s ∈
x(s′ 2 s), we must have that x = y (i.e. they contain
exactly the same elements from B), since, by construction
of M, no element can contain two blocks s1, s2 where
s1 2 s2.

(iv) Top: We have {ǫ} which satisfies this.
(v) Strong supplementation: Assume x, y ∈M where y ⊀ x.

Then we have there must be one s ∈ y where ∀s′ ∈
x(¬s2s′). By definition, there are no neighbours in y, it
must be the case that there is an s′′ 2s s.t. ∀s′ ∈ x(¬s2
s′∧¬s′ 2 s). We then have that {s′′} ≺̇y∧¬O({s′′}, x).

(vi) Sum: Assume x, y ∈ M and let z′ := x ∪ y. Let z
be the element that results from recursively merging all
neighbours of z′ and removing all blocks s where s2 s′

and s, s′ ∈ z′. It should be easy to see that for any v ∈
M, O(v, z) holds iff O(v, x) or O(v, y).

(vii) Product: Assume x, y ∈ M and O(x, y). Let z := {s ∈
B | (s ∈ x ∧ {s} ≺̇ y) ∨ (s ∈ y ∧ {s} ≺̇ x)}. It should be
easy to see that for any v ∈ M we have that v ≺̇ z iff
v ≺̇ x and v ≺̇ y.

From the above lemma, we can see that our definition of ≺
satisfies the axioms of the theory CEM. Since bintrees are easy
to store and index they are a natural choice for representing
mereological objects on a computer.

The three last axioms of CEM states the existence of a
difference, sum and product respectively. In the following
lemma we should that the corresponding operators are well
defined.

Lemma 8. We have that for any x, y ∈M:
(i) if y ⊀̇ x there is a unique ≺̇-maximal element z ∈ M

satisfying z ≺̇ y ∧ ¬O(z, x);
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(ii) there is a unique element z ∈ M satisfying ∀v ∈
M(O(v, z)↔ (O(v, x) ∨O(v, y)));

(iii) if O(x, y) there is a unique element z ∈ M satisfying
∀v ∈M(v ≺̇ z ↔ (v ≺̇ x ∧ v ≺̇ y)).

Proof. We know from Lemma 7 that such objects exist inM,
we will prove that they are unique.

(i) Let z be the set of 2-greatest elements s ∈ B that satisfy
{s}≺̇y∧¬O({s}, x). It should be easy to see that z ∈M
and that z≺̇y∧¬O(z, x). Assume that there is an element
z′ ∈M that satisfies z′ ≺̇ y ∧ ¬O(z′, x). For any s ∈ z′
we must have {s} ≺̇ y ∧¬O({s}, x). Then, by definition
of z, we have {s} ≺̇ z. Since s was arbitrary z′ ≺̇ z, and
since z′ was arbitrary z must be the ≺-maximum, thus
unique and maximal.

(ii) Assume, for the sake of contradiction, that there are
two unequal elements z, z′ ∈ M that both satisfies the
sentence. Then it follows that ∀v(O(v, z) ↔ O(v, z′)).
Since z and z′ are unequal there must exist an s ∈ B
s.t. either {s}≺̇z∧¬O({s}, z′) or {s}≺̇z′∧¬O({s}, z).
However, both contradicts ∀v(O(v, z) ↔ O(v, z′)), so
there is only one element z ∈M satisfying the sentence.

(iii) Assume that we have two elements z, z′ ∈M satisfying
the sentence. Then ∀v(v ≺̇ z ↔ v ≺̇ z′) which implies
z = z′.

Lemma 8 guarantees that the notions in the following
definition are well-defined:

Definition 9. Let x, y ∈M.
(i) If y ⊀̇ x, we will write x ⊖ y to denote the unique ≺̇-

maximal element z ∈M that satisfies z ≺̇ y ∧ ¬O(z, x).
We call x⊖ y the difference between x and y.

(ii) We will write x⊕ y to denote the unique element z ∈M
that satisfies ∀v ∈ M(O(v, z) ↔ (O(v, x) ∨ O(v, y))).
We call x⊕ y the sum or the union of x and y.

(iii) If O(x, y), we will write x ⊗ y to denote the unique
element z ∈ M that satisfies ∀v ∈ M(v ≺̇ z ↔
(v ≺̇x∧v ≺̇y)). We call x⊗y the product or intersection
of x and y.

In the next section we will define which queries we will be
able to answer over our representations.

IV. MEREOLOGICAL RELATIONS

As we saw in the previous section, bintrees represents
mereological objects in a natural way. Our main reason for
using bintrees is to ease storage and retrieval of information
in a relational or similar tuple-based database. To this end, we
will now introduce the query language we will use over our
structures. It is well known that conjunctive queries have nice
computational properties and are well supported over most
tuple-based databases [4]. Our query language will therefore
have base relations that are conjunctive queries.

Definition 10. Let V be a set of variables, disjoint from G. A
mereological formula is a formula on the form defined by the
BNF grammar:

ϕ ::= ϕ1 ∧ ϕ2 | ∃z . ϕ1 | α ≺ β

where z ∈ V a variable, and α, β ∈ V ∪ M ∪ G. A
mereological relation is an n-ary relation on M described by
a mereological formula. We will write rϕ for the mereological
relation described by the mereological formula ϕ. Let the set
of mereological relations be denoted RM.

Furthermore, we will call a mereological formula with no
free variables a mereological sentence. Whenever we write
ϕ(~p) for a mereological formula ϕ and a vector ~p of elements
from G∪M, we will assume that it is a mereological sentence
(so the length of ~p is equal to the number of free variables in
ϕ.)

Example 11. Below is a list of examples of common relations
expressed as mereological formulas:
• Overlaps2(p1, p2) = ∃z(z ≺ p1 ∧ z ≺ p2),
• Overlapsn(p1, . . . , pn) = ∃z(z ≺ p1 ∧ . . . z ≺ pn),
• Contains(p1, p2) = p1 ≺ p2,
• Between(p1, p2, p3) = p1 ≺ p2 ∧ p2 ≺ p3,
• InIntersection(p1, p2, p3) = p3 ≺ p1 ∧ p3 ≺ p2,
• Underlaps(p1, p2, p3) = p1 ≺ p3 ∧ p2 ≺ p3.

The set of mereological relations might seem inexpressive,
but note that these are only base relations. When we know that
the mereological objects are correctly represented according to
these base relations, we can then use those relations to form
more complex relations in a more expressive query language
(e.g. SQL).

Example 12. Below we have defined the RCC5-relations [5]
in terms of the base relations in the previous example:
• DC(p1, p2) = ¬Overlaps2(p1, p2),
• O′(p1, p2) = Overlaps2(p1, p2) ∧ ¬Contains(p1, p2) ∧
¬Contains(p2, p1),

• PP (p1, p2) = Contains(p2, p1) ∧ ¬Contains(p1, p2),
• PP−1(p1, p2) = PP (p2, p1),
• EQ(p1, p2) = Contains(p1, p2) ∧ Contains(p2, p1).

V. MODELS OF GEOMETRY

To construct correct representations of the geometrical ob-
jects in G, we will need geometrical models that interprets the
elements of G andM as geometrical objects. We will therefore
construct models over the same language, but with a different
domain; the domain of sets of points in Rd (for some finite
number of dimensions d).

Definition 13. Assume that d denotes the (finite) number of
dimensions we are working in. Let a geometrical model N be
a first order model for the language with a binary relation
symbol ≺, and constants G ∪M, such that

(i) the model’s universe is N := P(Rd);
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(ii) the elements ofM are interpreted to elements of N such
that the following holds:

{(s ◦ 0)}N ∪ {(s ◦ 1)}N = {s}N for any {s} ∈ M,

{(s ◦ 0)}N ∩ {(s ◦ 1)}N ⊆ ∅ for any {s} ∈ M,

αN =
⋃

si∈α
{si}N for any α = {s1, s2, . . . , sn};

(iii) ≺N=⊆.
The interpretation of the constants in G is not constrained.

While mereological models differ only in their interpretation
of the constants from G, geometrical models can differ also
in their interpretation of bintrees from M to point sets in N ,
subject to the constraints given in (ii). We will use standard
first order logic syntax also for our geometrical models.

Definition 14. Let �N be the geometrical consequence rela-
tion, such that ϕ �N ψ holds iff for all geometrical models
N we have N � ϕ⇒ N � ψ.

Theorem 15. For any two mereological sentences ϕ, γ, we
have

ϕ �M γ ⇔ ϕ �N γ

Proof. By the deduction theorem of first order logic, it suffices
to prove �M ϕ → γ ⇔ �N ϕ → γ. We will prove that
�M α ≺ β ⇔ �N α ≺ β for α, β ∈ M, and the rest follows
by standard first order logic.

By property (ii) of Definition 13 (and an easy induction
proof), we have that �N {s} ≺ {s′} if s2 s′. If we combine
this with property (iii) (and an easy induction proof), we have
{s}N ⊆ {s′}N only if s2 s′, since {s ◦0}∪{s ◦1} partitions
{s}. Then, by standard set theory and property (v), we can
conclude that �N

⋃
i{si} ≺

⋃
j{s′j} ⇔ ∀si∃s′j(si 2 s′j).

We are now ready to state what we mean with correct
representations.

Definition 16. Given a set of relations R ⊆ RM, we say
that a model Q is R-complete with respect to a geometrical
model N if for any mereological relation rϕ ∈ R and any
tuple ~p ∈ G∗, we have

N � ϕ(~p)⇒ Q � ϕ(~p)

We say that Q is R-sound with respect to N if for any
mereological relation rϕ ∈ R and any tuple ~p ∈ G∗ we have

Q � ϕ(~p)⇒ N � ϕ(~p)

We want to construct a model Q such that it properly
represents the geometries of G according to a set of relations
R ⊆ RM, that is, it should be both R-sound and R-complete.
As stated earlier, we also need our representations to function
as a spatial index structure. For this we must to be able
to determine which objects are spatially related to an upper
approximation of an object. Bintrees as spatial index structures
normally have a maximum depth δ that decides the resolution
of the approximation.

Definition 17. Assume that δ is a natural number denoting
some initial maximal depth and letMδ := {α ∈M | ∆(α) ≤
δ} be the set of elements of M with depth less than or equal
to δ. Let a mereological unary relation overM be called a δ-
index relation if it is described by one of the formulas β ≺ v,
v ≺ β or O(v, β) for some β ∈Mδ and v ∈ V . Define Rδ to
be the set of δ-index relations.

The relations of Rδ can describe an object correctly up
to resolution δ. In other words, any mereological model that
correctly represents the elements of G according to Rδ with
respect to a geometrical model N , will functions as a spatial
index at the depth δ. Therefore, a mereological model that
satisfies the the same sentences constructed from the relations
of both R and Rδ as some geometrical model N , will be a
sound and complete index structure.

In the next section we will introduce mereological con-
straints. These constraints will allow us to state what properties
the elements of G should have. In section VII we will see how
we can use a geometrical model to construct constraints that
will make any model of a solution function as a sound and
complete index structure.

VI. MEREOLOGICAL CONSTRAINTS

With both a data structure to represent our objects and a
query language over them, we can now talk about how we will
construct our representations. To this end, it is natural to be
able to state the properties we want our representations to have,
and then find a representation that satisfies those properties. If
we view the properties as constraints, the process of finding a
proper representation would then be constraint solving.

We will now introduce mereological constraints, that is,
constraints that express mereological relations between mere-
ological objects.

Definition 18. Assume ψ is a mereological formula. Define
V(ψ) to be the set of variables v ∈ V in ψ, G(ψ) to be the set
of elements from G in ψ,M(ψ) to be the set of elements from
M in ψ. Set GV(ψ) = G(ψ) ∪ V(ψ) and E(ψ) = GV(ψ) ∪
M(ψ).

Furthermore, a quantifier-free mereological formula ψ is a
constraint if G(ψ) is nonempty.

By definition a constraint is any formula of the form∧
i αi ≺ βi, where αi, βi ∈ V ∪ G ∪ M. A constraint is

therefore a formula that constrains the possible interpretations
of the elements of G. Note that even though a constraint is
only one formula, it can be a large conjunction, and therefore
constrain many or all of the elements of G.

We will, in the rest of the paper, in addition to treating
constraints as formulas, treat constraints both as a graph of
≺-edges, and a set of conjuncts. We will also abuse notation
and write (α ≺ β) ∈ ψ to mean that α ≺ β is a conjunct in
ψ.

Definition 19. A solution to a constraint ψ is a function
σ : GV(ψ) → M such that the formula ψ′ resulting from
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substituting each free variable v in ψ with σ(v), denoted ψσ,
is valid.

Since the domain of σ is GV(ψ), there will only be elements
of M in ψσ. A substitution σ can therefore be verified as a
solution without consulting any models or doing any reasoning
except for computing ≺̇-relationships over constants fromM.

Definition 20. An interpretation Q is a model of a constraint
ψ if σ is a solution to ψ and αQ = σ(α) for any α ∈ G(ψ).

Every model of a constraint ψ must agree with some
solution of ψ on the interpretations of the elements of G(ψ).
Definition 21. We say that a sentence ϕ is entailed by a
constraint ψ and write ψ �M ϕ, if for every model Q of
ψ we have Q � ϕ.

Our relations are going to be evaluated in a specific model
that interprets the elements of G. Because of this, our queries
will be evaluated under the closed world assumption. This
assumption is common to use in relational database systems
and states that anything that is not known (read derivable or
entailed) to be true, is false [4]. It is therefore essential for
our solutions to be solved under the closed world assumption.
Our solutions should therefore induce models that only satisfy
the sentences entailed by the constraints. In other words, we
want the minimal models of the constraints.

Definition 22. A model Q is minimal for a constraint ψ if
for any mereological sentence ϕ, such that G(ϕ) ∪M(ϕ) ⊆
G(ψ) ∪M(ψ), we have

Q � ϕ⇔ ψ �M ϕ

A minimal model is then a model that satisfies exactly the
same sentences as the constraints, if we limit the constants
(both from G and M) to those of the constraints.

Definition 23. Assume that G(ψ) = G for some constraint ψ.
We say that Q is induced by a solution σ of ψ if pQ = σ(p)
for all p ∈ G.

Example 24. Assume we have G = {A,B,C} and that

ψ := {0011, 0110} ≺ A ∧A ≺ {0} ∧A ≺ B ∧
B ≺ {0} ∧ {100, 11} ≺ C ∧ v ≺ C ∧ v ≺ B

We now have that e.g. ψ �M A ≺ B ∧ O(B,C), but ψ 2M
O(A,C). A possible solution σ1 could be

σ1(A) := {0011, 011} σ1(B) := {0}
σ1(C) := {100, 11, 01} σ1(v) := {01}

It is a solution, since

ψσ1 = {0011, 0110} ≺ {0011, 011} ∧ {0011, 011} ≺ {0} ∧
{0011, 011} ≺ {0} ∧ {0} ≺ {0} ∧
{100, 11} ≺ {100, 11, 01} ∧ {01} ≺ {100, 11, 01} ∧
{01} ≺ {0}

is valid. However, a model induced by σ1 is not minimal,
since O(σ1(A), σ1(C)) and {0} ≺̇ σ1(B), neither of which

are entailed by ψ. The following modified solution induces a
minimal model:

σ2(A) := {0011, 011} σ2(B) := {00, 011}
σ2(C) := {100, 11, 000} σ2(v) := {000}

It is naturally important to know when it is possible to find a
solution to a constraint, that is, when a constraint is consistent.
Before we can define consistency of our constraints, we need
a couple of important, albeit technical, definitions.

Definition 25. Assume ψ is a constraint. Let β, β′ be called a
c-pair in ψ if β, β′ ∈M(ψ) and β ≺̇ β′. Let ψc be ψ ∪ {β ≺
β′ | β, β′ a c-pair in ψ}. Let ψ∗ be the transitive, reflexive
closure of ψc with respect to ≺.

So ψ∗ extends ψ with all implicit ≺-relationships that we
have in ψ.

Definition 26. Assume ψ is a constraint and α ∈ E(ψ). Define
Rψ≺(α) := {β ∈ E(ψ) | (β ≺ α) ∈ ψ∗} and Rψ≻(α) :=
{β ∈ E(ψ) | (α ≺ β) ∈ ψ∗}. We will call the elements of
Rψ≺(α) the ≺-successors of α and the elements of Rψ≻(α) the
≺-predecessors of α.

Rψ≺(α) contains all elements that are constrained to be a
part of α in the constraints ψ, and Rψ≻ contains all elements
that is constrained to have α as a part.

Definition 27. Let ψ be a constraint and α ∈ GV(ψ). Define

M(α) :=
⊗

β∈Rψ≻(α)∩M(ψ)

β

if Rψ≻ is nonempty, and {ǫ} otherwise.

M(α) is the element of M which α is bound to be a part
of, that is, it is the upper bound for any solution of α. Note
that the only way M(α) can be undefined, is if we have a
constraint where an α has two non-overlapping ≺-successors.
If this is not the case, it should be easy to see (by looking at
ψ as a graph of ≺-edges) that we can set M(α) to be equal
to the intersection of all ≺-successors that are in M.

Definition 28. Let ψ be a constraint and α ∈ GV(ψ). Define

m(α) :=
⊕

β∈Rψ≺(α)∩M(ψ)

β

m(α) is the element of M which is bound to be a part of
α, that is, the lower limit of any solution to α. If a constraint
has an element α that does not have any ≺-predecessors in
M, then m(α) is undefined. It is, however, always defined if
there is at least one such predecessor.

We are now ready to define consistency of constraints.

Definition 29. We call a constraint ψ consistent if for any
element α ∈ E(ψ) we have that M(α) is defined and that
m(α) ≺̇M(α) whenever m(α) is defined. A constraint that is
not consistent is inconsistent.

So the consistency of the constraints only depends on the
relationships between the constants fromM in ψ. This means
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that any constraint network that does not contain any elements
from M is consistent. This is quite natural, as our constraints
does not contain negation.

Lemma 30. A constraint ψ has a solution if and only if it is
consistent.

Proof. Assume that ψ is inconsistent. Then there is an α ∈
E(ψ) s.t. either M(α) is undefined, in which case we have two
≺-successors that do not overlap, or m(α)⊀̇M(α). In the first
case it should be obvious that there can be no solution. If the
latter is true, we have two cases. If α ∈ M(ψ) we have that
m(α) = α, hence α ⊀̇M(α). This means that there is a set of
≺-successors β1, . . . , βn ∈ M(ψ) s.t. α ⊀̇

⊗
i βi. Since this

does not depend on a solution, this is always unsatisfiable.
If α ∈ GV(ψ), then α must have at least one ≺-predecessor

β ∈ M(ψ) and a set of ≺-successors β1, . . . , βn ∈ M(ψ)
s.t. β ⊀̇

⊗
i βi, and we have the same situation as above.

It remains to prove that if ψ is consistent, there is a solution.
However, such a solution can be found by setting σ(α) =
M(α) for each α ∈ GV(ψ) which by definition is a solution.

It is easy to check consistency of a constraint, as it only
amounts to computing the minimal limits and maximal ele-
ments, and then check the ≺̇-relationships between them.

However, consistency is not the only property we need for
solving the constraints. It turns out that we can get hidden
ambiguities through implicit disjunctions from the constants
of M, which is a problem for our construction of minimal
models.

Definition 31. We call a constraint ψ ambiguous if there is an
element α ∈ GV(ψ) and a set of elements β1, . . . , βn ∈M(ψ)
such that

• M(α) ⊀̇ βi for all i ≤ n,
• there is at most one i for which ψ �M O(α, βi),
• and where

M(α) ≺̇
n⊕

i=1

βi

A constraint that is not ambiguous is unambiguous.

As we will see shortly, it is only possible to find a minimal
model for unambiguous constraints. The intuition is that for
an ambiguous constraint, there is an object that is contained
in a sum of elements, but it is not clear how it should relate to
each of the objects in the sum. The constraint will therefore not
entail any relation between the element and the elements of the
sum, but of course, there must be one. This is an instance of
the general problem of obtaining minimal models of languages
that allow disjunctions, e.g. disjunctive Datalog [4]. In our
case, the disjunctions are hidden in the relationships between
the constants of M.

Example 32. Assume we have

ψ := A ≺ {0} ∧ {01} ≺ B1 ∧ {00} ≺ B2

Then ψ is ambiguous. Any model must make A overlap at
least one of the Bi, but none of the overlaps are entailed by
ψ. Hence ψ 2M O(A,B1) and ψ 2M O(A,B2), although at
least one of them must be the case in any model. Hence there
can be no minimal model.

Adding v ≺ A ∧ v ≺ B1 to ψ would still not make it
unambiguous, as we now have both ψ 2M A ≺ B1 and
ψ 2M O(A,B2). However, one of them must hold in any
model.

Theorem 33. If a consistent constraint has a minimal model,
then it is unambiguous.

Proof. We will prove the contrapositive, so assume ψ is
ambiguous. Then there is an α ∈ GV(ψ) s.t. there are some
β1, . . . , βn ∈ M(ψ) where M(α) ⊀̇ βi for each i, there is at
most one βj where ψ �M O(α, βj), and M(α) ≺̇⊕

i βi.
For any model Q of ψ we must either have Q � α ≺ βj or

Q � O(α, βj) ∧ O(α, βj′) for some βj′ 6= βj . But neither of
the two is entailed by ψ, hence Q cannot be minimal. Since
Q was arbitrary, no such model can exist.

This means that constructing a minimal model is only
meaningful for unambiguous constraints. However, one can
always turn an ambiguous constraint to an unambiguous
constraint by introducing some additional constraints settling
the ambiguities. For an ambiguity over the element α, these
additional constraint could either set α to be a part of one (or
more) of the βs, or overlap at least one additional β.

This method could also be used to generate all possible solu-
tions (with respect to the relationships between the elements),
although there is an exponential number of such choices in
the size of GV(ψ), so this would be unfeasible in the general
case.

We will constructively prove the converse implication of
Theorem 33 in Section VIII.

VII. CORRECT INDEX STRUCTURES

As stated earlier, a common use of bintrees, quad-trees,
octrees and the like, is as spatial index structures. By construc-
tion, an index structure should be complete with respect to any
spatial query. That is, a look-up should at least contain all the
correct answers to the query. However, they are not always
sound, they might contain incorrect answers. Therefore, a
normal query procedure first makes a look-up in the index
structure, and then decides using numerical algorithms which
of the returned answers actually are correct.

In this section we will see how we can use the constraints
introduced in the previous section to construct complete and
sound index structures with respect to a set of mereological
relations R. This will make querying more efficient as it will
allow us to skip the refinement step, but more importantly, it
will allow us to have queries involving spatial relations in a
non-geospatial database.

Definition 34. Assume that N is a geometrical model, rϕ ∈
R ∪ Rδ a mereological relation, ~p a tuple and that ϕ ≡
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∃v1 . . . ∃vn . ϕ′(~p). Let the local completeness constraining
function ξ(ϕ(~p)) be defined as

ξ(∃v1 . . . vn . ϕ′(~p)) = ϕ′(~p)[vϕ(~p)1 /v1] . . . [v
ϕ(~p)
n /vn]

where each variable vϕ(~p)i are unique for each formula ϕ and
vector ~p.

The idea is that any solution to the set of constraints returned
by ξ(ϕ) will make ϕ true. Hence, if we apply ξ to all true
(R∪Rδ)-statements in N , we will get a complete model that
also works as an index structure.

Note that any mereological formula ϕ can be rewritten to
a formula of the form ∃v1 . . . ∃vn . ϕ′(~p), so the assumption
made in the definition does not restrict the number of formulas
ξ can be applied to.

The construction of the constraints from Rδ is almost the
same procedure as when one constructs a bintree as a spatial
index structure, with the only difference being that we do not
set the representation of an element α to be equal to all its
overlapping blocks at depth δ. We rather construct upper and
lower bounds of α by using the relations β ≺ α and α ≺ β,
and then set it to overlap all the blocks it overlaps at depth δ
by using O(β, α).

Definition 35. Let the global completeness constraining func-
tion Ξδ , for some initial depth δ, be defined as

ΞRδ (N) =
∧

rϕ∈R∪Rδ

∧

N�Nϕ(~p)

ξ(ϕ(~p))

Note that many of the constraints generated by the relations
from Rδ are redundant. For instance if we have α ≺ β for
some α ∈ G and β ∈ M, we could also have α ≺ β′ for
some β′ where β ≺̇β′. For simplicity, we will assume that we
only keep the constraints α ≺ βM for the smallest βM , and
βm ≺ α for the largest βm.

Lemma 36. Q � ξ(ϕ(~p))σ ⇔ Q � ϕ(~p) for any mereological
model Q, mereological formula ϕ and solution σ.

Proof. Assume ϕ(~p) = ∃v1 . . . ∃vn . ϕ′(~p). Then

Q � ξ(ϕ(~p))σ ⇔ Q �
(
ϕ′(~p)

[
v
ϕ(~p)
1 /v1

]
. . .

[
vϕ(~p)n /vn

])
σ

⇔ Q � ϕ′(~p)
[
σ
(
v
ϕ(~p)
1

)
/v1

]
. . .

[
σ
(
vϕ(~p)n

)
/vn

]

⇔ Q � ϕ′(~p)[a1/v1] . . . [an/vn]

⇔ Q � ∃v1 . . . ∃vn . ϕ′(~p)

⇔ Q � ϕ(~p)

for σ
(
v
ϕ(~p)
i

)
= ai.

Now that we have constraints properly describing the ge-
ometries, we want to construct a minimal model of these
constraints. This model will then only entail what the con-
straints entail, which is exactly the true sentences in the model
N . Hence, we have a sound and complete model that also
functions as a spatial index at the initial depth δ.

According to the definition of ΞRδ , we need to know all
true statements of N with respect to the relations of R ∪Rδ .

This would amount to computing all possible relationships
between all possible elements of G. However, if we start by
computing the constraints with respect to the index relations
Rδ , we can use M(α) with respect to these constraints as a
normal bintree index structure for α. This index structure can
be used to determine which objects might be related with a
given relation in the same way as a normal spatial index.

However, before we can attempt to solve our constraints,
we need to know that they are consistent and unambiguous. If
the constraints are constructed from true sentences in a model
N , they must be consistent. The following lemma states the
unambiguity.

Lemma 37. ΞRδ (N) is unambiguous.

Proof. Since the relations of Rδ determines the relationship
between every pair of α ∈ GV(ΞRδ (N)) and β ∈ Mδ in
ΞRδ (N), there can be no ambiguity in the constraints.

Theorem 38. We have

ΞRδ (N) �M ϕ(~p)⇔ N � ϕ(~p)

for any rϕ ∈ R ∪Rδ and ~p ∈ G∗.

Proof. (⇒): Assume ΞRδ (N) �M ϕ(~p), ΞRδ (N) =
∧
i ξ(ϕi)

and that Q is a model of ΞRδ (N). We know, by lemma 36,
that Q � ξ(ϕ)σ ⇔ Q � ϕ. This means that Q � ΞRδ (N)σ ⇔
Q �

∧
i ϕi. Hence Q �

∧
i ϕi ⇒ Q � ϕ(~p) for any model Q,

so
∧
i ϕi �M ϕ(~p). By Theorem 15 we get

∧
i ϕi �N ϕ(~p).

Since N �
∧
i ϕi, we get N � ϕ(~p).

(⇐): This follows easily from Lemma 36.

Example 39. Let’s construct a toy example with three two-
dimensional areas, and assume that G = {A,B,C} and that
the following is a visualisation of a geometrical model N :

A

B

C

We will assume that R = {O}. For simplicity let the initial
depth δ of the bintree be 4 and that we start dividing along
the y-axis. If we draw the blocks at the depth 4 over the
geometries, we get
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A

B

C

0000 0010 1000 1010

0001 0011 1001 1011

0100 0101 1100 1110

0101 0111 1101 1111

If we apply Ξ
{O}
4 to the model N we get

Ξ
{O}
4 (N) =

A ≺ {01, 0001, 0011, 1001, 110} ∧ {0101} ≺ A ∧
v1 ≺ A ∧ v1 ≺ {0001} ∧ v2 ≺ A ∧ v2 ≺ {0011} ∧
v3 ≺ A ∧ v3 ≺ {1001} ∧ v4 ≺ A ∧ v4 ≺ {0100} ∧
v5 ≺ A ∧ v5 ≺ {1100} ∧ v6 ≺ A ∧ v6 ≺ {0101} ∧
v7 ≺ A ∧ v7 ≺ {0101} ∧ v8 ≺ A ∧ v8 ≺ {0111} ∧
v9 ≺ A ∧ v9 ≺ {1101} ∧B ≺ {0111, 1101, 1111} ∧
z1 ≺ B ∧ z1 ≺ {0111} ∧ z2 ≺ B ∧ z2 ≺ {1101} ∧
z3 ≺ B ∧ z3 ≺ {1111} ∧ C ≺ {0011, 1001, 0101} ∧
x1 ≺ C ∧ x1 ≺ {0011} ∧ x2 ≺ C ∧ x2 ≺ {1001} ∧
x3 ≺ C ∧ x3 ≺ {0101} ∧ y ≺ C ∧ y ≺ A

The constraints constructed in this section constrain all
elements of G at once, so once we have a solution to these
constraints, the entire procedure can be viewed as a bulk load
insertion. However, a single insert procedure for an element p
can easily be derived from the procedure above. Assume we
have a model Q with correct representations of the elements of
G according to the geometrical model N . Assume we want to
insert p. First, note that to determine the truth of ϕ(~p) in N we
only need to consult N when p is an element of ~p. Everything
else can be decided by querying Q. We would then construct
ψδ :=

∧
rϕ∈Rδ,N�ϕ(p) ξ(ϕ(p)), compute M(p) with respect

to ψδ , and let Rp = {p} ∪ {p′ ∈ G | Q � O(p′,M(p))}.
The constraints we would need to solve to construct correct
representations of G ∪ {p} would then be given by

ψ := ψδ ∧
∧

rϕ∈R∪Rδ


 ∧

~p∈G\Rp,Q�ϕ(~p)
ξ(ϕ(~p))




∧
∧

rϕ∈R


 ∧

~p∈G∩Rp,p∈~p,N�ϕ(~p)
ξ(ϕ(~p))




Note that the only representations of the elements of G that are
affected by the insert of p, must overlap M(p) with respect
to ψδ .

VIII. SOLVING THE CONSTRAINTS

Now that we know which models we are interested in, we
can define an algorithm for solving the constraints. In this
section we will construct a solver that solves the constraints
in polynomial time in size of the number of conjuncts in

the constraints. The space consumption of the returned rep-
resentations are, however, far from optimal, and a solver that
returns optimal representation is left as future work. The solver
presented in this section is therefore mostly to prove that the
problem of finding a minimal solution to a constraint is in the
complexity class PTIME in the size of the constraint graph.

In this section, we will assume that ψ (as a graph) is without
cycles. As cycles only would lead to equal elements, they
can easily be removed under the constraint solving process
by setting in one element that represents all elements in the
cycle. We can then reintroduce them when we have a solution
by setting the solution of each element in the cycle to equal
that of the representing element.

We will also extend our operators and relations to be defined
for ∅, such that we do not always have to check whether results
are empty. We let for any α ∈M:

• α ⊀̇ ∅,
• ∅ ≺̇ α,
• ∅ ⊕ α = α and α⊕ ∅ = α,
• ∅ ⊖ α = ∅ and α⊖ ∅ = α,
• ∅ ⊗ α = ∅ and α⊗ ∅ = ∅.

This makes (M, ≺̇) a lattice. Note that this is a purely
syntactic extension, and is not part of the semantics. We say
that an element is undefined if it is equal to ∅. Note that we
now always get a value from m(α) and M(α).

For our solver, we will need a syntactic way of finding all
β ∈ M(ψ) such that ψ �M O(α, β) for each α ∈ GV(ψ).
This can be done by finding all constants β ∈ M(ψ) such
that either

(i) O(m(α), β),
(ii) M(α) ≺̇ β,

(iii) or there is an element v ∈ Rα≺ ∩Rβ≺.
Using this, we will also be able to syntactically compute the
following necessary function.

Definition 40. Assume ψ is a constraint. Let

Bα¬O :=
⊕

β∈M(ψ),ψ2MO(α,β)

β

and define

M ′(α) :=M(α)⊖Bα¬O
Definition 41. Let ̟ψ : GV(ψ)→ B be a function returning
a unique block of length ⌈log2 |GV(ψ)|⌉ for each α ∈ GV(ψ).

Algorithm 1 Function that finds the minimal solution to ψ.
function solve(ψ)

δ := maxβ∈M(ψ) ∆(β)
for α ∈ GV(ψ) do

σ0(α) := {s ◦ 0 ◦̟ψ(α) | {s} ≺M ′(α), |s| = δ}
for α ∈ GV(ψ) do

σµ(α) := m(α)⊕⊕
α′∈Rψ≺(α)∩GV(ψ) σ0(α

′)
return σµ
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Definition 42. Assume ψ to be an unambiguous, consistent
constraint. Let µ(ψ) be the model induced by solve(ψ) in
algorithm 1.

The main idea behind the function solve is to first construct
an initial substitution σ0 that entails as few relationships
between the objects of ψ as possible, and then propagate the
necessary parts upwards to construct the correct solution σµ.

The first for-loop constructs the initial substitution σ0.
Since ̟ψ returns unique blocks of equal lengths we have
for any γ, γ′ ∈ GV(ψ), that σ0(γ) and σ0(γ

′) are disjoint.
Furthermore, for any α ∈ GV(ψ) and any β, β′ ∈ M(ψ),
we have both σ0(α) ≺̇ β if and only if ψ �M α ≺̇ β and
β′ ⊀̇σ0(α) (for details, see the proof of lemma 44). However,
σ0(α) ≺̇M(α) by construction.

So σ0 constructs representations that entail as few sentences
as possible, and only sentences already entailed by the con-
straints. The second for-loop can now iterate the elements of
GV(ψ) and constructs the correct solution such that every
element contains the elements the constraints force them to
contain. This step is somewhat similar to a more traditional
chase algorithm [4], although instead of adding triples to a
relation, we add blocks to representations.

The next example and the following lemmas and their
accompanying proofs will give the reader a more detailed
insight into the correctness of the algorithm.

Example 43. Assume that G = {A,B,C},

ψ := A ≺ {0} ∧ {01} ≺ B ∧ v ≺ A
v ≺ C ∧ C ≺ B ∧ C ≺ {00, 10}

and that

̟ψ(A) = 00 ̟ψ(B) = 01

̟ψ(C) = 10 ̟ψ(v) = 11

(since ⌈log2 |GV(ψ)|⌉ = ⌈log2 4⌉ = 2). We will now go
through each step of the computation of µ(ψ):

(i) First, δ = maxβ∈M(ψ) ∆(ψ) = 2.
(ii) We continue by computing M(A) = {0} and BA¬O =
{01}. Now M ′(A) = M(A) ⊖ BA¬O = {00}. Hence
σ0(A) = {00 ◦ 0 ◦ 00} = {00000}.
Computing the same for B,C and v, we get σ0(B) =
{00001, 01001, 10001, 11001}, σ0(C) = {00010, 10010}
and σ0(v) = {00011}.

(iii) We can now compute σµ. So

σµ(A) = m(A)⊕ σ0(A)⊕ σ0(v)
= ∅ ⊕ {00000} ⊕ {00011}
= {00000, 00011}

Doing the same for B,C and v, we get
σµ(B) = {01, 0001, 00001, 10001, 10010, 11001},
σµ(C) = {0001, 10010} and σµ(v) = {00011}.

We can now see that e.g. O(σµ(A), σµ(C)) and that σµ(C) ≺̇
σµ(B), but ¬O(σµ(A), {01}).

Lemma 44. Assume ψ is a consistent, unambiguous con-
straint. We have for any α, β ∈ E(ψ) that

ψ �M α ≺ β ⇔ σµ(α) ≺̇ σµ(β)

where σµ results from solve(ψ).

Proof. (⇒): This is easy to see from the construction of σµ.
(⇐): We will prove the contrapositive through proof by

contradiction. So assume ψ 2M α ≺ β, but σµ(α) ≺̇ σµ(β).
We have that

σµ(α) = m(α)⊕ σ0(α)⊕ σ0(α1)⊕ · · · ⊕ σ0(αn)
σµ(β) = m(β)⊕ σ0(β)⊕ σ0(β1)⊕ · · · ⊕ σ0(βm)

for α1, . . . , αn where ψ �M αi ≺ α for each αi, and
β1, . . . , βm where ψ �M βi ≺ β. It must therefore be the
case that σ0(α) ≺̇ m(β) ⊕ σ0(β) ⊕ σ0(β1) ⊕ · · · ⊕ σ0(βm).
Since ψ 2M α ≺ β there is no βi = α. We now have three
cases: Either α ∈ GV(ψ) and β ∈ M(ψ); α ∈ M(ψ) and
β ∈ GV(ψ); or lastly, both α, β ∈ GV(ψ).

In the first case, we have that σµ(β) = β, because for every
βi, we have that σ0(βi)≺̇M(βi)≺̇β. So σ0(α)≺̇β. However,
since σ0(α) contains only blocks that have a prefix among the
blocks of M(α)⊖Bα¬O, it must be the case that M(α)⊖Bα¬O≺̇
β. This further implies M(α) ≺̇ β ⊕ Bα¬O. Since M(α) ≺̇ β
implies ψ �M α ≺ β we must have M(α) ⊀̇ β. Furthermore,
ψ �M O(α, β), since if not then β≺̇Bα¬O and σ0(α)≺̇M(α)⊖
Bα¬O. However, M(α) ≺̇ β ⊕ Bα¬O, M(α) ⊀̇ β and ψ �M
O(α, β) implies that ψ is ambiguous, which is a contradiction.

In the second case, we have that σµ(α) = α. We cannot
have α ≺̇ m(β), since this would imply ψ �M α ≺ β.
Hence, α ≺̇ σ0(β) ⊕ σ0(β1) ⊕ · · · ⊕ σ0(βm). Since σ0(β)
and each σ0(βi) are all constructed of blocks at depth that
of δ + 1 + ⌈log2 |GV(ψ)|⌉, they can therefore not sum up to
an element containing any block with depth less than that of
1+maxβ∈M(ψ) ∆(β). Hence, α cannot be part of such a sum,
so we have arrived at a contradiction.

In the third case, we know that for any γ, γ′ ∈ GV(ψ),
by the uniqueness and length of ̟ψ(γ) and ̟ψ(γ

′), we have
that σ0(γ), σ0(γ′) are disjoint. So for σ0(α)≺̇m(β)⊕σ0(β)⊕
· · · ⊕ σ0(βm) to hold, we must either have σ0(α) ≺̇m(β), or
that there is a βi where α = βi (by = we mean that they
denote the same element in the constraints). For the first case,
we can argue similarly as in the first case of the proof and
arrive at a contradiction, and in the second case we would
have ψ �M α ≺ βi, which implies ψ �M α ≺ β, which also
is a contradiction.

Lemma 45. Assume ψ is a consistent, unambiguous con-
straint. We have for any α1, . . . , αn ∈ E(ψ) that

ψ �M ∃v(v ≺ α1 ∧ · · · ∧ v ≺ αn)⇔
σµ(α1)⊗ · · · ⊗ σµ(αn) ∈M

where σµ results from solve(ψ).

Proof. For ∃v(v ≺ α1 ∧ · · · ∧ v ≺ αn) to hold in all
models of ψ, all of the αis must always share some common
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part. This common part must either be a constant, in case
of overlapping lower limits, or a variable explicitly set to
be a predecessor of all αi in ψ∗. So ψ �M ∃v(v ≺
α1 ∧ · · · ∧ v ≺ αn) holds iff either

⊗n
i=1m(αi) ∈ M or

∃v ∈ GV(ψ) ((∧n
i=1 v ≺ αi) ∈ ψ∗). All other cases can be

reduced to one of the two.
Since all σ0(α) are disjoint, for

⊗n
i=1 σµ(α) ∈M to hold,

we must have that either
⊗n

i=1m(αi) ∈ M, or that there is
some α ∈ GV(ψ) s.t. σ0(α) is a part in each of the sums
σµ(αi). However, the last case holds iff (

∧n
i=1 α ≺ αi) ∈

ψ∗.

Theorem 46. Assume ψ is a consistent, unambiguous con-
straint. Then µ(ψ) is a minimal model.

Proof. By construction of σµ it must be a solution to ψ when
ψ is consistent, that is ψσµ is valid. Furthermore, since µ(ψ)
is induced by a solution to ψ, it is a model of ψ. Since µ(ψ) is
a model of ψ for consistent ψ, by definition of entailment of
a constraint, it must be the case that ψ �M ϕ⇒ µ(ψ) �M ϕ.

It remains to prove µ(ψ) �M ϕ ⇒ ψ �M ϕ. Without
loss of generality we can assume that ϕ ≡ ∧

i α
′
i ≺ β′

i ∧
∃~v . ∧j αj ≺ βj , where α′

i, β
′
i ∈ G(ψ) ∪M(ψ) for each i,

and αj , βj ∈ G(ψ) ∪M(ψ) ∪ V for each j. By Lemma 44
we have that ψ �M α ≺ β ⇔ µ(ψ) �M α ≺ β, for α, β ∈
G(ψ) ∪ M(ψ), so it remains to prove the result for ϕ′ ≡
∃~v . ∧j αj ≺ βj .

We will prove this contrapositively, so assume ψ 2M
∃~v . ϕ′. Then there must be at least one model Q where
Q � ¬∃~v . ϕ′. We can compute the upper and lower bounds
of each variable vi from ~v in ϕ′, M(vi) and m(vi) resp.,
in the same manner as for the constraints. We then have
M(vi) =

⊗
i ci ⊗

⊗
j αj , where ci ∈M(ϕ′), αj ∈ G(ϕ′) are

the constants set greater than vi in (ϕ′)∗. Since Q � ¬∃~v . ϕ′

it must be the case that either there is some vi ∈ ~v s.t. M(vi)
is undefined, or m(vi) is defined for at least one vi (if
not then M(vi) would be valid solution of vi) and that
Q � m(vi) ⊀M(vi).

In the first of the two cases, we have ψ 2M ∃v(
∧
i v ≺ αi)

where the αis are successors of vi in ϕ′. By Lemma 45 we
then have that

⊗
i σµ(αi) /∈M, so µ(ψ) 2M ∃~v . ϕ′.

In the second of the two cases, we must have m(vi) =⊕
i ki ⊕

⊕
j βj where ki ∈ M(ϕ′), βj ∈ G(ϕ′) are the

elements set to be part of vi in (ϕ′)∗. For Q � m(vi) ⊀M(vi)
to be the case, there must be at least one pair of elements
γ, γ′ ∈ G(ϕ′) ∪ M(ϕ′) such that γ = ki or γ = βj and
γ′ = ci or γ′ = αj , but where Q � γ ⊀ γ′. However, this
implies ψ 2M γ ≺ γ′. Since γ, γ′ ∈ G(ψ) ∪ M(ψ), we
have by Lemma 44 that µ(ψ) 2 γ ≺ γ′, and furthermore,
µ(ψ) 2 ∃~v . ϕ′.

IX. IMPLEMENTATION IN RELATIONAL ALGEBRA AND
OTHER QUERY LANGUAGES

Now we have seen when it is possible to solve mereolog-
ical constraints, and how one can construct such solutions.
However, apart from proving the existence of sums, prod-
ucts and differences of our representations, an algorithm for

constructing representations from constraints, and a proof of
correctness, we still have not addressed how the mereological
relations actually can be evaluated over a relational database
containing these representations. In this section these details
will be outlined.

We will assume that a mereological model Q is imple-
mented as a relation Q s.t. Q(s, a) iff s ∈ aQ. Representing
our bintree blocks as bit-strings was natural for theoretical
treatment. However, in this section we will assume them to
be integers, as this is a more natural representation for actual
implementation. We will still have that a block s1 is part of
a block s2 if s2’s bit-representation is a prefix of s1’s bit-
representation.

We will start by defining the 2-relation in a more procedural
manner adopting this new representation of our blocks:

s2 s′ := (s′ = (s≫ |s| − |s′|))

where |s| := 1+⌊log2 s⌋ is the length of the bit-representation
of the integer s, and ≫ is right bit-shift.

We can now use 2 to compute ≺ over elements of Q as

≺:= (π2(Q)× π2(Q)) −
π1,3((Q× π2(Q))− π1,2,4(σ123(Q×Q)))

where π~I , σϕ,× are all from standard relational algebra (see
e.g. [4]), and is projection, selection and cross-product of the
tuples in relations, respectively. Note that ⊀:= π1,3((Q ×
π2(Q))− π1,2,4(σ123(Q×Q)).

If we want to compute a window query, that is, a query
with a constant β ∈M, then we have

X ≺ β := π2(Q)− π2(Q− π1,2(σ123(Q× β)))
β ≺ X := π2(Q)− π2(Q− π2,3(σ122(β ×Q)))

We could easily translate a numerically represented geometry
to an element ofMδ by using a standard bintree construction,
and then use this element in a window query. Since all
elements of Q are correctly represented according to Rδ our
system would return the correct answers with respect to a
resolution of δ.

There is also another suitable representation of our blocks,
which allows us to get rid of the computation of the logarithm
in 2. This representation stores the depth of each bit-string
along with the bit-string, such that each block is a pair (l, s)
where l is the length and s is the bit-string. This second
representation allows for the simpler definition of 2:

(l, s) 2 (l′, s′) := (s′ = (s≫ l − l′))

We would then have Q as a relation of arity 3, such that
Q(l, s, a), and must then update the projections in the defini-
tion of ≺ accordingly.

Intersection ⊗, union ⊕, and complement of bintrees is
implemented and discussed in [6]. Their implementations all
have a linear complexity in the size of the blocks in their
arguments. We use intersection and complement to define
difference in the standard way, a⊖ b := a⊗ b−1.
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To compute our mereological relations over Q, we have to
get rid of the existentially quantified variables, as they actually
do not denote an object in the database but rather an object
of M. To do this we can just substitute each variable v with
the intersection of constants and free variables denoting its
maximum bound M(v). The entire query will then look like∧
i αi ≺

⊗
j βi,j , where all αi are elements of G ∪M ∪ V

and free variables that ranges over G, and βi,j are elements
of M ∪ G or free variables over elements of G. Whenever
αi ∈ V , we can rewrite αi ≺

⊗
j βi,j to EXISTS(

⊗
j βi,j),

where EXISTS test whether its argument is empty (and is a
standard keyword in SQL). If we assume that I contains all
indices i where αi ∈ V and I ′ the rest, the entire query can
be rewritten to

∧

i∈I
EXISTS(

⊗

j

βi,j) ∧
∧

i∈I′

∧

j

αi ≺ βi,j

In Datalog with negation, assuming we have the imple-
mentation of 2 as above (either in an arithmetic extension
of Datalog or as an external predicate) ≺ is defined by the
following rule:

≺(X,Y )← not(Q(S,X),not(Q(S′, Y ),2(S, S′))) .

assuming Q(s, a) iff s ∈ aQ, as above.
In SPARQL, ≺ could be implemented as :partOf as

CONSTRUCT { ?a :partOf ?b . }
WHERE
{

?a a :Geo .
?b a :Geo .
FILTER NOT EXISTS
{
?s :Q ?a .
FILTER NOT EXISTS
{

?s2 :Q ?b .
FILTER (?s <= ?s2)

}
}

}

assuming 2 is implemented as <=, and s :Q p iff s ∈ pQ.

X. COMPLEXITY

We will now turn to the actual complexity of computing
our minimal model µ(ψ) and the space complexity of the final
representations.

Theorem 47. Assume ψ is a consistent, unambiguous con-
straint with. Let n = |E(ψ)|, m be the number of conjuncts in
ψ and k be the largest cardinality of any element of M(ψ).
The time complexity of computing µ(ψ) is O(m3 + n2k).

Proof. We have that the algorithmic complexity of computing
• a⊕ b, a⊗ b and a⊖ b are all O(k) [6],
• a ≺̇ b is O(k) (can be reduced to checking a⊗ b = a),
• the transitive closure of a graph is O(m3) [7],
• M(α) is O(n2k) for each α,
• m(α) is O(n2k) for each α,
• ψ∗ is O(m3 + n2k),

• the set of elements that are forced to overlap α (given
ψ∗) is O(n2k) for each α,

• Bα¬O (given ψ∗) is O(n2k) for each α,
• M ′(α) (given ψ∗) is O(n2k) for each α.

This means that the complexity of computing each of the
for-loops in the algorithm, assuming that we already have
computed ψ∗, and Bα¬O, M(α) and m(α) for each α, is
O(nk), and O(nk), giving a combined complexity of O(m3+
n2k).

Lemma 48. Assume ψ is a consistent unambiguous constraint
with a fixed maximum depth δ. Let n = |GV(ψ)∪M(ψ)| and
m = |G(ψ)|. We have that the storage space required by the
representations returned from µ(ψ) is bound by O(mn log n).
Proof. Every σ0(α) will after the first for-loop use 2δ−1(δ +
1+ ⌈log2 n⌉) bits of storage. m(α) can take up n2δ−1 space,
which means that each σµ(α) can, worst case, use n2δ−1 +
n2δ−1(δ+1+⌈log2 n⌉) bits. This means that the entire model
of the m elements of G, µ(ψ), has a space consumption bound
by O(mn log n) (for a fixed δ).

The depth only decides the resolution of the constraining
constants, so we can easily set a maximum depth for most
applications.

Note that the space needed to store the representations from
solve depends on the size of the graph. The size of the graph
depends on the number of witnesses variables we introduce,
so the size of our representations will depend on the number
of tuples in the relations, just like the naive solution. In the
next section, we will outline a solution to this, which we are
currently working on.

XI. CONCLUSION AND FUTURE WORK

We have seen that we can in polynomial time construct
sound and complete index structures. These structures allow
us to pose mereological queries over objects over a normal
relational database.

Our fist priority is to find a solution returning optimal
representations. We are currently working on a solver using
the transitive closure compression scheme from [8]. This
algorithm assigns a number and a set of intervals to each
node in directed acyclic graphs. The intervals of each node
contains the numbers of this node’s reachable nodes. In the
paper, they also describe how one can obtain optimal com-
pression schemes. Our idea is to use this optimal compression
scheme and assign optimal representations from M to the
intervals in the compression scheme. We think this would give
representations of size O(n2 log n) where n = |G|. Another
potential optimisation is based on the observation that we do
not really need to construct σ0(α) for all α ∈ GV(ψ). In fact,
it seems that we only need to construct σ0 for ≺-minimal
elements in the graph, and elements α ∈ GV(ψ) that has
exactly the same ≺-predecessors as another element in GV(ψ).
Furthermore, there might be many redundant variables and
edges in the constraint graph that we can remove, e.g. all
variables v ∈ V(ψ) where there exists an element α ∈ GV(ψ)
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such that Rψ≺(v) ⊆ Rψ≺(α) and Rψ≻(v) ⊆ Rψ≻(α) is redundant
and can be removed from the constraints.

In the future, we also plan to make an implementation of the
system, such that we can test the actual performance over real
data. We also want to extend the system to include a touching-
relation and a projection function. The first of the two will
allow us to express mereotopological relations and constraints.
With such a system one could formalise interesting calculi
like RCC8 [5] and Allen’s Interval Algebra [9]. There has
also been done work on touching relations on quad-trees [10],
which should be easy to generalise to bintrees.

With a projection function, we can represent geometries that
change shape, size and location over time. Such a function
is very easy to implement, as projecting a block down one
dimension only involves removing the i’th bit in each n-bit
sequence of the block. It is not trivial, however, to construct
a solution of a constraint that constrains objects in different
dimensions.

If we combine the two extensions, we can construct cor-
rect mereotopological representations of spatio-temporal ge-
ometries, and the much more expressive corresponding base
relations.

Another interesting research topic is whether it is possible to
extend the expressiveness of our query language beyond con-
junctive queries to other first order query languages, without
losing feasibility of solving the constraints.
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Abstract—The authors investigate the properties of first-order
logic having its semantics based on a generalized (partial)
approximation of sets. The goal of the investigation in this
article is to compare the classical first-order semantics with a
partial and lower approximation-based one. The idea is that
lower approximation represents the reliable knowledge, so the
reasoning used by the lower approximation may be valid or
may be valid with some limitations. First, the authors show
an experimental result which confute the previous supposition
and the result of an algorithm which generates refutations for
some well-known valid arguments: the 12 syllogisms of Aristotle.
We think that these syllogisms represent the most common
usage of categorical statements. A language with single-level
quantification is constructed, as syllogisms can be formalized
using this language. Based on the experimental results, the
authors suggest some modifications of the semantics if the goal
is to approximate the classical case.

I. INTRODUCTION

THE rough set theory gives the ability to construct dif-
ferent first-order logical systems (see [1], [2]). By the

generalization1 of rough set theory, the truth domain of a
formula can be approximated using a partial approximation
of sets. The authors introduced earlier a tool-based system
as the semantical basis of a generalized first-order logic [5].
The introduced language let us use more than one kind of
approximation and allowed it in the language level — with
approximative sentence functors — to mix the crisp and rough
evaluation. This rich language was very different from the
classical case; furthermore, many of the classical rules — such
as modus-ponens — failed when they were combined with
the approximative functors. In this work, we focus only to the
lower approximation of sets (later the lower approximation of
truth domains) because of the naïve idea that while the upper
approximation represents possibility, the lower approximation
represents certainty.

We are eager to know whether what we conclude using the
approximation is equal to what we conclude using the classical
first-order reasoning. Whether it is possible to formulate some
conditions which guarantee the validity of the results made by
the approximation.

1Different generalizations of rough set theory (see [3]) and granular
computing play a crucial role in computer sciences (see, e.g. in [4]).

The investigation starts with an experiment, testing some
well-known valid arguments, the 12 syllogisms of Aristotle.
These syllogisms were chosen in order to represent the most
common usage of categorical statements. In the experiment,
we use a simplified language which gives us the ability to
formalize the syllogisms and test their validity using a lower
approximation-based semantics. The language is restricted to
single-level quantification only, but it is still expressive enough
to formalize categorical statements. Initially, this semantics
is defined in the same way as in the tool-based first-order
case, but restricted only to the lower approximation. Later, we
suggest some modifications in the semantical level to ensure
the validity of the classical arguments.

II. ARISTOTLE’S SYLLOGISMS

Aristotle’s syllogisms are valid reasoning, constructed from
three sentences: two premises and one conclusion. The
premises are usually categorized into four types: [6]

• a-type ∀x(p1(x) ⊃ p2(x))
• i-type ∃x(p1(x) ∧ p2(x))
• e-type ¬∃x(p1(x) ∧ p2(x))
• o-type ∃x(p1(x) ∧ ¬p2(x))

Each statement contains two from three predicates — usually
denoted by p, s,m — and each predicate appears in exactly
two statements.

1st figure 2nd figure 3rd figure
m− p
s−m
s− p

p−m
s−m
s− p

m−p
m−s
s−p

premise
premise
conclusion

For example, the syllogism called Barbara contains only
a-type premises and a-type conclusion:

∀x(m(x) ⊃ p(x)), ∀x(s(x) ⊃ m(x)) |= ∀x(s(x) ⊃ p(x))

During the investigation, we focus on the syllogisms from
the first 3 figures, and we do not take care of those which
require an existential pre-supposition, only the remaining 12:

• 1st figure: Barbara, Celarent, Darii, Ferio
• 2nd figure: Cesare, Camestres, Festion, Baroco
• 3rd figure: Disamnis, Datisi, Bocardo, Ferison
There were several similarities in the results, that is why this

article presents only those which belong to the first figure. All
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of them are valid in the classical case, and now the question
is: could we create any refutations using lower approximations
only?

III. SIMPLIFIED PARTIAL FIRST-ORDER LOGIC BASED ON
SET APPROXIMATION

In this section, we would like to introduce a simplified first-
order language, expressive enough to formalize the syllogisms.

A. First-Order Language

Let 〈LC, V ar, Con, Tool, Form〉 be a simplified first-order
language, where:

• logical constant symbols LC = {¬,∧,⊃, ∃, ∀, (, )},
• variables V ar = {x}, note that one variable is enough,
• nonlogical constant symbols Con = {p1, p2, · · · , pn},

where n ≥ 1,
• set of tools Tool = {t1, t2, · · · , tk}, where k ≥ 1.
The formulas of the language are given by the following

definition:
1) Let QF be the set of quantification-free expressions, so

that
a) p(x) ∈ QF — and it is atomic — if p ∈ Con,
b) ¬A ∈ QF if A ∈ QF ,
c) (A ∧B) ∈ QF and (A ⊃ B) ∈ QF

if both A ∈ QF and B ∈ QF

2) The set Form is given by the following inductive
definition:

a) ∀xA ∈ Form and ∃xA ∈ Form if A ∈ QF
b) ¬A ∈ Form if A ∈ Form,
c) (A ∧B) ∈ Form and (A ⊃ B) ∈ Form

if both A ∈ Form and B ∈ Form

Note that the language is restricted to unary predicates (that
is, they are monadic) and single-level quantification. So we
define a fragment of the first-order logic which is decidable.
The disjunction symbol ∨ is also missing from the language,
it is not necessary to formalize the syllogisms later, but this
is not a real restriction.

B. Partial Approximation of Sets

The ordered 5–tuple 〈U,B,DB, l, u〉 is a general partial
approximation space2 if

1) U is a nonempty set;
2) B ⊆ 2U \ ∅, B 6= ∅;
3) DB is an extension of B, i.e., B ⊆ DB, such that

∅ ∈ DB; and
⋃

B ∈ DB for all B ⊆ B
4) the functions l and u form a Pawlakian approximation

pair 〈l, u〉, i.e.,
a) the lower approximation of an S ∈ 2U set is

l(S)
def
= ∪{B : B ∈ B and B ⊆ S};

b) the upper approximation of an S ∈ 2U set is

u(S)
def
= ∪{B : B ∈ B and B ∩ S 6= ∅}.

2One of the most general notion of weak and strong approximation pairs
can be found in Düntsch and Gediga [7].

The Pawlakian approximation pair was chosen because
it is very well-known and most widely used. For other
solutions see [8].

C. Interpretation

The 〈U, ̺〉 pair is an interpretation of the language
〈LC, V ar, Con, Tool, Form〉 if

• U is a nonempty set of objects, and
• ̺ : Con ∪ Tool → 2U is a mapping, and
• ̺(ti) 6= ∅ for all i ∈ {1, ..., k}.

The ̺ mapping assigns a truth domain to each nonlogical
constant symbol and a nonempty truth domain to the tools.

D. Semantic Rules

Let 〈U,B,DB, l, u〉 be a general partial approximation
space generated by the 〈U, ̺〉 interpretation of a given
〈LC, V ar, Con, Tool, Form〉 simplified first-order language.
The ̺ mapping and the Tool set generate the approximation
space:

B = {̺(t) : t ∈ Tool}

No sentence functors appears in the language level. But the
semantic value of a formula [[F ]]〈U,̺〉 and the semantic value
of the quantification-free expressions [[Q ]]

〈U,̺〉
x 7→u are defined

based on the lower approximation.
Let

w¬,
w⊃,

w∧ be weak Kleene connectives [9], such that
w¬
0 1
1 0
2 2

w⊃ 0 1 2
0 1 1 2
1 0 1 2
2 2 2 2

w∧ 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

Our selection fell on Kleene’s weak connectives because of
the idea to keep the truth value gap. It was the basis of the
semantics defined later for quantifiers too.

1) The semantic value of an atomic expression p(x) ∈ QF
using a given interpretation 〈U, ̺〉 and a variable assign-
ment x 7→ u where u ∈ U :

[[ p(x) ]]〈U,̺〉
x 7→u

def
=





1 if u ∈ l(̺(p))

0 if u ∈ l(U \ u(̺(p)))
2 otherwise

(1)

where the 〈l, u〉 approximation pair belongs to the ap-
proximation space generated by the Tool and 〈U, ̺〉.

2) The semantic value of quantification-free expression is
defined recursively

[[¬A]]〈U,̺〉
x 7→u

def
=

w¬ [[A]]〈U,̺〉
x 7→u

[[(A ⊃ B)]]〈U,̺〉
x 7→u

def
= [[A]]〈U,̺〉

x 7→u

w⊃ [[B]]〈U,̺〉
x 7→u

[[(A ∧B)]]〈U,̺〉
x 7→u

def
= [[A]]〈U,̺〉

x 7→u

w∧ [[B]]〈U,̺〉
x 7→u

3) The semantic value of a formula from Form
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TABLE I
ARISTOTLE’S SYLLOGISMS — THE FIRST FIGURE

Syllogism first premise second premise conclusion

Barbara a-type m, p a-type s,m a-type s, p

∀x(m(x) ⊃ p(x)) ∀x(s(x) ⊃ m(x)) ∀x(s(x) ⊃ p(x))

Celarent e-type m, p a-type s,m e-type s, p

¬∃x(m(x) ∧ p(x)) ∀x(s(x) ⊃ m(x)) ¬∃x(s(x) ∧ p(x))

Darii a-type m, p i-type s,m i-type s, p

∀x(m(x) ⊃ p(x)) ∃x(s(x) ∧m(x)) ∃x(s(x) ∧ p(x))

Ferio e-type m, p i-type s,m o-type s, p

¬∃x(m(x) ∧ p(x)) ∃x(s(x) ∧m(x)) ∃x(s(x) ∧ ¬p(x))

[[∀xA]]〈U,̺〉 def
=





2 if [[A]]
〈U,̺〉
x 7→u = 2 for all u ∈ U,

0 if there is an u ∈ U,

where [[A]]
〈U,̺〉
x 7→u = 0,

1 otherwise.

[[∃xA]]〈U,̺〉 def
=





2 if [[A]]
〈U,̺〉
x 7→u = 2 for all u ∈ U,

1 if there is an u ∈ U,

where [[A]]
〈U,̺〉
x 7→u = 1,

0 otherwise.

where A ∈ QF .

[[¬A]]〈U,̺〉 def
=

w¬ [[A]]〈U,̺〉

[[(A ⊃ B)]]〈U,̺〉 def
= [[A]]〈U,̺〉 w⊃ [[B]]〈U,̺〉

[[(A ∧B)]]〈U,̺〉 def
= [[A]]〈U,̺〉 w∧ [[B]]〈U,̺〉

where A,B ∈ Form.

IV. EXPERIMENTAL RESULTS

If we have |U | = 4, then the number of different interpre-
tations is:
(
2|U |

)3

·
(
2(2

|U|−1) − 1
)
= 4096 · 32 767 = 134 213 632,

where the number of different approximation spaces is 32 767
(where the members of the Tool set has different ̺(t)
nonempty truth domain), and there exists 4 096 different
interpretation for Con = {p, s,m}. With such a small U ,
there is an efficient way to implement the formula evaluation.
The idea is that if there is a given 〈U, ̺〉 interpretation, we
can generate the truth domain and falsity domain for each
predicate before the evaluation.

Let us define the truth and falsity domain of an atomic
formula in the classical case

[ p ]
+
= ̺(p) and [ p ]

−
= U \ ̺(p) if p ∈ Con ∪ Tool

and in case of the introduced semantics (with the lower
approximation based on (1))

[↓p
]+ def

= l(̺(p))

=
{
u ∈ U : [[ p(x) ]]

〈U,̺〉
x 7→u = 1

}

[ ↓p
]− def

= l(U \ u(̺(p)))

=
{
u ∈ U : [[ p(x) ]]

〈U,̺〉
x 7→u = 0

}

While the set [ p ]
+ denotes the truth domain of p in

case of classical semantics, the
[↓p

]+
represents the lower

approximation of this truth domain. Note that
[ ↓p

]+ ⊆ [ p ]
+

and
[ ↓p

]− ⊆ [ p ]
−. Earlier — in [5] — we defined not

only a lower approximation-based semantics but also a first-
order language with lower and upper approximative sentence
functors denoted by ↓ and ↑. Now we focus only on the lower
approximation, supposing that is represents certainty.

The Java code sample shows the implementation of the
semantics in the case of the ∀ quantifier and in the case of the
∧ connective. The syllogisms are transformed into a postfix
form. For example, in case of Barbara:

∀x(m(x) ⊃ p(x)), ∀x(s(x) ⊃ m(x)) |= ∀x(s(x) ⊃ p(x))

is valid, and so

∀x(m(x) ⊃ p(x)) ∧ ∀x(s(x) ⊃ m(x)) ∧ ¬∀x(s(x) ⊃ p(x))

is unsatisfiable. The last formula is converted to a string
representation as "mp>Asm>A&sp>A-&", where ⊃, ∧, ¬,
and ∀ is replaced with >, &, -, and A, respectively.

The algorithm uses a pair of stacks to evaluate the postfix
expression, one (sfd integer array) for falsity domain, and
another (std integer array) for truth domain. sp refers to the
top of the stack. The

[ ↓p
]+

and
[ ↓p

]−
sets are represented

by the ptd[’p’] and pfd[’p’] integers. Each set data
structure is represented as a bit array stored in an integer.

A. Refutations for the First Figure

The table (cf. table II) summarizes the results showing the
number of refutations for the syllogisms. It was not necessary
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TABLE II
NUMBER OF REFUTATIONS FOR THE FIRST FIGURE

Number of
interpretations

Number of
approximation

spaces
Barbara

Celarent,
Darii, Ferio

Total 134 213 632 32 767 121 536 227 232

|Tool| ≤ 3 2 355 200 575 4 728 9 576

|Tool| ≤ 2 491 520 120 912 912

covering 132 288 512 32 297 117 696 219 936

not covering 1 925 120 470 3 840 7 296

disjoint tools 208 896 51 1 104 1 104

[ p ]+ 6= ∅ ∀p ∈ Con 64 139 967 32767 110448 193776

[ p ]− 6= ∅ ∀p ∈ Con 689 831 32 767 12 168 25 716

[ p ]+ 6= ∅ ∧ [ p ]− 6= ∅ ∀p ∈ Con 229 940 2 680 1368 10 608

̺(p) 6= ̺(t) ∀t ∈ Tool,∀p ∈ Con 5 18 720 30 580 540 4 752

Algorithm 1 Calculating the truth value of a formula in Java

s w i t ch ( n e x t ) { / / n e x t char o f p o s t f i x f o r m u l a
cas e ’A’ : / / f o r a l l

sp−−; / / pop an argument
a f d = s f d [ sp ] ;
a t d = s t d [ sp ] ;
/ / push t h e r e s u l t
s f d [ sp ] = ( a f d & mask ) != 0 ? mask : 0 ;
s t d [ sp ] = ( a t d & mask ) != 0

&& ( a f d & mask ) == 0 ? mask : 0 ;
sp ++;
break ;

cas e ’&’ : / / c o n j u n c t i o n
sp−−; / / pop an argument
i n t r f d = s f d [ sp ] ;
i n t r t d = s t d [ sp ] ;
sp−−; / / pop an argument
i n t l f d = s f d [ sp ] ;
i n t l t d = s t d [ sp ] ;
/ / push t h e r e s u l t
s f d [ sp ] = ( l f d & ( r f d | r t d ) )

| ( r f d & ( l f d | l t d ) ) ;
s t d [ sp ] = l t d & r t d ;
sp ++;
break ;

/ / . . . o t h e r c o n n e c t i v e s . . .

d e f a u l t : / / an atom
s f d [ sp ] = pfd [ n e x t ] ;
s t d [ sp ] = p t d [ n e x t ] ;
sp ++;
break ;

}

to show all the 12 (only those which belong to the first
figure), because the same number of refutations appears in
the cases of Barbara, Baroco, and Bocardo, as well as in all
of the other cases (Celarent, Darii, Ferio, Cesare, Camestres,
Festion, Disamnis, Datisi, and Ferison). The upper half of
the table summarizes the tested conditions defined on the
approximation space. The restrictions on the Tool set take
their effect on the generated approximation space:

• by restricting the number of different tools to at most 3,
• or at most 2,
• using a covering approximation space U =

⋃
t∈Tool

t,

• or even a noncovering one,
• or by using tools with disjoint truth domain only.

The outcome achieved is not exactly we had hoped for. The
number of approximation spaces decreases, but there still exist
some interpretations where the syllogisms do not hold.

In the lower half of the table, there are some restrictions
on the interpretation of the predicates (the members of the
Con set). Here, the number of approximation spaces can be
lower than 32 767 only if there are some approximation spaces
where none of the interpretations satisfy the condition:

• the truth domain of the lower approximated predicates
must not be empty,

• the falsity domain of the lower approximated predicates
must not be empty,

• neither the truth domain nor the falsity domain of the
lower approximation of the predicates are empty,

• there is no predicate which is also a tool.

p s m t1 t2 t3
↓p ↓s ↓m

u1 0 0 0 1 0 0 0 0 0
u2 1 0 0 0 1 0 1 0 0
u3 0 1 1 0 0 1 2 1 1
u4 1 1 1 0 0 1 2 1 1

The above example shows an interpretation which is a
refutation for all of the followings: Darii, Ferio, Festion,
Datisi, and Ferison. Note that the approximation space is
covering, each approximated predicate has nonempty truth
domain and nonempty falsity domain. The column title p is
an abbreviation for |p(x)|〈U,̺〉

x 7→u , and ↓p is for [[p]]〈U,̺〉
x 7→u .

B. How to Create Refutations?

The presented experimental results show that the lower
approximation and the three-valued — two-valued but with
truth value gap — semantics could not represent irrefutable

38 PROCEEDINGS OF THE LQMR WORKSHOP. WARSAW, 2015



t2

t1

U

p

Fig. 1. Illustration of an approximation space

knowledge. In this section, we show a simple way to construct
a formula which is easy to refute.

Now our goal is to construct a formula A such that [[A]] = 1
but [A] = 0. It is enough to create a sentence which is about
objects that exist but are outside of the lower approximation.

Let P = {p1, · · · , pn} and N = {pn+1, · · · , pn+m} be
disjoint sets of predicates, such that n +m ≥ 1. Let S ⊆ U
be a set, where

1) S =

(
n⋂

i=1

[ pi ]
+

)
∩
(

m⋂
i=n+1

[ pi ]
−
)

6= ∅

2) S ∩
(

n⋂
i=1

[↓pi
]+

)
∩
(

m⋂
i=n+1

[↓pi
]−

)
= ∅

3)
n+m⋂
i=1

([↓pi
]+ ∪

[↓pi
]−) 6= ∅

Since the set S is not empty,

|¬∃x(p1(x) ∧ · · · ∧ pn(x)∧
∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))| = 0,

but — because of the second criterion — the set is hidden for
the lower approximation. It causes

[[¬∃x(p1(x) ∧ · · · ∧ pn(x)∧
∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))]] 6= 0.

The third criterion ensures computability. In other words,
it avoids the truth value gap, so the existentially quantified
formula must have a truth value other than 2. As a result,

[[¬∃x(p1(x) ∧ · · · ∧ pn(x)∧
∧ ¬pn+1(x) ∧ · · · ∧ ¬pn+m(x))]] = 1.

C. Example

Let 〈U, ̺〉 be an interpretation — illustrated by Fig. 1 —
for a language with Con = {p, t1, t2} and Tool = {t1, t2}.

Let S be a set in connection with the approximation space
such that P = {p} and N = {t2}.

1) S = [ p ]+ ∩ [ t2 ]
− and S 6= ∅

2) S ∩ [↓p ]+ ∩ [↓t2 ]− = S ∩ [ t2 ]
+ ∩ [ t1 ]

+ = ∅

3) ([↓p ]+ ∪ [↓p ]−) ∩ ([↓t2 ]+ ∪ [↓t2 ]−) =
([ t2 ]

+ ∪ [ t1 ]
+) ∩ ([ t2 ]

+ ∪ [ t1 ]
+) 6= ∅.

The formula created from the sets P and N is

¬∃x (p(x) ∧ ¬t2(x)) ,
which is false in the classical case. There are some objects in
S = ̺(p)∩(U \̺(t2)) 6= ∅, but the lower approximation hides
them. Even in the very simple case, which is illustrated by 1, it
was easy to show that |A| = 1 is not the logical consequence
of [[A]] = 1.

A sample 〈U, ̺〉 interpretation in a connection with
Fig. 1. can be

̺(p) = {u2, u3}, ̺(t1) = {u4}, ̺(t2) = {u3}
p t1 t2

↓p ↓t1 ↓t2
u1 0 0 0 2 2 2
u2 1 0 0 2 2 2
u3 1 0 1 1 0 1
u4 0 1 0 0 1 0

in case of U = {u1, u2, u3, u4}.

V. RELEVANCE OF THE LOWER APPROXIMATION

In this section, we summarize the conditions of stating that
|A| = 1 is a logical consequence of [[A]] = 1. The conditions
are formalized in a form of fractions, like,

[[A]] = 1− τ ⇒ |A| = 1− τ

[[¬A]] = τ ⇒ |¬A| = τ

where τ ∈ {0, 1}. Note that τ refers to the classical semantical
value of a formula A, denoted by |A|〈U,̺〉 or for the sake of
simplicity: |A|. (|A|〈U,̺〉 ∈ {0, 1}.) To satisfy the condition
below the line, it is enough to satisfy the condition above the
line. As an example, [[¬p(x)]] = 1 ⇒ [¬p(x)] = 1 holds if
[[p(x)]] = 0 ⇒ [p(x)] = 0 holds as well. The ∅ represents no
conditions.

∅
[[p(x)]] = τ ⇒ |p(x)| = τ

[[A]] = τ ⇒ |A| = τ ; [[B]] = τ ⇒ |B| = τ

[[(A ∧B)]] = τ ⇒ |(A ∧B)| = τ

[[A]] = 1− τ ⇒ |A| = 1− τ ; [[B]] = τ ⇒ |B| = τ

[[(A ⊃ B)]] = τ ⇒ |(A ⊃ B)| = τ

The rules above are promising in the case of the zero-order
logical connectives but not in the case of the quantifiers.

[[A]] = 0 ⇒ |A| = 0

[[∀xA]] = 0 ⇒ |∀xA| = 0

[[A]] = 1 ⇒ |A| = 1

[[∃xA]] = 1 ⇒ |∃xA| = 1

Using the semantics which gives us the ability to assign
0 or 1 truth value to quantified formulas if we have at least
partial information causes that we lost the guarantees to have
the classical results.

Now we suggest a modification on the first-order semantics,
in a case where only the lower approximation is used. The
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pessimistic3 semantics of quantifiers is based on the idea that
the missing knowledge (represented by the value 2) could be
relevant.

The pessimistic semantic value of a formula [[F ]]〈U,̺〉

and the pessimistic semantic value of the quantification-free
expressions [[Q ]]

〈U,̺〉
x 7→u are defined recursively:

1) The semantic value of an atomic expression p(x) ∈ QF
using a given interpretation 〈U, ̺〉 and a variable substi-
tution x 7→ u where u ∈ U :

⌊ p(x) ⌋〈U,̺〉
x 7→u = [[ p(x) ]]〈U,̺〉

x 7→u

where the 〈l, u〉 approximation pairs belongs to the
approximation space generated by the Tool and 〈U, ̺〉.

2) The semantic value of a quantified expression is defined
as

⌊∀xA⌋〈U,̺〉 def
=





0 if there is an u ∈ U,

where ⌊A⌋〈U,̺〉
x 7→u = 0,

1 if ⌊A⌋〈U,̺〉
x 7→u = 1 for all u ∈ U,

2 otherwise.

⌊∃xA⌋〈U,̺〉 def
=





0 if ⌊A⌋〈U,̺〉
x 7→u = 0 for all u ∈ U,

1 if there is an u ∈ U,

where ⌊A⌋〈U,̺〉
x 7→u = 1,

2 otherwise.

3) The semantic value of a quantification-free expression
or a formula based on zero-order connectives
Let

s¬,
s⊃,

s∧ be strong Kleene connectives, such that
s¬
0 1
1 0
2 2

s⊃ 0 1 2
0 1 1 1
1 0 1 2
2 2 1 2

s∧ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

⌊¬A⌋〈U,̺〉
x 7→u

def
=

s¬ ⌊A⌋〈U,̺〉
x 7→u

⌊(A ⊃ B)⌋〈U,̺〉
x 7→u

def
= ⌊A⌋〈U,̺〉

x 7→u

s⊃ ⌊B⌋〈U,̺〉
x 7→u

⌊(A ∧B)⌋〈U,̺〉
x 7→u

def
= ⌊A⌋〈U,̺〉

x 7→u

s∧ ⌊B⌋〈U,̺〉
x 7→u

where A,B ∈ QF , and

⌊¬A⌋〈U,̺〉 def
=

s¬ ⌊A⌋〈U,̺〉

⌊(A ⊃ B)⌋〈U,̺〉 def
= ⌊A⌋〈U,̺〉 s⊃ ⌊B⌋〈U,̺〉

⌊(A ∧B)⌋〈U,̺〉 def
= ⌊A⌋〈U,̺〉 s∧ ⌊B⌋〈U,̺〉

where A,B ∈ Form.
The goal of using the pessimistic semantic in case of the

first-order connectives (quantifiers) are the validity of the rules

⌊A⌋ = 1 ⇒ |A| = 1

⌊∀xA⌋ = 1 ⇒ |∀xA| = 1

3Our approach differs from the idea presented in [10] which talks about
pessimistic, optimistic, and average membership functions.

⌊A⌋ = 0 ⇒ |A| = 0

⌊∃xA⌋ = 0 ⇒ |∃xA| = 0

Unfortunately, as another effect, it increases the number
of interpretations, where a quantified formula has truth value
gap. Kleene’s strong connectives have opposite effect. It is not
necessary to change the weak connectives to strong, the goal
is reached anyway:

⌊A⌋ = τ ⇒ |A| = τ.

VI. CONCLUSION

As a general observation, we can conclude that if we
change the semantics to lower approximation-based, then
the syllogisms of Aristotle are not valid. There are several
ways for further investigation by creating restrictions on the
approximation space or by changing the semantical meaning
of the logical connectives or the first-order quantifiers, as it
was demonstrated in the second half of the article.
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Abstract—A deductive system of geometry is presented which is
based on atomistic mereology (“mereology with points”) and the
notion of convexity. The system is formulated in a liberal many-
sorted logic which makes use of class-theoretic notions without
however adopting any comprehension axioms. The geometry
developed within this framework roughly corresponds to the “line
spaces” known from the literature; cf. [1, p. 155]. The basic ideas
of the system are presented in the article’s Introduction within
a historical context. After a brief presentation of the logical and
mereological framework adopted, a “pregeometry” is described
in which only the notion of convexity but no further axiom is
added to that background framework. Pregeometry is extended
to the full system in three steps. First the notion of a line segment
is explained as the convex hull of the mereological sum of two
points. In a second step two axioms are added which describe
what it means for a thus determined line segment to be “straight”.
In the final step we deal with the order of points on a line
segment and define the notion of a line. The presentation of the
geometric system is concluded with a brief consideration of the
geometrical principles known by the names of Peano and Pasch.
Two additional topics are treated in short sections at the end of
the article: (1) the introduction of coordinates and (2) the idea
of a “geometrical algebra”.

I. Introduction
Geometry is a very old science and from its very beginnings

it was a classical place for discussing the relationship between
qualitative and quantitative reasoning. Synthetic geometry as
developed in the first four books of Euclid’s Elements [2]
is a paradigm instance of qualitative reasoning. The concept
of number is only introduced in Book VII of the work;
and the treatment of numbers and the investigation of their
properties make use of geometrical representations. As is
testified by our parlance about square and cubic numbers,
remnants of this procedure are still present in contemporary
mathematical terminology. Zeuthen, in his history of ancient
mathematics, refers to this procedure as “geometric arithmetic”
and “geometric algebra”; cf. [3, pp. 40–53].

The relationship between geometry and algebra was turned
around when, in the 17th century, Fermat and Descartes,
translating geometric construction tasks into problems con-
cerning the solution of equations, laid the foundations of
analytic geometry and thus paved the way for the use of
algebra and, later, calculus for the solution of geometric
problems. This is rightly considered a major breakthrough
in geometric research. However, not so long after Fermat’s
and Descartes’ innovation, already Leibniz argued that the

use of (numerical) analysis for achieving geometric results
is a detour since analysis is concerned with magnitude and
thus only indirectly (“per circuitum”) faces such geometric
notions as shape (“forma”) and similarity (“similitudo”); cf.
[4]. According to him, numerical analysis is therefore to be
supplemented by a geometric analysis — an analysis situs —
which deals with such important geometric properties in a
direct rather than roundabout way. This geometric analysis is
based on a calculus of geometric concepts which makes use of
a symbolic language (“characteristica geometrica”) resembling
that of algebra. Though “analysis situs” became the original,
now obsolete name for what is called (general) topology
today, there is scarcely a connection between this modern
discipline and Leibniz’ original ideas.1 However, Hermann
Grassmann, in a treatise submitted as an answer to a prize
question asked by a scientific society of Leibniz’s hometown
Leipzig, re-interpreted Leibniz’s ideas in the framework of his
“lineale Ausdehnungslehre”, which we today consider as a
rather abstract and general formulation of vector algebra.2

What Leibniz had in mind when he proposed his analysis
situs, was not a simple return to Euclid’s synthetic method and
to his deductive procedure but rather an algebraic formulation
of geometry in which one could confirm geometric proofs by
calculations which directly deal with such geometric entities
such as angles, triangles, squares, and circles without first
encoding them into numbers, thus translating a geometric
problem into one of numerical algebra or analysis. By this
he hoped to replace long and intricate arguments to be found
in Euclid’s Elements by simple calculations; cf. the examples
given by him at the end of this brief note; [4, pp. 181–
183]. Today we are tempted to say that he tried to reduce the

1The reference to “position” (Latin situs) is not uncommon in geomet-
ric research of the 19th century. Thus, for instance, in 1803 the French
mathematician L. N. M. Carnot published a book with the title Géométrie
de position, in which he tried to combine intuitive synthetic geometry with
algebraic analytic geometry. Another example is Ch. von Staudt, who in 1847
presented his formulation of projective geometry in a book Geometrie der
Lage, which is an exact German translation of the title of Carnot’s book.
Leibniz, when developing his idea of a “characteristica geometrica”, might
have been acquainted with the geometric ideas of Desargues which led up in
the 19th century to the development of projective geometry; cf. [5]. — The
19th century is generally considered “a golden age of geometry”; cf. [6, ch.].

2Both works of Grassmann, his Lineale Ausdehnungslehre and his Ge-
ometrische Analyse geknüpft an die von Leibniz erfundene geometrische
Charakteristik, have been reprinted in [7].
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computational complexity of spatial reasoning. Grassmann, in
the treatise mentioned in the previous paragraph, delivers an
insightful analysis of Leibniz’ first attempts in that direction,
cf. [7, pp. 328–334] and puts forwards, in the framework of
his own “Ausdehnungslehre”, some suggestions for improving
Leibniz’ work. In order to be able to apply his conceptual
framework to geometry, however, he analyses “geometric mag-
nitudes” such as points and line segments as pairs consisting
of a geometric entity (a position in the case of a “point
magnitude” and a direction in the case of a “line magnitude”)
and a “metrical value” (“Masswerth”). Hence in his algebraic
analysis of Euclid’s basic operation of connecting two points
by a straight line he re-introduces numbers which Leibniz
wished to eliminate; cf. [7, p. 355f].

An analysis of the Euclidean operation of joining two points
which is more consonant with Leibniz’ original ideas has been
given only much later by Walter Prenowitz; cf. [8], [9]. Given
(not necessarily different) points p1, p2, their join p1 p2 is
the linear segment between them; cf. [9, p. 3].3 For the join
operation, then, algebraic laws such as that of commutativity
p1 p2 = p2 p1, assiociativity (p1(p2 p3) = (p1 p2)p3), and
idempotency (pp = p) are postulated. This looks as if the set of
points and the join operation make up an idempotent, Abelian
groupoid. However, a closer look upon the first law reveals that
this algebraization of a geometric topic rests upon a notational
convention. The result p2 p3 of joining the points p2 and p3

is a line segment; but what then is the result of joining this
line segment to a point? Prenowitz conceives of line segments
as point sets. The range of the binary join operation thus is a
set of point sets; furthermore, he declares (p1(p2 p3) to be the
set of points lying on segments which join the point p1 with
some point of the set p2 p3. Hence p1(p2 p3) is the set of points
within the triangle △p1 p2 p3. If we want to conform to absolute
exactness, we should either conceive of the join operation as
an operation on point sets — and thus formulate associativity
by something like {p1} · p2 p3 = p1 p2 · {p3}— or we should use
a background set theory which identifies urelements with their
singletons.4 Ignoring the distinction between an individual and
its singleton set, forces one also to blur the distinction between
the relations of membership and inclusion: as an individual the
point p1 is a member of the set p1 p2, but as its own singleton
it is also a subset of that set.

Prenowitz, of course, is completely aware of this; cf. his
footnote 5 in [8, p. 3]. Instead of relying on the good instinct of
the reader of his writings who restores the set-theoretic distinc-
tions whenever necessary, there would have been an alternative
for him, namely to use mereology instead of set theory as a
background theory. Given a mereological background, single
points of a line segments bear the same relationship to that
segment as complete subsegments do: both its points and its

3In Prenowitz’ 1943 article on this topic, the additive notation “p1 + p2”
is preferred; cf. [8, p. 236]. For Prenowitz, the segment p1 p2 resulting from
joining p1 and p2 does not include these two boundary points. Thus, for him,
a segment is an “open” set of points. In contrast to this, the join operation
which will be defined below in Def. 14)-(c) includes the boundary points.

4As is done, for instance, in Quine’s NF; cf. [10].

subsegments are just parts of the entire segment. The present
article follows the strategy just suggested by adopting mere-
ology as a framework for geometry. This issue will be taken
up in section II-B below. Adopting mereology “homogenizes”
points and segments: both are individuals and the arguments
of the join operation are thus on an equal footing. Terms
like “p1(p2 p3)” can be interpreted in a straightforward way
which does not require special care of the reader. However,
mereology does not resolve our problem completely. It is fine
to have both points and line segments as first class citizens
of the entire universe of discourse, but these two entities are
nevertheless of different kinds. There are things we want to say
about points which do not make sense for segments. Since the
inception of many-sorted logic systems in the 1930s geometry
always has been a prime application area for many-sorted
logics; and Arnold Schmidt [11, p. 32], in his classical article
on this topic, explicitly refers to Hilbert’s axiomatisation of
Euclidean geometry [12] in order to motivate the introduction
of sortal distinctions. Introducing sortal distinctions between
points and segments, however, reintroduces our problem with
the interpretation of terms like p1(p2 p3) — unless, of course, a
more liberal sort system is adopted that allows for the crossing
of sort boundaries which is strictly forbidden in such rigid
systems as that of Schmidt [11]. Such a liberal system, due to
Arnold Oberschelp [13, ch. 3], is adopted in section II below.

The main use Prenowitz makes of the join operation is
to define the notion of convexity which is central for his
approach to geometry; cf. [9, pp. 25–28]. There is plenty
of reason to follow Prenowitz in assigning a central role
to the notion of convexity. (1) It plays a central role in
various other parts of mathematics as documented in the
comprehensive handbook [14]. (2) In quite a few important
applications of computational geometry it plays a crucial role;
cf. the list given in [15, p. 63]. (3) It seems to be of special
importance for the human cognitive systems also in areas
beyond geometry; cf. [16, pp. 69–74, 157–174].5 We shall
therefore give convexity a central position in our system of
geometry presented below. Its position in that system is even
more central than that it occupies in Prenowitz’ since we start
with the notion of convexity and define that of a linear segment
in terms of it whereas definitional dependence in the other
way round in Prenowitz’ system.6 However, first our logical

5Given the importance and usefulness of the notion of convexity, it does
not come to a big surprise that it already has made it appearance in formal
systems for the representation of spatial knowledge; cf., e. g., [17], [18], and
[19]. In [17, sec. 4.3] it is assumed that the convexity function conv which
assigns to regions their convex hulls “is only well sorted when defined on
one piece regions”. No such restriction is assumed here for the hull operator
[ ] which will be introduced below in Def 14. The domain of discourse of
the interesting theory put forward by [19] is the set of “regular open rational
polygons of the real plane” (p. 5). We adopt a much more comprehensive
notion of a region (cp. fn. 8) and do not make any decision on the matter of
dimensions.

6In a strict formal sense, we actually do not define the notion of a segment
in terms of convexity. The first notion is present in our system from the start
since the many-sorted language used comprises a special sort s of segments.
However, the axiom Mer 3 below specifies a sufficient and necessary condition
for being a segment.
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and mereological background has to be explained in order to
prepare the stage for the treatment of these geometric topics.

II. Background: Class Theory andMereology

The system of geometry proposed here builds upon two
more basic formal theories: (1) a certain system of “class
logic” and (2) a system of mereology.7 The version of class
logic chosen here is the system LC developed by Arnold
Oberschelp [13, chap. 3]. Basically, class logic is “set the-
ory without comprehension axioms”. The system LC will
be described in more detail in the first part of the present
section. Mereology has been used as an ingredient in several
axiomatisation of geometric theories; cf., e.g., [23], [24], [25],
[26], [27]. The specific system of mereology used here will
be introduced in section II-B below.

A. Class Theory

The specific version of LC used here is formulated within
a many-sorted language with four sorts denoted by u, c, s, p.
The universal sort u is the sort of all regions. In the present
system a region is any mereological sum of points. Thus a
region does not need to be connected or three-dimensional, but
each region has at least one punctual part; cf. MER 6 below.8

The remaining three sorts are, respectively, the sort of convex
regions (c), of (linear) segments (s), and of points (p). The
universal sort contains all other sorts as its subsorts; segments
are special convex regions and points, as we shall see below
(cf. The 17), special segments. For each sort there are infinitely
many variables. We reserve the letter used as the index of a
sort for the variables of that sort; thus, e.g., p, p1, p2, . . . are
the variables for points. The letters v, w, v1, v2, . . . are used
as meta-linguistic signs for variables (of any sort); u always
refers to a variable of sort u. If it is else necessary to indicate
a term’s membership in a sort s, this will be done by adding
“s” as a superscript. Besides the variables there is only one
single constant “P” for the part-whole-relation; this constant
is an example of a class term and is not assigned to any of
the sorts. Semantically LC distinguishes between individuals
and objects. Individuals are special objects; they are the
possible values of the variables hence the “real” objects. Some

7Mereology is one of the two logical theories which the Polish logician
Stanisław Leśniewsik proposed as frameworks for the explication of the
traditional notion of a class. Leśniewski discerned two different meanings
within that notion, namely that of a “distributive” and that of a “collective”
class. Collective classes are treated in mereology, i.e, the theory of the part-
of-relationship, whereas distributive classes are the topic of what he called
“ontology”, the theory of the is-a-relationship. The relationship between
common set theory and mereology has been investigated in, e.g., [20] and
[21, esp. chs. 5 and 7]. Such a comparison, however, is a delicate issue since
Leśniewski based mereology upon his ontology which is a more powerful
logic than elementary predicate logic; cf. [22] for a detailed discussion. In
the present article, too, (atomistic) mereology is transplanted into a non-
Leśniewskian framework.

8It should be pointed out here that this is a quite comprehensive (and non-
standard) concept of a region. Tarski [23, p. 24] suggests that the “solids”
of the geometry envisaged by Leśniewski and the “events” of Whitehead’s
space-time are “intuitive correlates of open (or closed) regular sets”. This
(or something like this) seems to be true also for the common systems of
mereotopology. The set of points corresponding to a region in the sense
explained above in the main text, however, does not need to be regular.

objects, however, are not individuals; they are only “virtual”,
lie without the domain of quantification, and thus do not
belong to any sort. LC abstains from any assumptions about
the existence of classes and so class terms may denote merely
virtual objects. “P” stands for a relation, i.e., a class of pairs
of individuals.

There are three groups of logical signs in our version of LC:
(1) the connectives ¬, ∧, ∨ →, and ↔; (2) the quantifiers ∃
and ∀; (3) the relational signs = (identity) and ∈ (membership);
(4) the elementary term constructor 〈 , 〉 (pair formation); and
finally (5) the variable binding term constructors � (definite
description) and { | } (class formation). We use the letters “X”
and “Y” as metalinguistic variables for terms, and “ϕ” and “ψ”
for formulas. These two classes of expressions are defined by
a simultaneous recursion. (a) Each variable is a term and so
is the constant “P”. (b) If X and Y are terms, then 〈X, Y〉 is a
term, too. (c) If X and Y are terms, then X = Y and X ∈ Y are
formulas. (d) If ϕ and ψ are formulas, so are ¬ϕ and [ϕ ◦ ψ]
where ◦ is one of the signs ∧, ∨ →, or ↔. (e) If ϕ is a
formula and v a variable, then ∃v.ϕ and ∀v.ϕ are formulas
and �v.ϕ and {v | ϕ} terms. Terms denote either individuals or
classes. In the following we shall use the letters “a” and “b”
(possibly with subscripts) for terms of the first kind. For terms
denoting classes of individuals we shall use the letters “A” and
“B”; finally, the letter “R” is reserved for classes of tuples of
individuals.

The logic for the connectives and quantifiers is classical
with two exceptions. First, in order to exclude certain trivial
cases, LC requires that there are at least two individuals
(∃u1u1.u1 , u2) whereas one postulates in the semantics of
standard predicate logic only that the universe of discourse in
not empty. The second difference concerns the rule SUB of
substitution of free variables by terms. The presence of class
terms in LC make it necessary to restrict this rule in order to
protect the system against antinomies. In order to formulate
the rule, we have first to define the notion of the domain Ds

of sort s.

Def 1: (a) Ds ====
def

{vs | vs = vs}
(b) D ====

def
Du

Let now in the following formulation of the rule SUB ϕ(vs) be
a formula with the free variable vs and X a term which does
not contain any free variable which is bound by a quantifier
of ϕ(x) in whose scope vs occurs as a free variable, then we
denote by “ϕ X

vs ” the result of substituting each free occurrence
of vs in ϕ(vs) by X. The rule SUB, then, reads as follows.

SUB From X ∈ Ds and ϕ(vs) one may infer ϕ X
v2 .

The reason for the additional premise becomes obvious as soon
as we consider the class theory of LC. It consists of three
principles: the principle of extensionality and two abstraction
principles.

LC 1: (Ext) ∀u.[u ∈ {v | ϕ(v)} ↔ u ∈ {w | ψ(w)}]→
{v | ϕ(v)} = {w | ψ(w)}

(Abs1) v ∈ {v | ϕ} ↔ ϕ
(Abs2) X ∈ {vs | ϕ} → X ∈ Ds
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The formation rules allow to build such a term as, e.g., {u |u <
u}. It is nevertheless not possible to derive Russell’s antinomy
by means of (Abs1) since (Sub) licenses the substitution of {u |
u < u} for the free variable v in (Abs)1 only under the proviso
that the class {u | u < u} can be proven to be an individual of
sort s. Russell’s antinomy shows that this cannot be the case
for any s.

The theory of identity contained in LC is quite standard.
There are two axioms requiring that identity is reflexive and
euclidean. A further axiom finally postulates that identical
individuals belong precisely to the same classes.

LC 2: (Id)1 X = X
(Id)2 X = Z ∧ Y = Z → X = Y
(Id)3 X1 = X2 ∧ Y1 = Y1 → [X1 ∈ Y1 ↔ X2 ∈ Y2]

As is common LC construes relations as classes of pairs. There
are two axioms for pairs. The first one states the usual criterion
of identity for pairs: they are the same iff their components
are. The second axiom postulates that pairs of individuals are
individuals again.

LC 3: (Pr)1 〈X1, Y1〉 = 〈X2, Y2〉 ↔ [X1 = X2 ∧ Y1 = Y2]
(Pr)1 X, Y ∈ D→ 〈X, Y〉 ∈ D

The use of the description operator � is regulated by three
axioms. The first requires that �v.ϕ is the individualv if there
is exactly one ϕ and ϕ(v). If there is no unique individual
with property ϕ, then the definite description �v.ϕ(x) denotes
a special “ersatz” individual ⊥ called “the joker”. The joker
may be defined by ⊥ ====

def
�u0.u0 , u0. It does not belong to

the universe of discourse D but is a virtual object.

LC 4: (Ds)1 ϕ(v) ∧ 1∃v.ϕ(x)→ �v.ϕ(v) = v

(Ds)2 ¬
1
∃v.ϕ(v)→ �v.ϕ(x) = ⊥

(Ds)3 ⊥ < D
Though there are no comprehension principles in LC, an

elementary theory of classes and relations can be developed
which provides most of the means of expressions which
became common since the days of Cantor. X is a class if it is
identical with its class part, i.e., with the class of individuals
which are elements of X.

Def 2: Cls(X)⇐⇒
def

X = {u | u ∈ X}
We note that the referents of abstraction terms are always
classes; cf. [13, p. 235].

The 1: Cls({v | ϕ})
Inclusion relates subclasses to superclasses.

Def 3: A ⊆ B⇐⇒
def

Cls(A) ∧ Cls(B) ∧ ∀u.[u ∈ A→ u ∈ B]

The Boolean operations may be defined in the standard way.
Relations are classes of n-tuples.

Def 4: Reln(R) ⇐⇒
def

Cls(R) ∧
∀u ∈ R.∃u1u2 . . . un. u = 〈u1, u2, . . . , un〉

As usual, the inverse of a relation results from that relation by
inverting the order of its pairs.

Def 5: R−1 ====
def
{〈u1, u2〉 | 〈u2, u1〉 ∈ R}

The two definitions below introduce abbreviations used in the
following.9

Def 6: (a) R>a ====
def

{u | 〈u, a〉 ∈ R}
(b) R<a ====

def
{u | 〈a, u〉 ∈ R}

Functions are defined as special relations fulfilling a unique-
ness condition:

Def 7: Fctn(R) ⇐⇒
def

Reln+1(R) ∧
∀u1 . . . un+2.[〈u1, . . . un, un+1〉,
〈u1, . . . , un, un+2〉 ∈ R→ un+1 = un+2]

Functions will often be defined by specifying how to determine
the value a for given arguments u1, u2, . . . , un. Given a certain
(n-place) function f , the term “ f (a1, a2, . . . , an)” will denote
the value of f for the arguments a1, a2, . . . , an (if it exists).

Def 8: (a) λu1u2 . . . un.a ====
def
{〈u1, u2, . . . , un, u〉 | u = a}

(b) f (a1, a2, . . . , an) ====
def

�u.〈a1, a2, . . . , an, u〉 ∈ f

Functions may be partial. In mereology, for instance, the
product u1 · u2 of two individuals is the largest individual
(modulo the part-of-relation) which is a common part of both
u1 and u2. If in a formal system of mereology the product
operation · is not taken as primitive, it will be defined by some
function involving a definite description; cf., e.g., [28, p. 43].
That description term will be improper if the items denoted by
the “factor” terms do not overlap. Since no product exists in
this case, the product operation is partial. In LC the product of
non-overlapping regions u1 and u2 equals the joker: u1 ·u2 = ⊥.

B. Atomistic Mereology

Whitehead [29]–[31] motivates his use of mereological
concepts as a foundation for his space-time-geometry by the
desire for a conceptual framework which directly relates this
science to spatial reality rather than starting from abstractions
such as, e.g., extensionless points and breadthless lines. Using
his “method of extensive abstraction”, he constructed such
entities from extended regions. The critique of such notions as
that of a point and that of a line, however, is much older and
in fact nearly as a old as the science of geometry itself.10 In
the 19th century, Lobacevski and Bolyai did not only replace
Euclid’s Fifth Axiom (on the unique existence of parallels)
by other assertions but also suggested to take the notion of a

9The notation introduced in Def 6 is often used to render formulas more
easily readable. E.g., “u1 ∈ P>u2” can be read from left to right as “u1 is
(∈) a part of (P>) u2”. The same is said by “〈u1 , u2〉 ∈ P”, which however
requires the reader to apply a “forth and back” procedure when decoding the
formula. — “u1 ∈ P<u2” may be read as “u1 extends / is an extender of u2”.

10Cf., for instance, Aristotle’s remark in his Metaphysics, [32, p. 36, 992a

20] that Plato “fought against [the kind of points] as being a geometric
dogma” and Proclus Lycaeus warning — in his commentary on the first book
of Euclid’s Element — not to follow the Stoics who suppose that such limiting
elements like points “exist merely as the product of reflection”; [33, p. 71].
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rigid, three-dimensional body as the conceptual starting point
for geometry.11 In a similar vein, Whitehead [29]–[31], relying
on a certain analysis of the role of abstractions in science,
developed a theory of events which bears some similarities
to Leśniewski’s mereology, which Tarski [23] combined with
ideas of the Italian mathematician Mario Pieri in order to for-
mulate his geometry of solid bodies.12 This line of research has
been continued by the work of Gruszczyński and Pietrusczcak
[26]. Whitehead’s approach, especially as modified in his book
from 1929, has been continued in “mereotopology”— cf.,
e.g., [28] and [27] — and in work on the Region-Connection-
Calculus (RCC); cf. [38] and the literature cited there.

Hahmann et al. [27, p. 1424] formulate the objections
against points in a concise way: “Points are somewhat tricky
to define and are far from intuitive in real-world applications.”
It is certainly true that the definition of points as equivalence
classes of converging sequences of regions (as suggested by
Whitehead and others) is “tricky”.13 However, if points are
admitted from the outset as special (“extensionless”) regions,
it is rather easy to single them out by a definition. Actually,
we find an adequate explanation already as the very first
definition in the first book of Euclid’s Elements: “A point is
that which has no part”; [2, Book I, p. 153]. As is evident
from this definition, Euclid obviously is thinking of the proper
(irreflexive) part-of-relationship when he is talking about parts.
Allowing, as is usual in mereology, also for improper parts,
we can reformulate Euclid’s definition as follows: “A point is
a minimum of the part-of-relation.”

Euclid’s definition testifies that the notion of a point nicely
fits into a mereological framework. Aside from this formal
issue, perceptual psychology does not seem to support the
sceptical attitude towards points held up by many supporters
of “common sense geometry”. Experimental studies of visuals
space simply accept the existence of points when they approx-
imate these geometric items by “small point sources of light of
low illumination intensity, displayed in darkened room;” [46,
p. 238]. Points seem also to be accepted in phenomenological

11Their endeavors are described in Richard Strohal’s investigations of the
relationships between “pure geometry” and intuition; cf. [34, pp. 20–33].
It deserves to be mentioned that Lobacevski considered the relationship of
connection (between “solids”) as the most basic concept of geometry thus
anticipating the modern line of research which starts with the work of de
Laguna [35] and leads up via Whitehead’s reformulation of his earlier work
in [31] to the Region Connection Calculus of Randell, Cui, and Cohn [17].

12In his lecture notes [36], Leśniewski compares his mereology with
Whitehead’s theory of events. In those notes, Leśniewski mentions that it
was Tarski in 1926 who made him aware of Whitehead’s work; cf. [36, p.
171]. — Pieri’s idea employed by Tarski [23] in his mereological system of
geometry is that this discipline can be developed starting from the notions of
point and sphere as the only undefined concepts. Pieri’s memoir presenting
this idea has been re-published in an English translation by Marchisotto and
Smith [37, pp. 157–288].This book contains also a chapter on Pieri’s impact on
Tarski’s geometric work; cf. [37, ch. 6]. That the notion of sphere is sufficient
as a basic concept of geometry has been noted already by Grassmann in his
1847 memoir on Leibniz’ geometric analysis; cf. [7, p. 328].

13The issue of “region-based” vs. “point-based” geometry is treated in
quite a few articles on mereotopology; cf. [39] and [40], who both provide
surveys of the classical approaches to this topic by Whitehead [29]–[31], De
Laguna [35], Menger [41], Grzegorczyk [24], and Clarke [25]. More recent
contributions include [42], [43], [27], [44], and [45].

and gestalt-theoretic approaches to psychology. In a series
of classical experiments Edgar Rubin [47, §§14–16] showed
that points (as well as other regions lacking extension in
one or more dimension) are really perceived: “As there are
breadthless lines, there are extensionless points”. Furthermore,
Otto Selz [48, p. 40] argued that points essentially belong
to our conceptual frame used in the apprehension of space:
“the pure location in space is postulated by structural laws in
the same way as the infinity of the straight line and [. . . ]
it is of relatively minor importance whether the empirical
Minimum Visibile, i.e., the point gestalt, is to be regarded
as a pure locational phenomenon or rather as a tiny round
area like object”. We hence conclude that points, though they
are perhaps no “real constituents” of physical space, do have
perceptual reality and exist in conceptualized space. This is
all which is of importance in the present context.

As the mereological foundation of our system of geometry
we adopt the system of atomistic mereology developed by
Tarski; cf. [49]. Tarski formulated his system within the simple
theory of types. Instead we use the class logic LC sketched in
the previous subsection. The only undefined notion in Tarski’s
system is the relation P of parthood14 of which it is postulated
that it is transitive. In LC this correspond to the following two
axioms.

MER 1: Rel2(P)
MER 2: 〈u1, u2〉, 〈u2, u3〉 ∈ P→ 〈u1, u3〉 ∈ P

We say that two individuals (regions) overlap if they share a
common part.15

Def 9: O ====
def
{〈u1, u2〉 | P>u1 ∩ P>u2 , ∅}

The formulation of the next axioms requires the following
definition.

Def 10: Σ(a, A)⇐⇒
def

A ⊆ P>a ∧
∀u1 ∈ P>a.∃u2 ∈ A.〈u1, u2〉 ∈ O

The formula “Σ(a, A)” says that a is the mereological sum of
the individuals in A. This means that every element of A is a
part of a and that conversely every part of a overlaps some
element of A. The mereological sum of a singleton class is the
unique member of that class; and non-empty classes always
have a sum.

MER 3: Σ(u1, {u2})→ u1 = u2
MER 4: A , ∅ → ∃u.Σ(u, A)

From the axioms stated until now it can be proven16 that
P is a partial order of the elements of D, i.e., that the part
relation, besides being transitive, is reflexive and antisymmet-
ric. Furthermore, MER 4 may be strengthened by asserting the
uniqueness of the mereological sum.

14In [49] Tarski augments his system of pure mereology by other non-
mereological systems in order to make it suitable as a basis for axiomatic
biology.

15The notion of overlap is not used by Tarski. We introduce it here in order
to make our presentation more similar to standard expositions of mereology;
cf., e.g., [28].

16For the proofs of the mereological theorems the reader is referred to
Tarski’s article [49].
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The 2: (a) 〈u, u〉 ∈ P
(b) 〈u1, u2〉, 〈u2, u1〉 ∈ P→ u1 = u2

(c) A , ∅ → 1∃u.Σ(u, A)

The 2-(c) justifies the following definitions introducing the
notion of a supremum or sum of a class of individuals.

Def 11: (a) sup(A) ====
def

�u.Σ(u, A)

(b) sup(vs | ϕ) ====
def

sup({vs | ϕ})
(c) sup(a1, a2, . . . , am) ====

def
sup({a1, . . . , am})

(d) + ====
def

λu1u2. sup(u1, u2)

Of course, we shall always write “a+ b” instead of “+(a, b)”.
It can be proven that the thus defined notion of a supremum
of A has indeed the properties normally required: namely, that
it is the “smallest” individual “bigger” than all the elements
of A, cf. The 3.

The 3: u = sup(A) → A ⊆ P>u ∧
∀u1.[A ⊆ P>u1 → u ∈ P>u1]

It is provable in LC that D is non-empty; hence by The 2-(c)
there exists the sum of all individuals. Following [49, p. 162],
we shall call it w (which Tarski transliterates as “world”). It
is the entire space.

Def 12: w ====
def

sup(D)

The space is an individual, hence its exists, and everything,
i.e., every region, is a part of it; cf. The 4.17

The 4: (a) w ∈ D
(b) u ∈ P>w

Corresponding to the notion of the mereological sum of a
class of individuals there is the notion of a product. This is
not defined by Tarski; but Def13 suggests itself by its analogy
to the case of the sum.

Def 13: (a) Π(a, A)⇐⇒
def
Σ(a, {u | ∀u1 ∈ A.〈u, u1〉 ∈ P})

(b) inf(A) ====
def

�u.Π(u, A)

(c) inf(vs | ϕ) ====
def

inf({vs | ϕ})
(d) inf(a1, a2, . . . , am) ====

def
inf({a1, a2, . . . , am})

(e) · ====
def

λu1u2. inf(u1, u2)

Again we use infix notation “a1 · a2” instead of “· (a1, a2)”.
There is an important difference between the notion of a sum
and that of a product: whereas only non-empty classes have
a sum, also the empty class has a product. If A = ∅, then
{u | ∀u1 ∈ A.〈u, u1〉 ∈ P} = D and hence Π(A,w) according
to Def 12. This, however, does not mean that the infimum
always exists. If A is a class of non-overlapping individuals,
i.e., of individuals which have no common parts, then the class
{u|∀u1 ∈ A.〈u, u1〉 ∈ P} will be empty and will hence not have a
supremum. In this case, therefore, A will not have an infimum.

17Theorems like The 4-(a) are of special importance for our formal
framework since the rule of substitution of LC is, as has been explained
in section II-A above, restricted in such a way that the substitution of a term
X for a variable of sort s requires a proof of X ∈ Ds.

Corresponding to The 3 we have the following theorem for the
infimum.

The 5: u = inf(A) → A ⊆ P<u ∧
∀u1.[A ⊆ P<u1 → u1 ∈ P<u]

According to The 4, w is the unique region which is maximal
with respect to the P-relation. Now after we have decided to
adopt points as the minima of that relation, it is useful also to
adopt a special sort p for points. Hence Dp (cf. Def 1-(a)) is the
class of all points which thus does not need a special definition.
However, in order to catch the identification of points with P-
minima, we have to accept a special axiom which corresponds
to Tarski’s Definition of points; cf. [49, p. 163].

MER 5: Dp = {u | P>u ⊆ {u}}
MER 5 has still to be supplemented by Tarski’s postulate that
each individual has at least one punctual part.

MER 6: P>u ∩ Dp , ∅
MER 6 is sufficient to show that each individual is the sum
of its points; Tarski’s proof for this can be transferred to the
present system.

The 6: u = sup(p | p ∈ P>u)

However, within the framework of LC this does not mean
that talk about regions can be dismissed in favour of talk
about point classes since within LC (unlike as in Tarski’s type-
theoretic framework) we cannot quantify over point classes
though quantification over regions is possible.

III. Interval Spaces and Convexities

In the previous sections we have laid the logical and mere-
ological foundations for the system of geometry which will
be presented in a stepwise manner in this and the following
two sections. In the first part of the present section, we do not
extend the foundational framework provided by any further
axioms but define some concepts of central importance for
our system of geometry. Then we point out some simple
consequences which can be derived from the definitions given
only by means of logic and mereology. In the second part of
the present section we then state the first axioms of a geometric
character.

A. Pregeometry

By a a convex region we understand a region in which every
pair of points is connected by a linear segment completely
belonging to that region. A triangle and a circle are examples
of convex regions whereas the bean shaped region of Fig. 1
is not. The variables of sort c vary over the elements of the
domain Dc (cf. Def. 1) which is the class of all convex regions.
Def 14 introduces the central notion of the convex hull of a
region: the function [ ] assigns to each region u its convex hull
[ ](u). We write “[u]” instead of “[ ](u)” in order to comply
with ordinary notation. The convex hull [u] is the infimum of
all convex regions containing u as a part.

46 PROCEEDINGS OF THE LQMR WORKSHOP. WARSAW, 2015



Fig. 1. Two convex regions and a non-convex one

Def 14: (a) [ ] ====
def

λu. inf(c | u ∈ P>c)

(b) [p1, p2, . . . , pn] ====
def

[sup(p1, p2, . . . , pn)]

(c) p1 p2 ====
def

[p1, p2]

Def 14-(b) defines the polytope — or, more precisely, the n-
tope — spanned by p1, p2, . . . , pn as the convex hull of the
sum of those points. The segment p1 p2, then, between p1 and
p2 is just the 2-tope spanned by these two points, cf. Def 14-
(c). These definitions correspond to those given in point set
based convex geometry; cf., e .g., [1, pp. 3, 5]. The convex hull
[u] of a region u always exists (is an individual) and contains
u as a part.

The 7: (a) [u] ∈ D
(b) u ∈ P>[u]

Proof: Let A := {u1 | ∀c.[〈u, c〉 ∈ P→ 〈u1, c〉 ∈ P}]. If there are
no convex regions containing u, then A = D and [u] = w ∈ D;
and (b) holds by The 4. If, however, there are convex regions
containing u, then u ∈ A , ∅ and hence [u] ∈ D by The 2-(c).
The assertion (b), then, follows by The 5. �

From The 7 we have immediately The 8-(a); the second
claim of that theorem is a direct consequence of the definition
of the product and the hull operation.

The 8: (a) p1, p2 ∈ P>p1 p2

(b) p1 p2 = p2 p1

The 8 states (modulo the replacement of set theoretical notions
by mereological ones) that the class of points and that of
segments together with the segment operation constitutes an
interval space; cf. [1, chap. 1, Sec. 4].18 The 8-(a) corresponds
to the so-called extensive law, Theorem 8-(b) to the symmetry
law of interval spaces. Interval spaces in turn give rise to
convex structure (also briefly called convexities). These are
the structures exhibiting the basic facts about convex sets; cf.
[1, p. 3]. A convexity is a family C of subsets of some point
set X which fulfills the following three closure conditions:

(C-1) ∅, X ∈ C;
(C-2) for D ⊆ C is

⋂D ∈ C;
(C-3) if for A, B ∈ D ⊆ C it always holds true that A ⊆ B

or B ⊆ A, then
⋃D ∈ C.

18On the background of set theory, an interval space I = 〈X, I〉 is defined
to be a pair consisting of a set X of points and an operation I : X × X → 2X

such that for p, q ∈ X it holds true that p, q ∈ I(p, q) and I(p, q) = I(q, p); cf.
[1, p. 71].

Using the segment operation, we define in our mereological
context the special class Cv of regions in the following way.

Cv ====
def
{u | ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u}

It is not too difficult to show that Cv fulfills mereological
analogues to (C-1), (C-2), and (C-3).

The 9: (C-1)’ w ∈ Cv
(C-2)’ ∃u.A ⊆ P<u ∧ A ⊆ Cv→ inf(A) ∈ Cv
(C-3)’ ∅ , A ⊆ Cv ∧

∀u1, u2 ∈ A.〈u1, u2〉 ∈ P ∪ P−1 →
sup(A) ∈ Cv

Proof: (C-1)’ is immediate from The 4-(b). — (C-2)’. The first
conjunct of the hypothesis ensures that u1 := inf(A) ∈ D. It
remains to be shown that each segment p1 p2 where p1, p2 ∈
P>u1 is itself a part of u1. From p1, p2 ∈ P>u1 it follows by
The 5 that for each u2 ∈ A p1, p2 ∈ P>u2 and hence p1 p2 ∈
P>u2 since A ⊆ Cv. Thus p1 p2 ∈ u2 for each u2 ∈ A, hence
u1 ∈ Cv. — (C-3)’. Since A , ∅, again u1 := sup(A) ∈ D.
Suppose p1, p2 ∈ P>u1. According to Def 10, the two points
share, respectively, a part with two individuals u2, u3 ∈ A.
According to the second conjunct of the assumption 〈u2, u3〉 ∈
P or, conversely, 〈u3, u2〉 ∈ P. Assume the first (the argument
for the second is completely parallel). Then p1, p2 ∈ P>u2 and,
since u2 ∈ A ⊆ Cv, p1 p2 ∈ P>u2. But then p1 p2 ∈ P>u1, too.
Hence u1 = sup(A) ∈ Cv. �

A region u belongs to Cv if all the “2-topes”, i.e., segments,
whose boundary points are from u lie within that very region.
Of course, the definition of the class Cv is an exact formal
counterpart of the intuitive explanation of the notion of a
convex region provided at the beginning of this subsection.
Therefore it cannot be included as a formal definition within
our system since this would involve a circularity: segments are
defined in terms of convex regions (by using variables of sort
c), hence one cannot use segments in order to define convex
regions. However, the class Cv should turn out to be identical
with the domain Dc. Within pregeometry we can prove at least
the inclusion of that domain in Cv; cf. The 10. The converse
inclusion will be postulated as an axiom in the next subsection.

The 10: Dc ⊆ Cv

Proof: This follows readily from The 5 and Def 14. �

B. Convex Structure

Spelled out, the converse of The 10 amounts to the following
principle.

GEO 1: ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u→ u ∈ Dc

By GEO 1 we leave mereology and pregeometry and enter the
realm of geometry proper. Therefore the label “GEO” is given
to the new axiom rather than continuing using “MER” in order
to mark principles. By The 10 we may strengthen GEO 1 to
a biconditional.

The 11: u ∈ Dc ↔ ∀p1, p2 ∈ P>u.p1 p2 ∈ P>u

Furthermore, we may now replace “Cv” in The 10 by “Dc”.
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The 12: (a) w ∈ Dc

(b) ∃u.A ⊆ P<u ∧ A ⊆ Dc → inf(A) ∈ Dc

(c) ∅ , A ⊆ Dc ∧
∀u1, u2 ∈ A.〈u1, u2〉 ∈ P ∪ P−1 →
sup(A) ∈ Dc

The 11 and The 12 state that Dc is a (mereological) convex
structure. The 12-(b) immediately implies that convex hulls
are, as their name suggests, convex. A corollary of this is that
segments, which are special convex hulls — namely convex
hulls of regions consisting of at most two points — are convex.

The 13: (a) [u] ∈ Dc

(b) Ds ⊆ Dc

The 13-(a) implies that the hull of a region’s hull equals that
hull and that the hull operation is monotonic.19

The 14: (a) [[u]] = [u]
(b) u1 ∈ P>u2 → [u1] ∈ P>[u2]
(c) u ∈ P>c→ [u] ∈ P>c

Proof: By The 7-(b), The 5, and The 13. �
The 7-(b) and The 14-(a), (b) state that the [ ]-operator is

a hull-operator in the algebraic sense. As a special case of
The 14-(b) we have that segments spanned by the points of
some given segment are subsegments of that segment and that
hence a point of a given segment dissects a subsegment of that
segment.

The 15: (a) p1, p2 ∈ P>s→ p1 p2 ∈ P>s
(b) p3 ∈ P>p1 p2 → p1 p3 ∈ P>p1 p2

The 15-(b) is called the monotone law in [1, p. 74]. — We did
not require that the two arguments of the segment operator are
distinct. If we ask for the segment [pp] joining the point p to
itself, a natural answer would be that in this case the segments
shrinks down to the point p. Hence points are just segments
without any extension. Points are also special regions: they
are the minimal regions. But then, we have to admit that the
only segment which is a part of a minimal region p is p
itself and that therefore p is convex according to our intuitive
explanation of convexity. That this is actually the case is
postulated by a new axiom which states that the points are
a subsort of the convex regions.

GEO 2: Dp ⊆ Dc

From GEO 2 it is immediate that points are minimal segments.
This is, for obvious reasons, called the idempotent law in the
theory of interval spaces; cf. [1, p. 74].

The 16: pp = p

Proof: From GEO 2 together with The 5 and The 7. �
The domain Ds is characterized by the following axiom.

19Of the five axioms stated by Randell et. al. [17, p. 5] for their operator
conv, the first one corresponds to The 7-(b) and the second to The 14-(a).
The third axiom follows easily from The 14-(b) (in combination with the (a)-
clause of that theorem). The two remaining axioms which relate the concept
of a convex hull to the relation O (of overlap) and its complement, are true
in the “intended model” of the present theory, too. A proof of them, however,
is by no means obvious.

GEO 3: Ds = {u | ∃p1, p2.u = p1 p2}
From The 16 and the new axiom GEO 3 it follows that points
are special segments, namely one-point-only segments.20

The 17: Dp ⊆ Ds

Another consequence of The 16 is that each region is the sum
of its segmental parts.

The 18: u = sup(s | s ∈ P>u)

Proof: By The 6 and The 16 a region is already the sum of
its punctual segments. The non-punctual elements of the class
{s | s ∈ P>u} do not add anything more to the mereological
sum of this class. �

In the case of convex regions The 18 can be given the
following strengthened form.

The 19: p1 ∈ P>c→ c = sup(s | ∃p2 ∈ P>c.s = p1 p2)

Proof: From p1 ∈ P>c, it follows by The 11, that p1 p2 ∈ P>c
for each p2 ∈ P>c. Hence sup(s|∃p2 ∈ P>c.s = p1 p2) ∈ P>c. —
It remains to be shown that also conversely c ∈ P> sup(s|∃p2 ∈
P>c.s = p1 p2). Assume so that p3 ∈ P>c. It suffices to show
that p3 ∈ P> sup(s | ∃p2 ∈ P>c.s = p1 p2). But this follows
readily from The 16. �

To conclude the present subsection, we state a further axiom
which strengthens the theorem just proven for a special kind
of convex regions. Consider some point p and a convex region
c. The region [p+ c] may be called the cone with apex p and
base c; cf. Fig. 2. Since the cone has been constructed as a
hull, it is convex. By The 19, then, it equals the sum of all
the segments starting from the apex and ending at some other
point of the cone. The next axiom states that we do not really
need to consider all segments of the kind described but rather
can restrict ourselves to segments from the apex to the points
of the base (as the points p1, p2 and p3 in Fig. 2).

GEO 4: [p1 + c1] = sup(s1 | ∃p2 ∈ P>c1.s1 = p1 p2)

This axiom is called join-hull commutativity since it postulates
that the hull operation and the sum (“join”) operation may be
interchanged; cf. [1, p. 39]. The reader should remember here
that pp1 actually is the convex hull [p1, p2]. To make thus the
name of the principle more transparent, we could render it as
[sup(p1, c1)] = sup([p1 p2] | p2 ∈ P>c1).21

IV. Straightness and Order

In the previous section we dealt with the relationship
between segments and convex regions. Segments connect the
points of a convex region without leaving that region. In
the present section we shall consider two further important
properties of segments. In the first subsection we shall set up
two axioms which make explicit what it means for a segment
to be “straight” rather than “bent”. Then we shall study the
order of points in a segment.

20Though The 17 seems to be quite trivial, its formal proof requires some
care as regards the handling of the sorts.

21Where “sup([p1 p2] | ϕ)” abbreviates “sup(s1 | s1 = p1 p2 ∧ ϕ}”.
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c

p1p2 p3

p

Fig. 2. Join-hull commutativity.

A. Straightness

Segments are convex, as we have seen, and so are the two
first sample regions (the triangle and the circle) displayed in
Fig. 1. Segments are one-dimensional and thus differ from
triangles and circles which are two-dimensional. There is yet
another property which sets segments apart from circles. A
circles (by its circumference) involves curvature whereas a
segment is straight. In the present subsection we set up two
axiomatic principle which make explicit what it means to
be straight. The first of these two principles is known as
decomposability; cf. [1, p. 143]. In our framework it may be
rendered as follows.

GEO 5: p2 ∈ P>p1 p3 → p1 p3 = p1 p2 + p2 p3 ∧
p2 = p1 p2 · p2 p3

A point of a segment dissects the whole segment into two
component segments which overlap precisely in the dissecting
point; cf. the left diagram of Fig. 3. Hence a curved line with
a loop such as that displayed by the right diagram of Fig. 3
cannot be a segment since there is a point on that line which
dissects it into three parts.

p1
p2 p3

p1p2

p2p3

p1 p3
p2

Fig. 3. Decomposition of a segment into two segmental components

As an immediate consequence of decomposability we have:

The 20: p2 ∈ P>p1 p3 ∧ p3 ∈ P>p1 p2 → p2 = p3

Proof: By decomposability p1 p3 = p1 p2 + p2 p3 with p2 =

inf(p1 p2, p2 p3). But since p3 ∈ P>p1 p2 ∩ P>p2 p3, p2 = p3. �

The second postulate which explains what it means for a
line to be straight is known by the name of this property, i.e.,
straightness; [1, p. 143].

GEO 6: ∃p1 p2.[p1 , p2 ∧ p1, p2 ∈ P>s1 ∩ P>s2]→
s1 + s2 ∈ Ds

The sum of two segments sharing two points cannot result in
a curved line because in that case at least one of the items
combined would have already been bent; cf. Fig. 4.

p1p2
p3 p4

s1

s2

sup(s1, s2)

p2 p1

s1

s2

sup(s1, s2)

Fig. 4. The combination of two segments results in a straight segment again

The 5 and The 6 imply the ramification principle of The 21;
cf. [1, p. 143] which says that two segments which have one
boundary point in common but differ with respect to their
second boundary will branch away from each other at the
common point; cf. the left hand side of Fig. 5. The indirect
proof of the ramification principle provided by [1, p. 144]
within a set-theoretic framework can be directly transferred to
our mereological system.

The 21: p3 < P>p1 p2 ∧ p2 < P>p1 p3 → p1 = p1 p2 · p1 p3

p1

p2

p3

p4
p1 p

p2

p3

p5

Fig. 5. The Ramification Property.

B. Order and Lines

Normally an order relation between points belongs to the
undefined concepts of standard axiomatic systems of geome-
try; cf., e.g., [12, §3], [50, pp. 11–13]. In our framework such
a relation may be defined.

Def 15: (a) B ====
def
{〈p1, p2, p3〉 | p2 ∈ P>p1 p3}

(b) p2Bp1 p3 ⇐⇒
def
〈p1, p2, p3〉 ∈ B
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Decomposability implies that of three points at least one lies
between the two others.

The 22: p1, p2, p3 ∈ P>s→
p1Bp2 p3 ∨ p2Bp1 p3 ∨ p3Bp1 p2

Proof: If two of the three points mentioned in the assumption
of the theorem are identical (say, e.g., p1 = p2), then the
assertion surely holds true (since then, in the example case,
p1Bp2 p3). Hence we assume that all the points differ from
each other. Let p4 and p5 be the endpoints of the segment
s; hence s = p4 p5. By GEO 5 s = p4 p1 + p1 p5 with
p1 = p4 p1 · p1 p5. Assume that p2 and p3 belong to differ-
ent component segments of s, e.g.: p2Bp4 p1 and p3Bp1 p5

(the converse distribution is treated in analogous way). Two
further applications of The5 yield p4 p1 = p4 p2 + p2 p1 and
p1 p5 = p1 p3 + p3 p5 where p2 and p3 are, respectively,
the only common points of the component segments. Hence
both p1 < P>p4 p2 and p1 < P>p3 p5. Again by GEO 5 we
have s = p4 p2 + p2 p5 with p2 = p4 p2 · p2 p5. From the
latter and p1 < P>p4 p2 we conclude p1Bp2 p5 and, since
p3Bp1 p5, p3Bp2 p5, too. A further application of The 5 yields
p2 p5 = p2 p3 + p3 p5 with p3 = p2 p3 · p3 p5. We already know
that p1 < P>p3 p5 and thus infer p1Bp2 p3. — Now assume
that p2, p3 belong to the same component segment of our first
division of s into p4 p1 and p1 p5. Assume p2, p3 ∈ P>p4 p1;
the remaining possibility is treated in an analogous way. The
5 yields that p4 p1 = p4 p2+ p2 p1 with p2 = p4 p2 · p2 p1. Hence
either p3Bp1 p2 and nothing remains to prove, or p3 ∈ P>p4 p2.
In the latter case we know by The 20 that p2 < P>p4 p3. But
by a final application of The 5 we have p4 p1 = p4 p3 + p3 p1
with p3 = p4 p3 · p3 p1; therefore p2Bp1 p3. �

Def 15 does not require that the two boundary points
delimiting the position of the third point differ. If they do
not, the point in between them is identical to them.

The 23: p1Bp2 p2 → p1 = p2

This is immediate from the idempotent law for segments The
16. The 23 is an axiom of Tarski’s system of Euclidean geom-
etry presented and investigated in [50]. There it is called the
identity axiom for the betweenness relation. Pasch [51], who is
celebrated for his analysis of the order relation, postulated that
points connected by the B-relation differ from each other, and
Hilbert [12] followed him in this. The B-relation assumed here
may be easily modified in the way suggested by the Pasch-
Hilbert-view.

Def 16: (a) B+ ====
def

B ∩ {〈p1, p2, p3〉 | ∧
1≤i< j≤3

pi , p j}
(b) p2B+p1 p3 ⇐⇒

def
〈p1, p2, p3〉 ∈ B+

For the concept of a segment and for betweenness-relation,
which are both basic in his axiomatisation of geometry, Pasch
[51, §1] postulates nine axioms. In the present framework they
can be formulated as shown in Tab. I. Of these axioms, I.
and IV. are just a special cases of The 7 and the “monotone
law” Theorem 14-(b), respectively. Furthermore, V. easily
follows from GEO 5. VI. says that a segment p1 p2 is always

extendable beyond its boundary point p2. We adopt it as a
basic principle of our system.

GEO 7: ∃p3.p2B+p1 p3

IX. is a dimensionality axiom. Since we wish to remain neutral
here with respect to dimensionality, we do not accept this
axiom.

I.
1
∃s.s = p1 p2

II. ∃p2.p2B+p1 p3
III. p2B+p1 p3 → ¬p1B+p2 p3
IV. p2B+p1 p3 → p1 p2 ∈ P>p1 p3
V. p2B+p1 p3 ∧ p4 < P>p1 p2 ∪ P>p2 p3 → p4 < Pp1 p3
VI. ∃p3.p2B+p1 p3
VII. p2B+p1 p3 ∧ p2B+p1 p4 → p3B+p1 p4 ∨ p4B+p1 p3
VIII. p2B+p1 p3 ∧ p1B+p2 p4 → p1B+p3 p4
IX. ∃p3.[¬p1B+p2 p3 ∧ ¬p2B+p1 p3 ∧ ¬p3B+ p1 p2]

TABLE I
Pasch’s Axioms for Segments and Betweenness

Pasch’s axiom II. is accepted here in the slightly modified
but equivalent form GEO 8.

GEO 8: p1 , p2 → p1 p2 , p1 + p2

The 8 requires each non-punctual segment to contain at least
two points, namely its boundaries. GEO 8 excludes “hollow”
segments just consisting of their boundaries. It thus says that
the relations B and B+ are dense. Hence it may be called the
denseness axiom; cf. [1, p. 146].22 It corresponds to the second
of Hilbert’s “axioms of order”; cf. [12, chap. I, §3].23

Within our framework, then, we can prove Pasch’s VIII.
by means of the principles of decomposability, ramification
and denseness. Actually VIII. refers to a special constellation
considered in the straightness axiom GEO 6. If in that axiom
s1 = p3 p1 and s2 = p2 p4, then we expect that s1 + s2 = p3 p4;
cf. the left hand side of Fig. 4.

The 24: p1 , p2 ∧ p2Bp3 p1 ∧ p1Bp2 p4 →
p3 p1 + p2 p4 = p3 p4

Proof: According to GEO 6, p3 p1 + p2 p4 is a segment, and
according to The 8 and The 15 it contains the segment p3 p4

as a part. Thus it remains to be shown that also conversely
p3 p1 + p2 p4 ∈ P>p3 p4 (∗). — In order to prove this, we first
deal with some special cases. (a) If p1 = p3, then p1 = p3 p1 =

p3. But this would, in contradiction to the assumption of the
theorem, imply that p1 = p2 since p2Bp3 p1. Hence p1 , p3.
— (b) Furthermore, p2 , p4, too. For otherwise we would have
p2 = p2 p4 = p4 and hence from the hypothesis p1Bp2 p4 p1 =

p2, which again contradicts the assumption p1 , p2. — (c)
Finally, p3 , p4, too. For otherwise we had p1Bp2 p3 because
of p1Bp2 p4. But since p2Bp3 p1, p3 p1 = p3 p2 + p2 p1 with

22In [1], that axiom is formulated for a segment operation which maps pairs
of points p1 and p2 to the open segment bounded by those two points; cf.
Fn. 3. This means that the points do not belong to the segment which they
delimit.

23Hilbert, however, conceives of order as a relation restricted to the points
of some given line. We shall return to the topic of lines at the end of the
present subsection.
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p2 = p3 p2 · p2 p1. As we have just seen, however, p1Bp2 p3;
this would yield p1 = p2, once more in contradiction to the
assumption. (d) We may assume that p4 < P>p3 p1 (and so
particularly p1 , p4). Otherwise, by decomposition, p4Bp3 p2
(d.1) or p4Bp2 p1 (d.2). The latter would imply p1 = p4 by The
20. Since the assumption p2Bp3 p1 implies p2 p4 ∈ P>p3 p1 by
The 15, we had p3 p1 + p2 p4 = p3 p1 which together with p1 =

p4 implies (∗), which concludes the case (d.2). — Assume
then (d.1). By decomposition p3 p4 + p4 p2 = p3 p2 with p4 =

p3 p4 · p4 p2. From this and from (b) above we conclude that
p2 < P>p3 p4. Again by decomposition p3 p4 + p4 p1 = p3 p1;
thus p2Bp4 p1. But then with the assumption p1Bp2 p4 and The
20 p1 = p2 in contradiction to the theorem’s assumption. —
(e) Because of a similar reasoning we may also assume that
p3 < P>p2 p4 (and thus in particular p2 , p3). — In order to
prove (∗), it is sufficient to show that p1, p2 ∈ P>p3 p4. From
the latter and The 15 it follows that p3 p1 and p2 p4 are both
parts of p3 p4 which implies (∗) by The 3. — Assume first that
p1 were not a part of p3 p4. We may take it for granted that
p4 < P>p3 p1; cf. (d) above. Hence we may apply The 21 and
conclude that p3 = p3 p4 · p3 p1 (f). Now consider p2 p4. From
(f), the assumption p2Bp3 p1, and the fact that — according to
(b), (c) above — p2 differs from both p3 and p4, we infer that
p2 < P>p3 p4. Furthermore we may assume that p3 < P>p2 p4;
cf. (e) above. Thus we may once again by The 21 conclude
that p4 = p3 p4 · p2 p4 (g). By (f) and (g), we have that p3
and p4 are the only points shared by p3 p4 and p3 p1 + p2 p4.
We had already proven that p3 p4P>p3 p1 + p2 p4 and hence
p3 p4(p3 p1+p2 p4) = p3 p4. But since the factors of that product
share only the two points mentioned, we are forced to conclude
that p3 p4 = p3+ p4 which contradicts denseness. — The same
result is reached by a parallel argumentation which starts from
the assumption that p2 < P>p3 p4.

Pasch’s VII. is a consequence of the ramification property;
cf. The 21.

The 25: p2B+p1 p3 ∧ p2B+p1 p4 → p3B+p1 p4 ∨ p4B+p1 p3

Proof: Since we are concerned with strict betweenness here,
p1 , p2. Hence the two segments p1 p3 and p1 p4 share
more than just one point; thus p1 , inf(p1 p3, p1 p4). By the
ramification property then: ¬[p4 < P>p1 p3 ∧ p3 < p1 p4], i.e.,
p3 ∈ P>p1 p4∨ p4 ∈ P>p1 p3, hence (since, by hypothesis, both
p1 , p3 and p1 , p4): p3B+p1 p4 ∨ p4B+p1 p3. �

We have thus proven (or, in the case of II. and VI. simply
taken over) all of Pasch’s axioms for lines. The celebrated
axiom called after him (“Pasch’s Axiom”; Hilbert’s fourth
“axiom of order”), however, is not included within the list
of Tab. I because it makes its appearance in [51] only in the
book’s second paragraph, which deals with planes. We shall
return to Pasch’s Axiom in the next section. We conclude the
present section by a brief consideration of (unbounded) lines
(as opposed to bounded segments).

Pasch [51, p. 4] rejects the notion of an infinitely extended
line since it does not “correspond to anything perceivable”.
Nevertheless, he introduces lines into his system by a special

procedure which he calls “implicit definition” (and is to be
distinguished from “definition by axioms” also called thus).
The procedure is more closely described in [52], where Pasch
relates it to the doctrine of the As-If of the neo-Kantian
philosopher Hans Vaihinger. It essentially consists in the intro-
duction of a kind of new, “fictitious” objects which, however,
can be uniquely characterized by their relationships to “real”
objects. In our mereological framework we construct lines as
sums of certain points. The following definition mirrors the
set-theoretical procedure of [53, p. 50].

Def 17: L ====
def

{〈u1, p1, p2〉 | p1 , p2 ∧
u1 = sup(p3 | p1Bp3 p2 ∨ p3Bp1 p2 ∨
p2Bp1 p3)}

Obviously, L is a (partial) operation. Coppel [53, p. 49–
52] develops a theory of lines based on four axioms (L1)–
(L4). (L1) is the idempotent law The 16. Coppel’s (L2) says
that p2Bp1 p4 if p2Bp1 p3, p3Bp2 p4, and p2 , p3. This is an
immediate consequence of our The 24. (L3) is the ramification
principle; cf. The 21. Finally (L4) is that part of GEO 5 which
is concerned with the supremum-operation (omitting the part
postulating that the combined segments share a single point).
Since all of Coppel’s axiom are provable in our framework
(and his proofs do not make use of set-theoretical procedures
not available in our class-theoretical framework), the theorems
proven by him can directly be taken over into our framework.
This includes his result that a line is uniquely determined by
any two points lying on it and that the points on a line can
be arranged in a unique way in a total linear order. Because
of GEO 8, we may add that this order is dense.

C. The Axioms of Peano and Pasch

The structure of points and lines described at the end of the
previous section is known as a “line space”; cf. [1, p. 155].
In a line space two distinct points belong to a unique line,
each line has at least two points, and the points on each line
are arranged in a total linear dense order. The only condition
entering into the definition of a line space which has not been
established yet is the so-called Peano Axiom (cf. the left-hand
side of Fig. 6). However, this axiom can be proven in our
framework.

The 26: p4Bp2 p3 ∧ p5Bp1 p4 → ∃p6 ∈ P>p1 p2.p5Bp3 p6

Proof: Suppose that both p4Bp2 p3 and p5Bp1 p4. Then p5

belongs to [p1, p2, p3] which, by GEO 4, is sup(s | ∃p4 ∈
P>p2 p3.s = p1 p4). By the same axiom, however, [p1, p2, p3] =
sup(s | ∃p6 ∈ P>p1 p2.s = p3 p6). Hence p5 ∈ P>p3 p6 for some
p6 ∈ P>p1 p2. �

From the Peano Axiom we now deduce Pasch’s Axiom.
Pasch himself formulates his axiom [51, p. 20] as stating
a relationship between a triangle and a segment entering
the inner of the triangle by crossing one of its edges. The
theorem then says that either the entering segment itself or
a prolongation of it leaves the triangle by crossing (either a
vertex of the triangle or) exactly one of the two other edges.
Here we prove another formulation. Pasch’s own version of
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Fig. 6. The Peano Axiom and Proof of Pasch’s Axiom

his axiom, however, is provable from the version used here,
cf. [53, p. 57f]. Conversely, our version given below is implied
by Pasch’s theorem; cf. [51, p. 25].

The 27: p4Bp1 p2 ∧ p5Bp1 p3 → 〈p2 p5, p3 p4〉 ∈ O

Proof: We24 may presuppose that none of the three points
p1, p2, p3 lies on the segment determined by the two others.
For in that case all the points involved lie on that segment. In
this case the theorem is easily proven by checking a number of
trivial possibilities. By GEO 8 there exists a point p6 between
p5 and p4. Obviously, p1 , p6 since otherwise p1, p2, p3 would
lie on a common segment contrary to our initial assumption.
For p6 two applications of The 26 yield points p7 and p8

on, respectively, p3 p4 and p2 p5 such that both p6Bp1 p7 and
p6Bp1 p8. By GEO 6 p1, p6, p7, and p8 lie on a segment;
hence, by The 22 one of the three points p6, p7, and p8 must
lie within the segment spanned by the two others. If p6Bp7 p8,
it would follow that all three points were identical and then
that point would be a common point of p2 p5 and p3 p4. Hence
p7Bp6 p8 or p8Bp6 p7. The first case is that displayed in the left
hand side of Fig. 6. We consider only this case; the argument
for the other case is completely analogous. The segment p6 p8
is a part of the triangle △p4 p5 p2 (shaded in Fig. 6); therefore
the point p7 also belongs to that triangle. It follows by an
application of GEO 4 that p7Bp4 p9 for some p9 with p9Bp2 p5.
Applying now The 26 to △p1 p2 p3 and the point p9 lying on the
segment p2 p5 we infer that there must be a point p10 between
p1 and p2 such that p9Bp3 p10. Furthermore, p9 , p3, for
else p1, p2, p3 would again lie on a single segment which is
impossible according to our initial assumption. The segments
p3 p10 and p3 p4 share thus two points, namely p3 and p9.
Hence, by The 6, the sum s is a segment. This segment s
contains both p4 and p10. If these were two different points,
then, again by The 6, the sum of s with p1 p2 would be a
segment containing all three of p1, p2, p3. Hence we conclude
that p4 = p10. But then p9Bp3 p4 and p3 p4 and p2 p5 overlap
in p9. �

We conclude the presentation of our theory of space by
some remarks relating to two topics addressed in the In-
troduction (sec. I), namely “coordinates” and the idea of a
“geometric algebra”.

24Van de Vel [1, p. 144] gives another proof of Pasch’s Axiom making
use only of the Ramification Principle instead of the stronger Straightness
Principle. The proof given here employs the same idea as is used by Coppel
[53, p. 86] but applies GEO 4 in order to infer the existence of point p9.

V. Coordinates

The first step in turning a qualitative theory of space into
a “quantitative” one by the introduction of coordinates is
to define operations of addition and multiplication for the
segments of a line (or, when a certain point of the line is
distinguished as the “origin” or “zero point”, for the points
of that line) by help of Desargue’s theorem; cf., e.g., [12, §
24] or [50, Part I, § 14]. Now Coppel [53, p. 54f] defines
a “linear geometry” as a structure fulfilling (set-theoretic
counterparts) of Pasch’s principle VIII. (which follows from
our The 24),25 our The 21 (the “ramification principle”), our
GEO 5 (the “decompososability principle”) and the Peano
Axiom (our The 26). Furthermore, he shows [53, pp. 125–
131] that in each dense linear geometry (thus in each linear
geometry in which our GEO 8 is valid) of dimensionality
greater than 2, Desargue’s theorem holds true in the following
form: Let L(p1 p2), L(p3 p4), L(p5 p6) three distinct lines with
a common point p which is different from p j (1 ≤ j ≤ 6). If
corresponding sides of the two triangles △p1 p3 p4 and △p2 p4 p6

intersect, then the three points of intersection lie on the same
line. Finally, it is shown by Coppel [53, ch. 7] that suitable
additive and multiplicative operations for points can be defined
by use of Desargue’s theorem in such a way that a linear
geometry in which this theorem is valid may be embedded
into (the projective completion of) an ordered skew field. Thus
in order to introduce coordinates we can either postulate that
our space is three-dimensional or we may directly require that
Desargue’s theorem is true.

Of course, if it is desired that the order of points on a line
have Dedekind’s cut property something more is necessary. In
the common axiomatisation of geometry the axiom of continu-
ity guaranteeing the cut property makes use of quantification
over sets of points which is not available in LC. However,
since regions are just the sums of their points, first-order
quantification over regions mimics quantification over point
sets. Thus it would be interesting to see how far one gets with
something like ∃p.∀p1 ∈ P>u1, p2P>u2.p1Bpp2 → ∃p0∀p1 ∈
P>u1, p2P>u2.pBp1 p2 which results from Tarski’s axiom on
continuity [50, p. 14] by replacing variables for point sets by
variables for regions.

VI. Note on the idea of a “geometric algebra”

In the Introduction (sec. I) we considered Leibniz’ idea
of a geometric algebra in which one can directly calculate
with points and lines without encoding these geometric entities
by (pairs and sets of) numbers. Furthermore, the geometric
system presented here has been inspired in many respects
by Prenowitz’ “join geometry” which shares the “algebraic
vision” with Leibniz’ idea of a characteristica geometrica.
However, that system with its axioms involving logical con-
nectives and quantifiers is more in line with the ancient
Euclidean procedure than with modern algebraic theories —

25Actually, not VIII. itself but an equivalent “mirror image” of it in which
the sequence of points concerned is inverted is used by Coppel.
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like, e.g., ring theory or lattice theory — which fix their models
by lists of equations.

Nevertheless there is the possibility to develop within our
framework parts of geometry in an “equational manner”.
In the present section we briefly describe an example for
this. In the Introduction (sec. I) it was pointed out that
the “associative law” p1(p2 p3) = (p1 p2)p3 for Prenowitz’
join operation is only interpretable on the basis of certain
conventions. The problem is that the join operation is defined
for points while, one subterm (namely, respectively “(p2 p3)”
and “(p1 p3)”) of the main terms on both side of the equation
stating the law refers to a segment rather than to a point. In the
framework presented in this article this is not really a problem.
We have just to replace Def 14-(c) by the two definitions
p1u1 ====

def
u1 p1 ====

def
[p1, u1]. Since the universal variable “u1”

is substitutable by variables of both sort p and sort s, this
simultaneously defines the operations of (1) joining points,
(2) joining a point to a segment, and (3) joining a segment
to a point; and their would be no problem with a terms like
“p1(p2 p3)” and “(p1 p2)p3” entering into the formulation of
the associative law.

However, this solution suffers from two shortcomings. (1st)
It seems too restrictive by requiring that one argument of the
generalized join operation is still a point. Should one not
define the operation in a completely general way admitting
for arguments of any sort? (2nd) It does not match Prenowitz
intention that the join of a point and a segment is built up by
the segments joining the point argument and the individual
points of the segment argument. Thus it would be more
adequate to keep the old Def 14-(c) for joining points and
to supplement it by the following general one.26

Def 18: u1 ◦ u2 ====
def

sup(s | ∃p1 ∈ P>u1, p2 ∈ P>u2.s = p1 p2)

Obviously, p1 ◦ p2 = p1 p2; we do not therefore make a nota-
tional distinction between the two operations. It is immediate
that the general join operation is commutative. Furthermore,
it is obvious that is idempotent for convex regions. Thus two
of the algebraic laws valid for his special join operation hold
true for the more general one when it is restricted to convex
regions.

The 28: Idempotency cc = c
Commutativity c1c2 = c2c1

Is the third law postulated to hold by Prenowitz for his join
operation, thus assiociativity, valid (for convex regions), too?
In order to show that c1(c2c3) = (c1c2)c3, it suffices in view
of The 6 to show that c1(c2c3) and (c1c2)c3 have exactly the
same points. Let us consider a point p4 of c1(c2c3); we have
to show that p4 ∈ P>(c1c2)c3. From p4P>c1(c2c3) we conclude
the existence of points p j ∈ P>c j (1 ≤ j ≤ 3) and of a point
p5Bp2 p3 such that p4Bp1 p5; cf. the constellation built up by
the solids line in the left hand diagram of Fig. 7. That p4

26Def 18 corresponds in our mereological framework to a similar definition
provided by Prenowitz and Jantocziak in their set-theoretic setting; cf. [9, p.
55].
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Fig. 7. Associativity of the generalized join operation

belongs to (c1c2)c3 means that there are points p′j ∈ P>c j

1 ≤ j ≤ 3 and a point p′5 such that p′5Bp′1 p′2 and p4Bp′5 p′3.
Considering the situation depicted on the left hand side of Fig.
7, it suggests itself to set p′j := p j 1 ≤ 3 and to chose p′5 as
the point of intersection p6 of p1 p2 and the line through the
segment p3 p4; cf. the constellation of dashed lines in the left
part of Fig. 7.

What then remains to be shown is that p6 really exists, i.e.,
that the segment p3 p4 can be extended so that it intersects with
p1 p2. But one readily recognizes that the situation described
is just a “Pasch-configuration”. Using GEO 7, we may extend
p1 p3 to a point p7 such that p3Bp1 p2. Then the line through
p3 p4 is a line entering the triangle △p1 p7 p2 through its edge
p1 p7. The original version of Pasch’s Axiom requires that this
line leaves the triangle through one of the two other edges. In
our case p6 must be incident with p1 p2. Assume that p6 were
a part of p7 p2. The only point that p7 p2 has in common with
△p1 p3 p2 is p2;27 hence we had p2 = p6 and thus nevertheless
p6 ∈ p1 p2. So we have proven that p4 ∈ P>(p1 p2)p3 and by
this that P>p1(p2 p3) ⊆ P>(p1 p2)p3. The converse of this can
be shown by an analogous argument. Summing up, we have
thus proven associativity.

The 29: Associativity c1(c2c3) = (c1c2)c3

Prenowitz’ [9, p. 55] three basic algebraic laws (J2), (J3),
and (J4) of his join geometry are (modulo the difference
explained in Fn. 3 above) just special cases of the more general
principles given here and can be derived from these principles
because of MER 2.

VII. Conclusion

We have provided a theory of space formulated in a mereo-
logical framework which is based on the notion of convexity.
Using mereological concepts, segments of straight lines have
been explained as the convex hulls of the sum of two points.
What “straightness” exactly means for thus defined segments
has been determined by two axioms. Two further axioms have
been included into the system in order to describe the linear
arrangement of the points of a segment. Finally, it has been
illustrated by examples how a more algebraic approach to
geometry, envisaged already by Leibniz, can be developed
within the framework presented here.

27In order to see this, one has to use GEO 6.
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[36] S. Leśniewski, S. Leśniewski’s Lecture Notes in Logic. Dordrecht:

Kluwer, 1988, ch. 6. Whitehead’s theory of events, pp. 171–178.
[37] E. A. Marchisotto and J. T. Smith, The Legacy of Mario Pieri in

Geometry and Arithmetic. Boston etc.: Birkhäuser, 2007.
[38] J. Renz, Qualitative Spatial Reasoning with Topological Information.

Berlin etc.: Springer, 1998.
[39] C. Eschenbach, “A mereotopological definition of ‘point’,” in Topologi-

cal Foundations of Cognitive Science. Papers from the Workshop at the
FISI-CS, Buffalo, NY, July 9–10, 1994. Hamburg: Graduierenkolleg
Kognitionswissenschaft, 1994, pp. 63–80.

[40] G. Gerla, “Pointless geometries,” in Handbook of Incidence Geometry,
F. Buekenhout, Ed. Amsterdam: Elsevier Science, 1995, pp. 1015–
1031.

[41] K. Menger, “Topology without points,” Rice Institute Pamphlets 27, pp.
80–107, 1940.

[42] G. Dimov and D. Vakarelov, “Contact algebras and region-based theory
of space i, ii,” Fundamenta Informaticae, vol. 74, pp. 209–249, 251–282,
2006.

[43] D. Vakarelov, “Region-based space: algebra of regions, representation
theory, and logics,” in Mathematical Problems from Applied Logic
II. Logics for the XXIst Century, D. Gabbay, Goncharov, S. S., and
M. Zakharyaschev, Eds. New York: Springer, 2007, pp. 267–347.

[44] T. Hahmann, M. Winter, and M. Gruninger, “On the algebra of regular
sets: Properties of representable Stonian p-ortholattices,” Annals of
Mathematics and Artificial Intelligence, vol. 65, pp. 35–60, 2012. doi:
10.1007/s10472-012-9301-2

[45] C. Coppola and G. Gerla, “Multi-valued logic for a point-free foundation
of geometry,” in Mereology and the Sciences. Parts and Wholes in
the Contemporary Scientific Context, C. Calosi and P. Graziani, Eds.
Springer, 2012, pp. 105–122.

[46] P. Suppes, Representation and Invariance of Scientific Structures. Stan-
ford CA: Center for the Study of Language and Information, 2002.

[47] E. Rubin, Synsoplevede Figurer. Studier i psykologisk Analyse. Første
Del. Copenhagen: Gyldendal, 1915.

[48] O. Selz, “Die Struktur der Steigerungsreihen und die Theorie von Raum,
Zeit und Gestalt,” in Bericht über den XI. Kongreß für experimentelle
Psychologie in Wien vom 9.–13. April 1929, H. Volkelt, Ed. Jena:
Fischer, 1930, pp. 27–45.

[49] “Appendix E. An alternative system for P and T,” In: J. H. Woodger:
The Axiomatic Method in Biology. Cambridge GB: Cambidge University
Press, 1937. 161–172.

[50] W. Schwabhäuser, Wolfram; Szmielew and A. Tarski, Metamathemati-
sche Methoden in der Geometrie. Berlin etc.: Springer, 1983.

[51] M. Pasch, Vorlesungen über neuere Geoemtrie. Leipzig: Teubner, 1882,
2nd edition with an appendix by Max Dehn. Berlin: Springer 1926.
Reprinted 1976.

[52] ——, “Die Begründung der Mathematik und die implizite Definition.
Ein Zusammenhang mit der Lehre vom Als-Ob,” Annalen der Philoso-
phie, vol. 2, pp. 145–162, 1921.

[53] W. A. Coppel, Foundations of Convex Geometry. Cambridge GB:
Cambridge University Press, 1998.

54 PROCEEDINGS OF THE LQMR WORKSHOP. WARSAW, 2015



Encoding Relative Orientation and Mereotopology
Relations with Geometric Constraints in CLP(QS)

Carl Schultz
Institute for Geoinformatics

University of Münster, Germany
Email: schultzc@uni-muenster.de

Mehul Bhatt
Department of Computer Science
University of Bremen, Germany

Email: bhatt@informatik.uni-bremen.de

Abstract—One approach for encoding the semantics of spatial
relations within a declarative programming framework is by sys-
tems of polynomial constraints. However, solving such constraints
is computationally intractable in general (i.e. the theory of real-
closed fields), and thus far the proposed symbolic algebraic
methods do not scale to real world problems. In this paper we
address this intractability by investigating the use of constructive
geometric constraint solving (in combination with numerical
optimisation) within the context of constraint logic programming
over qualitative spaces, CLP(QS). We present novel geometric
encodings for relative orientation and mereotopology relations
and show that our encodings are significantly more robust than
other proposed approaches for directly encoding inequalities,
due to our encodings being based on a standard, well known
set of relations encoded as quadratic equations. Our encodings
are general (i.e. not implementation specific) and can thus be
directly employed in all standard geometric constraint solvers,
particularly solvers that are prominent within the Computer
Aided Design and Manufacturing communities. We empirically
evaluate our approach on a range of benchmark problems from
the Qualitative Spatial Reasoning community, and show that
our method outperforms other symbolic algebraic approaches
to spatial reasoning by orders of magnitude on those benchmark
problems (such as Cylindrical Algebraic Decomposition).

I. INTRODUCTION

Many complex, real world problems can be elegantly ex-
pressed in a declarative manner within the paradigm of logic
programming. In particular, the user specifies what needs to
be accomplished, rather than procedurally prescribing how the
problem should be solved. Often such real world problems
inherently involve spatial aspects: variables ranging over spa-
tial object domains (polygons, circles, points, etc.) and spatial
relations between those objects.

Qualitative spatial representation and reasoning has re-
ceived considerable attention, especially from the viewpoint
of the research communities of spatial information theory, and
knowledge representation and reasoning. Knowledge represen-
tation and reasoning about space may be formally interpreted
within diverse frameworks such as: (a) geometric reasoning
& constructive (solid) geometry [20]; (b) relational algebraic
semantics of ‘qualitative spatial calculi’ [25]; and (c) by
axiomatically constructed formal systems of mereotopology
and mereogeometry [1]. Independent of formal semantics,
commonsense spatio-linguistic abstractions offer a human-
centred and cognitively adequate mechanism for logic-based
automated reasoning about spatio-temporal information [4].

However, what is clearly still lacking is a systematic knowl-
edge representation (KR) centred methodological foundation
that provides a computational backbone —formal semantics in
the context of mainstream KR methods, declarative (spatial)
programming paradigm, general toolsets – for commonsense
reasoning about space. This is essential in order to provide
a developmental basis and seamless, systematic integration
within large-scale AI, and hybrid intelligent systems that
involve diverse types of knowledge representation, reasoning,
and learning modules (e.g., IBM Watson).

Our long-term research agenda is to integrate spatial reason-
ing natively within declarative, logic-based frameworks [3].
We have partially realised aspects of this in the Constraint
Logic Programming over Qualitative Spatial domains system:
CLP(QS) [3]. Users can specify logic programs that are
solved with a seamless combination of spatial reasoning and
Prolog’s standard variable unification, i.e. logic programming
extended to natively handle qualitative and geometric spatial
constraints. Specifically, we utilise the following features of
logic programming:

• declarativeness - a Prolog program is a specification of
the conditions that need to be satisfied, or the goals that
must be accomplished, rather than a procedural set of
instructions; that is, the user specifies what the program
should accomplish, rather than how the problem at hand
should be solved

• recursive variable generation - languages such as Prolog
are able to infer the existence of objects that are required
to solve the problem that were not explicitly specified
by the user; combined with recursion, this enables a user
to explore the unboundedness and density of objects in
space

Relation algebraic qualitative spatial reasoning (e.g. the
left-right calculus LR [26]), while efficient, is incomplete in
general [21, 22, 25].1 Alternatively, constraint logic program-
ming based systems such as CLP(QS) [3] and others (see

1Incompleteness refers to the inability of a spatial reasoning method to
determine, in general, whether a given set of qualitative spatial constraints is
consistent or inconsistent. Relation-algebraic spatial reasoning (i.e. using al-
gebraic closure based on weak composition) has been shown to be incomplete
for a number of spatial languages and cannot guarantee consistency in general,
e.g. relative directions [22] and containment relations between linearly ordered
intervals [21], Theorem 5.9.
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[6, 7, 28, 29]) adopt an analytic geometry approach where
spatial relations are encoded as systems of polynomial equa-
tion and inequality constraints. Thus, the task of determining
whether a set of spatial constraints is consistent becomes
equivalent to determining the satisfiability of a system of
polynomial constraints with variables ranging over reals.2

We have investigated a range of polynomial constraint
solving methods including CLP(R) for linear constraints, and
SAT Modulo Theories and quantifier elimination by Cylin-
drical Algebraic Decomposition (CAD) for general systems
of non-linear constraints [3, 31, 32]. However, solving such
constraints is computationally intractable in general (i.e. the
theory of real-closed fields; for example, the CAD algorithm
has double exponential complexity, O(ab

n

), in the number
of variables in the polynomial constraints, n) [2], and thus
far, prominent symbolic algebraic methods do not scale to
real world problems [24]. In this paper we address this
intractability by investigating the use of constructive geometric
constraint solving for spatial reasoning within the context of
CLP(QS).

The paper is structured as follows. In the remainder of
introduction we highlight some key benefits of the utilisa-
tion of geometric constraint solving within constraint logic
programming over qualitative spaces. Section II provides an
introduction to spatial reasoning by polynomial encodings, and
formally specifies the standard geometric constraint language.
In Section III we empirically evaluate our approach on a
range of well known benchmark problems from the Qualitative
Spatial Reasoning community, and show that our system
outperforms other symbolic algebraic approaches to spatial
reasoning by orders of magnitude. Section IV evaluates our
encodings using a range of spatial benchmark problems. We
then present our conclusions about the main contributions of
the paper and directions for future research.

A. Motivations for utilising geometric constraint solving

Geometric constraint solving for higher-level qualitative
spatial reasoning has a range of benefits: problems can have
a combination of numerical and qualitative information, the
methods scale to real world sized problems (in the order
of hundreds of objects), and they can produce consistent
and “best found” instantiations for both solved and unsolved
problems, respectively. Moreover, at each iteration, the solver
produces increasingly better configurations as it attempts to
converge on the solution; we can directly study and visu-
alise these intermediate configurations as a spatial history of
configurations [17, 18] giving further insight into the nature
of the problem at hand. However, a key limitation is that

2Tarski famously proved that the theory of real-closed fields is decidable
via quantifier elimination (see [2, 12, 13] for an overview and algorithms); i.e.
in a finite amount of time we can determine the consistency (or inconsistency)
of any formula consisting of quantifiers (∀, ∃) over the reals, and polynomial
equations and inequalities combined using logical connectors (∧, ∨, ¬). Thus,
by encoding spatial relations as systems of polynomial constraints (i.e. analytic
geometry) we can employ polynomial constraint solving methods that are
guaranteed to determine (in)consistency, giving us sound and complete spatial
reasoning.

B C
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...
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...

Fig. 1. Recursively enumerating the ways that a rectangle A can be
partitioned into a union of rectangles, union(B,C).

these methods do not handle inequalities well [16], which are
used for encoding a large range of qualitative spatial relations,
including relative orientation and mereotopology.

Building on results within the geometric constraint com-
munity, we present novel geometric encodings for relative
orientation and topology relations using only equations (i.e.
corresponding to robust ruler and compass construction meth-
ods [27], and thus avoid problematic saddles near local optima
that are common with inequality encodings using numerical
optimisation methods [16]. Moreover, as our encodings rely
on a standard set of geometric constraints, they can be used
to enhance all standard geometric constraint solvers with a
variety of qualitative spatial relations that are prominent within
the Computer Aided Design and Manufacturing communities.

B. An example of Spatial Reasoning in CLP(QS)

Using recursive variable generation we can declaratively
explore the ways that a rectangle can be partitioned into a
set of rectangles (employing CLP(QS) mereology relations
between boolean combinations of rectangles) [32]:

partition(A, union(B,C)) :-
mereology(equal, A, union(Br,Cr)),
mereology(discrete_from, Br, Cr),
((B = Br, C = Cr)
;
partition(Br, B),
partition(Cr, C)
).

?- partition(rectangle(_,_,_), union(B,C)).

Importantly, the initial specification of the partitioning task
is completely qualitative and does not contain any numerical
information. We can continually request further solutions from
Prolog to generate new solutions. Each solution is defined
by a set of qualitative constraints between rectangles and
thus represents an infinite set of rectangle configurations. For
example, in Figure 1 the left solution in the first row is defined
by the constraints: Aw = Bw + Cw, Ah = Bh = Ch,
Ax = Bx, Bx < Cx where Aw, Ah is the width and height
of A, and (Ax, Ay) is the coordinate of the bottom left corner
of A. For each qualitatively distinct solution we can then
generate a concrete, numerically defined instantiation of the
objects using geometric constraint solving.

We can further constrain the problem to enumerate the ways
that a square can be partitioned into n squares, n > 1. As
illustrated in Figure 2, CLP(QS) determines that solutions exist
for n = 4, 6, 7, 8, 9 and no solutions exist for n = 2, 3, 5.
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Fig. 2. Square partitioning solutions for n = 4, 6, 7, 8, 9.

all_squares(square(_,_)).
all_squares(union(A,B)) :-

all_squares(A), all_squares(B).

?- A=square(_,_),
partition(A, union(B,C)),
all_squares(union(B,C)).

II. SPATIAL REASONING BY POLYNOMIAL ENCODINGS

Analytic geometry methods parameterise classes of objects
and encode spatial relations as systems of polynomial equa-
tions and inequalities [10]. For example, we can define a
sphere as having a 3D centroid point (x, y, z) and a radius r,
where x, y, z, r are reals. Two spheres s1, s2 externally connect
or touch if

(xs1 −xs2)
2+(ys1 −ys2)

2+(zs1 −zs2)
2 = (rs1 + rs2)

2 (1)

If the system of polynomial constraints is satisfiable then
the spatial constraints are consistent. Specifically, the system
of polynomial (in)equalities over variables X is satisfiable if
there exists a real number assignment for each x ∈ X such that
the (in)equalities are true. Partial geometric information (i.e. a
combination of numerical and qualitative spatial information)
is utilised by assigning the given real numerical values to the
corresponding object parameters.

A. Constructive Geometric Constraint Solving

A plethora of methods have been developed for geometric
constraint solving via solving systems of polynomial con-
straints, and can be broadly categorised as: numerical opti-
misation (e.g. [16]), symbolic methods (e.g. [10, 14]), and
constructive (synthetic) methods (e.g. [8, 15, 27]). We focus
on graph-based constructive methods due to their practical
efficiency and popularity in industry (e.g. Autodesk Inventor,3

LEDAS LGS2D,4 FreeCAD5), although our encodings can
be similarly applied to any of the aforementioned geometric
constraint solving approaches.

In a seminal paper, Owen [27] identifies a particular set
of spatial relations that, on one hand, are useful for a wide
range of applications, particularly engineering and computer
aided manufacturing, and on the other hand, can be reasoned
about efficiently enough to address real-world scale problems.
The particular set of relations correspond to distance, inci-
dence, and angle constraints that can be encoded as quadratic
equations over 2D points, lines, and circles. Geometrically,
these correspond to relations that can be constructed using the
familiar idealised ruler and compass from Euclid’s Elements
[19]. We refer to this restricted set of spatial relations as the

3www.autodesk.com/products/inventor/overview
4ledas.com/products/lgs2d/
5www.freecadweb.org/

standard geometric constraint language. This set of relations
is now standard within the geometric constraint solving com-
munity, and all prominent, industry-standard constraint solvers
that we are aware of adopt precisely this set of relations
(although sometimes such systems also support ellipses), par-
ticularly within Computer Aided Design and Manufacturing.

Owen [27] also presents an influential graph-based reduc-
tion method for constructive geometric constraint solving.
Spatial information is represented as a graph, where nodes
are variables that range over a spatial domain of geometries,
and edges represent spatial constraints. Firstly, the graph is
analysed, and then a sequence of construction steps is deter-
mined that produces a configuration of objects that satisfies
the (declarative) geometric constraints.

We emphasise that, as our encodings are based on this
standard geometric constraint language, they can be utilised
within all prominent geometric constraint solvers that also
adopt this language. That is, our encodings are not solver-
implementation specific.

B. The Standard Geometric Constraint Language

The spatial domains of objects in the standard geometric
constraint language are points P, lines L, and circles C:

• a point p ∈ P is a pair of reals, (xp, yp) ∈ R2

• a line lab ∈ L is a pair of distinct points, a, b ∈ P, a 6= b
• a circle Ci ∈ C is a circle with centre point pi ∈ P and

radius ri ∈ R, 0 < ri

We use lower case letters to refer to points. We use lp1p2

to refer to lines between points in the subscript. We use upper
case Ci with a subscript number (if needed) to refer to circles.
For brevity, if two points a, b have been declared, then we
can refer to the line lab without explicitly quantifying l, and
doing so implicitly constrains a, b to be distinct, e.g. let ϕ be
a predicate, then:

∃a, b ∈ P, ∃lab ∈ L
(
ϕ(lab)

)
≡ ∃a, b ∈ P

(
ϕ(lab)

)
.

Table I presents polynomial encodings for the standard set
of geometric constraints between points, lines, circles. They
correspond to:

• incidence between points-lines, and points-circles
(collinear, coincident);

• orientation between lines (parallel, perpendicular);
• constant distance and angles for lines and circles (dis-

tance between points, radii of circles, angle between
points a, b about a reference point p).

III. ENCODING QUALITATIVE SPATIAL RELATIONS USING
GEOMETRIC CONSTRAINT LANGUAGES

In this section we present a range of novel encodings
that enable us to reason about qualitative spatial relations
over extended regions (in particular, relative orientation and
mereotopology over regions) using traditional geometric con-
straint solving methods that are restricted to the standard
geometric constraint language.
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Relation Polynomial Encoding
collinear (COLL) (xb − xa)(yp − ya) = (xb − ya)(xp − xa)
(point p, line lab)
coincident (COIN) (xpi

− xa)
2 + (ypi

− ya)
2 = r2i

(point a, circle Ci)
coincident (COIN) COINa,Ci

∧COINb,Ci
(line lab, circle Ci)
perpendicular (PERP) (yb − ya)(yd − yc) = −(xb − xa)(xd − xc)
(lines lab, lcd)
parallel (PARA) (yb − ya)(xd − xc) = (yd − yc)(xb − xa)
(lines lab, lcd)
vertical (VERT) xa = xb

(line lab)
length (LEN) (xa − xb)

2 + (ya − yb)
2 = k2

(line lab, constant k)
angle (ANG) θ = atan2((yb − yp), (xb − xp))
(points a, b, p, constant θ) − atan2((ya − yp), (xa − xp))

TABLE I
POLYNOMIAL ENCODINGS OF GEOMETRIC CONSTRAINT

RELATIONS.

A. Minimum distance

A minimum distance circle MDISTC is a circle C with
a diameter at least ε. This encoding provides a means to
implement a minimum bound on the diameter of a circle.
The constrained circle can then be used to enforce minimum
distances between spatial objects. Many prominent geometric
constraint solving systems (including Inventor and FreeCAD)
do not support this constraint.

As illustrated in Figure 3, the encoding adds a fixed-length
chord to the circle (i.e. a line where the endpoints are coin-
cident with the circle). The length of the chord determines
the minimum permitted diameter of the circle. The circle
diameter is minimised when the chord intersects the centroid
of the circle. The circle diameter has no upper bound, that
is, the chord can be positioned an arbitrary distance from the
centroid; the circle diameter must then increase in order to
maintain the constraint that the chord endpoints are coincident
with the circle. Additionally, we impose a vertical constraint
on the chord to improve the solving efficiency of the encoding
(i.e. the effect of the vertical constraint is to eliminate one x
variable from the chord).

MDIST(C) ≡
∃lab ∈ L

(
VERT(lab) ∧ COIN(lab, C) ∧ LEN(lab, ε)

)

Various numerical optimisation methods do provide box
constraints, i.e. constant bounds on variables, e.g. limited
BFGS-B [9]. In such systems this encoding is redundant, as
we can enforce a box constraint on the radius of the circle.

B. Point-segment coincidence

While the collinear constraint between points and lines is
common in geometric constraint systems (i.e. a point lies
anywhere on an infinite line), the ability to constrain a point
to lie coincident on a line segment (i.e. between two points)
is typically not supported. The following encoding realises a
coincidence constraint between a point p and a segment lab.

As illustrated in Figure 4, firstly, the encoding adds a circle
C1 such that the two endpoints of the given line segment lab
are made coincident to C1, and the centroid of the circle is

a

b

C

(a)

a

b

C

(b)

Fig. 3. Minimum distance circle C can not have diameter less than ε.
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b

C1

p
p1

c

d

(a)

a

b

C1

p1

c

p

d

(b)

Fig. 4. Point p is constrained to lie on the segment between points a, b.

made collinear with lab; in Section III-D we formalise this
useful construction between a circle and line, and refer to it
as a brace relation. Importantly, due to the brace relation, the
length of lab is equal to the diameter of the circle. Next, the
encoding adds a line lcd with endpoints coincident to C1 and
perpendicular to lab. The perpendicular constraint ensures that
the two lines always intersect within the interior of C1. Finally,
as the non-parallel lines necessarily intersect at a single point,
the given point p is constrained to be collinear to both lines,
and is thus always constrained to lie on the segment lab.

COIN(p, lab) ≡
∃C1 ∈ C

(
COIN(lab, C1) ∧ COLL(p1, lab)∧

∃lcd ∈ L
(
COIN(lcd, C1) ∧ PERP(lab, lcd)

)
∧

COLL(p, lab) ∧ COLL(p, lcd)
)

For convenience and brevity we also define the relation that
segment lab is coincident with segment lcd as: the endpoints
a, b are coincident with the segment lcd.

COIN(lab, lcd) ≡ COIN(a, lcd) ∧ COIN(b, lcd)

Points p can not be equal to either endpoint a, b as the line
lcd can not have zero length. If we drop this line constraint
for lcd so that c, d can also be equal, then p can also equal the
endpoints. These are useful predicates for defining topological
relations in Section III-D, and thus we refer to them as:
COIN⊆(p, lab) and COIN⊆(lab, lcd).

C. Relative Orientation

To the best of our knowledge, no geometric constraint solver
is able to directly express qualitative orientation (left, right)
between line segments and regions (nor points). This stems
from the inability of standard solvers to robustly express
inequalities. That is, one common polynomial encoding of
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relative orientation is using the sign of the cross product to
determine the orientation of a point with respect to a directed
line segment, i.e. a point p is left of the segment a, b according
to the following inequality:

p left of lab ≡def (xb − xa)(yp − ya) > (yb − ya)(xp − xa)

As reported by [16], a “trick” in numerical optimisation of
introducing a new variable to express the inequality fails, as it
produces a saddle near the optimum, thus making the problem
significantly more difficult to solve. We have confirmed this re-
sult using the state-of-the-art numerical optimisation method:
limited LBFGS-B [9].6

We have identified the following geometric encoding of
relative orientation using the standard geometric constraint lan-
guage; as such, it is supported, and robustly solved for, by all
prominent geometric constraint solvers (Inventor, FreeCAD,
LEDAS).

As illustrated in Figure 5, the encoding for the left of
relation adds a new point c collinear to the given line lab,
and adds a line lcp, between the given point p and the new
point c. The encoding then adds the constraint that the angle
between lab and lcp is 90o counter-clockwise. The length of
the line lcp is unbounded, and thus p can be moved an arbitrary
distance away from lab. The key is that, if p is moved to the
right side of lab, then the angle constraint is violated, and thus
p is forced to remain of the left side.

LEFT(p, lab) ≡
∃c ∈ P

(
ANG(b, p, c, π

2 ) ∧ COLL(c, lab)
)

RIGHT(p, lab) ≡
∃c ∈ P

(
ANG(b, p, c,−π

2 ) ∧ COLL(c, lab)
)

We extend this definition to relative orientation relations
between lines and circles (Figure 6(a)).

LEFT(C1, lab) ≡
∃c, d ∈ P

(
ANG(b, p1, c,

π
2 ) ∧ COLL(c, lab)∧

COIN(d, C1) ∧ COIN(d, lcp1
)
)

RIGHT(C1, lab) ≡
∃c, d ∈ P

(
ANG(b, p1, c,−π

2 ) ∧ COLL(c, lab)∧
COIN(d, C1) ∧ COIN(d, lcp1

)
)

As illustrated in Figure 6(b), alternative encodings for rela-
tive orientation exist that introduce fewer additional constraints
and objects per orientation relation, and may also be solved
in a more stable way depending on the implementation for
the ANG geometric constraint. In the example illustrated in
Figure 6(b), a circle C1 is introduced and constrained to be
left of the line a, b, and for each point c, d, e, a line is created
parallel to lab with each endpoint c′, d′, e′ coincident to C1;
this encoding aims to minimise the use of the ANG constraint
when numerous points are constrained to be left of the same
line. Identifying the best encodings for particular tasks is a
topic of future work.

6Implementation available at:
users.iems.northwestern.edu/∼nocedal/lbfgsb.html
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Fig. 5. Point p is constrained to lie anywhere to the left of line (a, b). The
angle from point b to p about c is fixed at π

2
counter-clockwise. The distance

between c, p is not constrained.
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(a) Circle C1 is con-
strained to lie any-
where to the left of line
(a, b).
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(b) Alternative, more robust encod-
ing for numerous left of constraints.
Points c, d, e are left of line (a, b).

Fig. 6. Relative orientation encodings for regions and more efficient
encodings.

D. Topological relations between circles

In standard geometric constraint solvers there is no way
of directly specifying mereotopological constraints between
higher-level objects and regions such as circles, squares,
triangles, polygons, and so on. In this section we present
encodings for topological relations between circles, and then
use these encodings as a basis for defining relations between
more general regions. Firstly we define a useful BRACE
relation between a line segment and a circle that ensures the
diameter of the circle is equal to the length of the segment
(Figure 7(a)).

BRACE(lab, Ci) ≡ COIN(lab, Ci) ∧ COLL(pi, lab)

We adopt the terminology of the prominent topological
spatial logic, the Region Connection Calculus (RCC) [30]:
disconnects (DC), externally connects (EC), partial overlap
(PO), tangential proper part (TPP), non-tangential proper
part (NTPP), proper part (PP), part of (P), discrete from
(DR), equal (EQ). Note that EQ between two circles is
trivially satisfied by constraining the centroids and radii to
be equal.

The topological relation encodings are illustrated in Fig-
ure 7. To ensure circle intersection (e.g. TPP, NTPP, PO),
the encodings constrain one or both endpoints of the brace
segments of one circle to be coincident to the brace segment
of the other circle; a pair of brace endpoints are made equal
for boundary contact (e.g. TPP). EC is encoded with a point
of boundary contact a that is coincident to a segment lp1p2

between the circle centroids. DC is encoded by introducing a
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third circle C3 so that one endpoint of each of the braces of
C1 and C2 lie on different sides of the centroid of C3, along
the brace of C3.

Observe that the brace segment within a circle can be
rotated about the circle’s centroid. Thus, considering NTPP
for example, C1 can occupy any circular region within C2 by
moving C1 along the brace of C2, and rotating the brace of
C2.

TPP(C1, C2) ≡
∃lab, lac ∈ L

(
BRACE(lab, C2)∧
BRACE(lac, C1) ∧ COIN(c, lab)

)

NTPP(C1, C2) ≡
∃lab, lcd ∈ L

(
BRACE(lab, C2)∧
BRACE(lcd, C1) ∧ COIN(lcd, lab)

)

PO(C1, C2) ≡
∃lab, lcd ∈ L

(
BRACE(lab, C2) ∧ BRACE(lcd, C1)∧
COIN(a, lcd) ∧ COIN(d, lab)

)

EC(C1, C2) ≡
∃a ∈ P

(
COIN(a, lp1p2)∧
COIN(a, C1) ∧ COIN(a, C2)

)

DC(C1, C2) ≡
∃a, b ∈ P, ∃C3 ∈ C

(
BRACE(lp1p2 , C3)
∧ COIN(a, lp1p3

) ∧ COIN(a, C1)
)

∧ COIN(b, lp2p3) ∧ COIN(b, C2)
)

We can drop the distinction between boundaries (i.e. corre-
sponding to RCC5 and other RCC relations) by employing the
modified coincident constraint between points and segments
COIN⊆(p, lab), where a point p can also equal the segment
endpoints lab. Thus, we encode the definitions that:

• PP is a disjunction of NTPP and TPP;
• P is a disjunction of PP and EQ;
• DR is a disjunction of DC and EC.

PP(C1, C2) ≡
∃lab, lcd ∈ L

(
BRACE(lab, C2) ∧ BRACE(lcd, C1)

∧ COIN⊆(c, lab) ∧ COIN(d, lab)
)

P(C1, C2) ≡
∃lab, lcd ∈ L

(
BRACE(lab, C2) ∧ BRACE(lcd, C1)

∧ COIN⊆(lcd, lab)
)

DR(C1, C2) ≡
∃a, b ∈ P, ∃C3 ∈ C

(
BRACE(lp1p2),C3

∧ COIN⊆(a, lp1p3
) ∧ COIN(a, C1)

)

∧ COIN⊆(b, lp2p3
) ∧ COIN(b, C2)

)

E. Egg-yolk approach for defining relations between regions

We employ the egg-yolk method of modelling regions
with indeterminante boundaries [11] to characterise a class
of regions (including polygons) that satisfies topological and
relative orientation relations. Each egg-yolk region is an equiv-
alence class for all regions that are contained within the upper
approximation (the egg white), and completely contain the
lower approximation (the egg yolk). Let R be the domain of

a

b

Ci

pi

(a) BRACE(lab, Ci)

c

d

C2

p2

C1

a

b

p1

(b) PO(C1, C2)

a

b

C2
p2

p1

C1

c

(c) TPP(C1, C2)

a

b

C2
p2

p1

C1

d

c

(d) NTPP(C1, C2)

a C2

p2

C1

p1

(e) EC(C1, C2)

a C2

p2

C1

p1

C3
p3

b

(f) DC(C1, C2)

Fig. 7. Topological relations between circles.

egg-yolk regions, where egg-yolk region R ∈ R consists of a
circular upper and a lower approximation R+, R− ∈ C such
that NTPP(R−, R+) (see Figure 8(a)).

We can realise these regions through constructive geomet-
ric constraint encodings, giving us a method of generating
arbitrary regions that satisfy qualitative spatial constraints. We
declaratively define a (simple, non-self-intersecting) polygon
as a sequence of vertices such that:

1) all vertices are contained within the upper approximation
2) no segment between adjacent vertices intersects the

lower approximation
3) the (absolute) winding number about the centroid of the

lower approximation is 1

We can generate polygons by placing n vertices on the upper
approximate circle, evenly distributed (satisfying Condition 3),
such that each vertex and line segment is geometrically con-
strained to satisfy Conditions 1 and 2 above. The user can
explore the space of consistent polygons directly through dy-
namic geometry [33], or polygons can be randomly generated.

Relative orientation between egg-yolk regions and lines
can now be defined based on the upper approximations (see
Figure 6(a)):

LEFT(R, lab) ≡ LEFT(R+, lab)

RIGHT(R, lab) ≡ RIGHT(R+, lab)

The following topological relations between pairs of egg-
yolk regions are defined based on the relation between their
approximations (see Figure 8):
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R

R-

R+

(a) Egg-yolk region.

R2

R1

(b) PP(R1, R2)

R2

R1

(c) PO(R1, R2)

Fig. 8. Egg-yolk region R is defined by a lower circular approximation R−

and an upper circular approximation R+.

PP(R1, R2) ≡ P(R+
1 , R

−
2 )

DC(R1, R2) ≡ DC(R+
1 , R

+
2 )

DR(R1, R2) ≡ DR(R+
1 , R

+
2 )

PO(R1, R2) ≡ PO(R+
1 , R

+
2 ) ∧ PO(R−

1 , R
−
2 )

The partial overlap definition requires some explanation:
firstly, the partial overlap condition between the upper approx-
imations ensures that the regions each have interior regions not
shared by the other, but the regions could still be disconnected.
Secondly, the partial overlap condition between the lower
approximations ensures that the regions share a common
interior region, but one region might completely contain the
other. Thus, together the conditions encode the partial overlap
relation between egg-yolk regions.

The above relative orientation and topological egg-yolk
relation encodings are sound, i.e. they correctly encode the
intended relation between the true regions, and are incomplete,
i.e. they do not capture all possible ways that the true regions
can satisfy the intended relation.

IV. EMPIRICAL EVALUATION

In this section we empirically evaluate our geometric en-
codings on a range of benchmark problems from the Qual-
itative Spatial Reasoning community. We have implemented
the encodings in CLP(QS) using geometric constraint solvers
FreeCAD7 and limited BFGS-B [9]. The results show that
(a) our system can handle problems from these benchmarks
that are unsolvable using relation algebraic methods for quali-
tative spatial reasoning, and (b) our system outperforms other
symbolic algebraic approaches for these benchmark problems
by orders of magnitude (such as Cylindrical Algebraic De-
composition). Experiments were run on a MacBookPro, OS
X 10.8.5, 2.6 GHz, Intel Core i7.8

A. Tent Benchmark Problem

The generalised tent problem [23] is a relative orientation
benchmark problem in qualitative spatial reasoning. The prob-
lem is specifically designed to be unsolvable using relation al-
gebraic approaches by creating inconsistent relative orientation
constraints that cannot be determined to be inconsistent using
those methods. Given a set of n distinct 2D points p1, . . . , pn,
let LEFT(p1, p2, p3) be true if p3 is left of the line (p1, p2)

7 www.freecadweb.org
83D visualisations have been rendered using glc_player:

www.glc-player.net

a b c

d

e

f

g

Fig. 9. Consistent tent configuration with n = 7 points: a, . . . , g.

where left of is interpreted axiomatically (e.g. using relation
algebras [26] or a first-order spatial logic [5]) or polynomially
(using analytic methods). The consistent tent problem has
constraints: LEFT(pi, pj , pk) for all 0 ≤ i < j < k ≤ n.
The inconsistent tent problem has the same constraints with
the exception that LEFT(p1, p2, pn), LEFT(p2, p3, pn) are
replaced with the equivalent RIGHT constraints.

Using an off-the-shelf geometric constraint solver,
FreeCAD, our encodings can solve the tent problem for n = 7
within 20 seconds for both consistency and inconsistency,
which significantly out performs symbolic approaches (in
[23] the authors report that quantifier elimination algorithms
could not solve for n = 6 after 6 hours). We also note that,
once the consistent scene has been constructed, incremental
updates occur in real-time9 e.g. the user can move points
around the scene and the FreeCAD solver manipulates the
other objects to ensure that the relative orientation constraints
are maintained (see Figure 9).

B. Contact problems

A range of contact problems require combining topological
and size information that are not solvable using relation alge-
braic methods. Standard approaches to QSR employ algebraic
closure by ensuring that all sub-graphs with 3 vertices are
satisfiable. Thus, any problem that inherently requires check-
ing four or more objects simultaneously is beyond algebraic
closure. We consider the task of determining the maximum
number of spheres and circles that can be mutually externally
connected; we also consider the variation where the spheres
(circles) must all be the same size.

CLP(QS) correctly solves these spatial contact problems: 5
spheres; 4 same-size spheres; 4 circles; 3 same-size circles (see
Figure 10). To demonstrate the scalability of the approach, we
consider 100 same size circles (illustrated in Figure 11) and
100 spheres. All of the above contact problems for n < 10 are
solved within 2 seconds in CLP(QS). Both contact problems
with n = 100 are solved in 20 seconds.

At each iteration, CLP(QS) produces a series of configura-
tions as it attempts to converge on the solution; an extract
of snapshots of the solution history for n = 100 same

9FreeCAD solver reports solve time of 0.004s.
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(a) 4 spheres (equal
size).

(b) 5 spheres. (c) 4 circles.

Fig. 10. Contact benchmark problems.

1 2 3 4

Fig. 11. Four snapshots of the solving history of CLP(QS) attempting to
solve 100 mutually touching circles, equal size. Snapshot 4 is the best solution
found.

size circles is illustrated in Figure 11. By treating time as a
third dimension we can construct a space-time history region
[17, 18] from the sequence of intermediate configurations as
illustrated in Figure 12. We can directly visualise and study the
qualitative relations between these history regions to provide
further insight into the nature of the problem at hand and
the underlying solving process, e.g. automatically generating
natural language explanations of the search space explored
during the solving process.

C. Computer Aided Product Design

The task is to design an adjustable desk lamp with the
following qualitative requirements: the lamp has a base and
three bars connected by three joints; the joints can only
turn inwards; the lamp shade connects to the third joint; the
bulb must fit completely within the lamp shade. Figure 13
illustrates the constraint graph and corresponding FreeCAD
interactive diagram that maintains the specified qualitative
relations. As the user manipulates the diagram, the FreeCAD
geometric solver maintains the qualitative constraints in real
time (reported solving time: 0.001 seconds).

V. DISCUSSION AND CONCLUSIONS

We have presented novel geometric encodings of qualitative
relations for: relative orientation between lines and either
points or regions; mereotopological relations between circles
(or, more accurately, disks); topological relations between
regions represented by an upper and lower approximation
(i.e. providing an approach for reasoning about polygons and
regions bounded by jordan curves).

Importantly, our encodings are based on a standard ge-
ometric constraint language that is well known within the

iterations

y
x

Fig. 12. Space-time history volumes derived from intermediate configurations
produced during the solving process. Task requirement is five mutually
touching, same-sized circles.

base

bar-1

joint-1

bar-2

joint-2

bar-3

joint-3

left

left

left

shade

bulb

proper
part

(a) Lamp constraint graph. (b) Interactive lamp diagram
with qualitative constraints.

Fig. 13. Lamp shade product design with qualitative constraints.

constructive geometric constraint solving community: points,
lines, and circles, with relations that correspond to quadratic
equations (parallel, coincidence, perpendicularity, dimension
constraints, etc.). This standard language is adopted by all
prominent solvers that we are aware of, particularly in the
Computer Aided Design and Manufacturing domain. Thus, our
encodings can be directly employed in all prominent com-
mercially available constructive geometric constraint solvers
(including Autodesk Inventor, FreeCAD, LEDAS LGS2D) to
extend those systems to also reason about qualitative spatial
relations.

Constructive geometric constraint solving is significantly
more computationally efficient compared to other approaches
for solving systems of polynomial constraints (e.g. Cylindrical
Algebraic Decomposition, the Gröbner basis method, and
Wu’s characteristic set method all have double exponential
complexity), and can scale to real-world problems that involve
hundreds of spatial objects. However, the supported spatial
language is rather restricted, only permitting relations that can
be encoded as quadratic equations. Traditionally, qualitative
orientation and mereotopological relations are encoded using
inequalities, thus ruling out the use of standard geometric
constraint solvers; directly encoding inequalities for numer-
ical optimisation methods is also known to be significantly
less robust compared to quadratic equations, as it introduces
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saddles near optima.
Our key contribution is showing that indeed we can encode

these qualitative relations based on the restricted standard geo-
metric constraint language. Thus, we have an efficient method
for solving problems involving qualitative orientation and
mereotopology beyond computationally intractable symbolic
methods. The results of our empirical evaluation, based on an
implementation in FreeCAD and limited BFGS-B (providing
numerical optimisation, which is effective for solving certain
sub-problems), show that our encodings can solve contact
and orientation benchmark problems within seconds that take
hours (or more) using other symbolic approaches such as
Cylindrical Algebraic Decomposition.

One open problem is determining the most efficient encod-
ings for certain problem classes. Our encodings are certainly
not unique, and many alternative encodings can be employed
that have different properties, e.g. comparing encodings that
minimise the number of objects and constraints introduced
as the problem size increases, or encodings that avoid the
use of computationally more expensive constructions (i.e.
encodings that introduce more objects and constraints, but
simpler constraints to solve for). We are continuing to iden-
tify more efficient encodings to further increase the horizon
of solvable real-world problems, and benchmark problems,
within the context of declarative constraint logic programming
over qualitative spatial domains.

Another interesting open question is how to handle in-
consistent qualitative constraints in general: methods such
as Cylindrical Algebraic Decomposition are both sound and
complete, whereas constructive geometric constraint solving
is incomplete in general. Thus, a result of inconsistency
using constructive approaches is usually annotated with some
measure of confidence (i.e. the problem, or sub-problems, are
executed a number of times with different initial randomised
parameter values until no further progress towards a solution
is made). Identifying tractable classes of qualitative problems
that have specific properties with respect to completeness (and
statistical confidence in the case of reported inconsistency) is
an interesting direction for future research.
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Abstract—This is an outline of a defense of the theory of Ideas.
I propose—using qualitative reasoning in metaphysics—the new
incarnation of the theory of Ideas and I try to defend the theory
against traditional counterarguments. The starting point are the
theories of Ideas of Plato and Ingarden and an ontology of Ideas
proposed by Kaczmarek; these theories are paraphrased—using
a modified method of semantic paraphrases of Ajdukiewicz—
and presented in terms of the basic concepts of category theory.
To paraphrase Ideas as categories I propose recognized category
theory as a pattern for the theory of Ideas. This recognition—
based on an analogy between mathematical structures and philo-
sophical structures—is the core of the qualitative reasoning in
metaphysics. It could also be called a mathematical philosophy or
mathematical modeling in metaphysics. I invoke an arrows-like,
i.e. no-object-oriented, formulation of a category and I base the
proposed theory of Ideas on that formulation. The components
of an Idea are arrows and their compositions (equivalents of
changes and transformations); objects in this approach are
special arrows namely the identity arrows. Using the category
of higher dimensions I introduce the concept of the dimension
of an Idea (and other concepts) which allows me to refute the
argument of the ”third man”.

I. BACKGROUND

PLATO divided reality into what really exists (Forms
or Ideas) and everything else. The first is not easily

perceptible, the second is indeed perceptible and tangible,
but essentially it is not real—it just reflects the first. Plato’s
Ideas were a perfect and ideal realm, they were eternal and
changeless. Things that appear to our senses only participate
in the Ideas, imitate them; Ideas are models for things that
are present in things. The realm of things is variable and
unstable, they arise and perish, Ideas are timeless, constant,
stable, independent and original. One can only learn about
them intellectually. It is beyond a doubt that the Platonic
bifurcation of reality is of fundamental importance to Western
thought. According to A. N. Whitehead: ”The safest general
characterization of the European philosophical tradition is that
it consists of a series of footnotes to Plato” (Whitehead, 1929,
p. 39).

Aristotle pointed out many difficulties in Plato’s theory
of Ideas, including the one that there are Ideas of negation
(Negation Argument), but there should not be; he pointed to
the argument of the ”third man”. As he claimed: ”[T]o say that
they are patterns and the other things share in them is to use
empty words and poetical metaphors” (Met. I, 997b 5–12).
He also complained of his contemporaries that mathematics
”has come to be identical with philosophy”. Next Aristotle
inquired as to how many Ideas can arise from one (One-Many
Argument), as is the case with numbers. With dissatisfaction
and disbelief he accepted the fact that Ideas can be patterns not
only for things, but also for other Ideas (Pattern Argument).

A. Prior Contemporary Research on Ideas

Philosophy of the twentieth century, especially phenomenol-
ogy and analytic philosophy, has undertaken the task of
creating new theories of Ideas. Some of the works of Roman
Ingarden (Ingarden, 1925) and Jean Héring (Héring, 1921) on
the one hand, and Kit Fine (Fine, 1995), Edward Zalta (Zalta,
1983) and Janusz Kaczmarek (Kaczmarek, 2008) on the other
hand were devoted, in a certain way, to Ideas.

Ingarden and Kaczmarek’s study of the Ideas most influ-
enced a formulation of the proposed dynamic and structural
theory of Ideas. Ingarden in his Essentiale Fragen partially
modifying the account of Plato and partially rejecting it,
presented a full-fledged theory of Ideas. Ingarden captured the
formal two-sidedness of Ideas and introduced constants and
variables in the content of Ideas. He examined and analyzed
the ontological source of the content of Ideas, that is to say the
pure ideal qualities. In Kaczmarek’s account the ideal objects
were represented by a pair of functions. From the point of
view of the theory of Ideas presented in this note the crucial
point of Kaczmarek’s formalized ontology is that the objects
were represented by functions, not by elements or ingredients.
The ”material” of ideal objects were functions.

A further stimulus of the proposed theory was Thomas
Mormann Theory of Object. Mormann (Mormann, 1997)—
inspired by David Armstrong (Armstrong, 1989) and Brian
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Skyrms (Skyrms, 1993)—presented an ontology of objects as
functions. More specifically he has created a combinatorial
theory of possible worlds using the concept of mapping. The
possible world in his account is a continuous mapping from the
individuals to the space of properties. As in Kaczmarek’s ac-
count the underlying ”mathematical materials” were funtions.1

B. An Outline of the Note

The aim is to defend the theory of Ideas against traditional
counterarguments. The starting point are the theories of Ideas
of Plato and Ingarden and an ontology of Ideas proposed by
Kaczmarek; these theories are paraphrased—using a modified
method of semantic paraphrases of Ajdukiewicz—and pre-
sented in terms of the basic concepts of category theory. To
paraphrase Ideas as categories I propose recognized category
theory as a pattern for the theory of Ideas. I invoke an arrows-
like, i.e. no-object-oriented, formulation of a category and
I base the proposed theory of Ideas on that formulation.
The components of an Idea are arrows and their composi-
tions (equivalents of changes and transformations); objects
in this approach are special arrows (identity arrows). One
can understand the arrow as it appears in category theory
as a generalized function—in this sense our approach is
the generalization of the above-mentioned Kaczmarek and
Mormann’s study. Using the category of higher dimensions
I introduce the concept of dimension of an Idea (and other
concepts) which allows me to refute the argument of the ”third
man”.

II. MATHEMATICAL PHILOSOPHY

A. Ajdukiewicz’s Semantic Paraphrase of the Philosophical
Issue as an Example of Qualitative Reasoning in Philosophy

In general we can say that the semantic paraphrase method
is the method of translating traditional philosophical issues
into the language of logic (or metalogic). The method consists
of the following steps cf. (Woleński, 1989):

(i) the most accurate and clear identification of the
philosophical issues under consideration;

(ii) selection of a logical theorem having a similar struc-
ture to that formulated problem of (i);

(iii) determination of certain compounds (of syntactic, se-
mantic or pragmatic nature) between the expressions
of (i) and the expressions of a logical theorem from
(ii);

(iv) construction of a paraphrase, that is a sentence of a
”isomorphic” structure with a selected logical theo-
rem, i.e. an unambiguous assignment of meanings of
expressions from (i) meanings of expressions from
(ii);

(v) to validation of the paraphrase by
(va) phenomenological analysis,
(vb) meaning postulates, i.e. assigning in an ar-

bitrary manner some meaning to the expres-

1Needless to say that Mormann’s account has nothing to do with Ideas.

sions; by convention, or postulates or some
definitions;

(vi) drawing consequences from the paraphrase;
(vii) evaluation of these consequences from the perspec-

tive of the philosophical problem under considera-
tion.

Ajdukiewicz in A Semantical Version of the Problem
of Transcendental Idealism (Ajdukiewicz, 1977, p. 140–
154) analysed the doctrine of transcendental idealism which
amounts to the claim that ”reality is a correlate of the transce-
dental subject” (see also (Przełęcki, 1990)). This thesis was
translated into the claim that any statement of the language of
science is true if and only if it is ”dictated by the meaning-
rules of that language”. In fact, from a metalogical point of
view it is obvious that this position is not correct.

The core of Ajdukiewicz’s method is the above-mentioned
translation (or construction of a paraphrase) which must be
preceded by an appropriate recognition of the problem.

B. A Revised Version of Ajdukiewicz’s Method

Ajdukiewicz was a logic-centered philosopher. For this
reason the second step (ii) of his method consists only of
logical theorems. I am elaborating his method by extending
its applicability to the entire field of mathematics—not only
to logic or metalogic.2 Furthermore Ajdukiewicz believed that
we would find similarities between theorems that are in fact
between language expressions. I suggest we focus our attention
on the analogy between the formal structures hidden behind
the problem in question. It is not easy to say what these
underlying formal structures are.3 Indeed the proper answer
to this question requires the general metaphysical theory of
formal structures. Mac Lane puts forward one of the possible
theories of the origins and development of the structures in
his Mathematics: Form and Function (Mac Lane, 1986). Mac
Lane as a philosoper was anti-platonic, nevertheless his ideas
can be used to explain the concept of the structure and the
analogy between the structures even in our platonic approach.

C. Basic Paraphrase: Ideas as Categories

I suggest—thinking qualitatively—that the categories of
category theory correspond to the Ideas. This correspondence
is the (iv) step of the paraphrase method described above.
The Ideas are composed of similar data as the categories and
behave similarly to the categories. In other words, I suggest
that category theory is a good approximation (a model? a
material?) and description of the theory of Ideas.

In order to justify the paraphrase, to satisfy the (v) condition
from Ajdukiewicz’s method, one should say the following:
categories (in terms of category theory) are similar to Ideas
(in terms of philosophy) in many respects; objects are in-
carnations of Ideas, fall within Ideas, participate in them,
and—mimicking them—are modelled by them in metaphysics.

2An ontological analysis of the extension carried out using the topological
tools can be found here (Skowron, 2014).

3In this sense Hilbert spaces in quantum mechanics are the underlying
structures of the quantum world.
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Objects of mathematics, like groups, rings, fields, orders,
proofs and so on, also fall within categories, in the sense
of taking part in them, or are modelled by them4. Category
theory is a theory of Ideas for mathematical objects. Not
only mathematical objects are involved in categories. An
application of category theory (and also all mathematics) in
modern physics testifies to the fact that categories are in some
way also present in the real world.

Ideas are the categories. Using the ontological analysis of
Ideas carried out by Ingarden (Ingarden, 1925, 1965) one can
say that a constant of the content of Ideas is based upon the
fact that we are talking about this and not another category.
A constant of the group category GRP will therefore be
the fact that its objects are groups and its arrows are the
group homomorphisms. The variable content of the category of
groups GRP is the possibility of concretization of a variety
of groups. The constant of the group category GRP is an
ideal concretization of the possibility of concretization of some
groups and their homomorphisms.

III. THE METAPHYSICAL RESULT OF QUALITATIVE
REASONING

Philosophers such as Plato and Ingarden focused on de-
scribing the interior of Ideas. They believed that the essence
of Ideas is hidden inside them. In fact, the opposite is the
case. Ideas are byproducts of change. It is convenient to use
the expression Idea, but the essence of Ideas is that they are
secondary entities with respect to changes and transformations.
That is why one should focus on the relationships between
Ideas.

1) Why All This? The Newly Identified Features of Ideas:
On the basis of paraphrases one can identify the new features
of Ideas:

1) the dynamical structure of Ideas (referring to the arrows-
only definition of a category (Mac Lane, 1998, p. 9));

2) the object of an Idea as the identity transformation
within the Idea;

3) the dimension of Ideas (referring to the n-category
theory (Baez, 1997));

4) the negations and oppositions of Ideas (referring to the
concept of dual category Cop);

5) the start and end of some Ideas (referring to the initial
and terminal objects);

6) the full-fledged structural and, in fact, transcendental
mereology of Ideas (referring to the proposal of updating
mereology by a category theory done by Mormann
(Mormann, 2009));

7) the tangled Ideas (on the basis of the adjoint functors
(Mac Lane, 1998, p. 79–108));

8) the Idea of the Ideas (referring to the category of small
categories);

9) the problem of the spatiality of Ideas (referring to the
geometrical aspects of categories).

4It is worth mentioning that the Ideas in metaphysics can also fall within
Ideas, not only within real objects. The Idea of man falls within the Idea of
animal.

A. Refutation of the Arguments Against the Theory of Ideas
Using the identified properties of Ideas I can reject the

following arguments:
• the Third Man Argument (by using the dimensions of

Ideas)
• the Negation Argument (by using the opposite category)
• the One-Many Argument (by using the basic properties

of the creation of a new category from an old one)
• the Pattern Argument (following the basic properties of

n-dimensional Ideas)

B. Ideas are Byproducts of Change
The characteristics of a category introduces three types of

entities: objects, arrows and compositions. Categories, how-
ever, were introduced in order to define the morphisms (and
morphisms to define a natural transformation), namely to give
them domain and counterdomain (Eilenberg and Mac Lane,
1945, p. 247). The concept of category was therefore an
auxiliary concept. This is expressed in the fact that a category
could be equivalently defined without the concept of object and
using the concept of the arrow and composition (Mac Lane,
1998, p. 9)

On the basis of the paraphrase method, to be more specific
by the condition number (vi), one can claim that an Idea is just
a byproduct of transformations or a pure change. The realm
of Ideas is not as stable and unchangeable as Plato imagined.
In the face of the fact that a structure of the category TOP is
not known in all its details, one can claim that these totalities
of Ideas are complicated and there are no easy and obvious
instruments to comprehend them. The ontological structure of
the realm is a network of mutually influencing and co-creating
Ideas.
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