Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 8

Proceedings of the 2016 Federated Conference on Computer Science and Information Systems

MCDA-based Decision Support System for Sustainable Management – RES Case Study

, ,

DOI: http://dx.doi.org/10.15439/2016F489

Citation: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 12351239 ()

Full text

Abstract. The MCDA methods are used in order to solve complex decision-making problems which require considering many contradictory criteria. They are also the basis of DSS. However, few MCDA methods allow noticing mutual dependencies between criteria. Nevertheless, these dependences are common in practice and can have an influence on the obtained solution. A class of decision-making problems, in which there are intercriteria dependences, are decisions in the sustainability area, e.g. selection of a location and a design of an RES-based power station. The article presents a complex model, taking into consideration dependencies between criteria, which is based on the ANP method. The model, which can constitute a decision-making engine of DSS, has been verified with relation to the AHP model that cannot notice this type of dependencies.


  1. K. Halicka, “Designing routes of development of renewable energy technologies,” Procedia – Social and Behavioral Sciences, vol. 156, pp. 58-62, 2014.
  2. J. Paska and T. Surma, “Electricity generation from renewable energy sources in Poland,” Renewable Energy, vol. 71, pp. 286-294, 2014.
  3. N. Scarlat, J.F. Dallemand, F. Monforti-Ferrario, M. Banja, and V. Motola, “Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 969-985, 2015.
  4. J. Paska, M. Sałek, and T. Surma, “Current status and perspectives of renewable energy sources in Poland,” Renewable and Sustainable Energy Reviews, vol. 13, pp. 142-154, 2009.
  5. Y. Wu, J. Zhang, J. Yuan, S. Geng, and H. Zhang, “Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China,” Energy Conversion and Management, vol. 113, pp. 66-81, 2016.
  6. Y. Wu, S. Geng, H. Xu, and H. Zhang, “Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment,” Energy Conversion and Management, vol. 87, pp. 274-284, 2014.
  7. J. Wątróbski, P. Ziemba, and W. Wolski, “Methodological Aspects of Decision Support System for the Location of Renewable Energy Sources,” Annals of Computer Science and Information Systems, vol. 5, pp. 1451-1459, 2015. http://dx.doi.org/10.15439/2015F294
  8. A.H.I. Lee, M.C. Hung, H.Y. Kang, and W.L. Pearn, “A wind turbine evaluation model under a multi-criteria decision making environment,” Energy Conversion and Management, vol. 64, pp. 289-300, 2012.
  9. R.A. Taha and T. Daim, “Multi-Criteria Applications in Renewable Energy Analysis, a Literature Review,” in Research and Technology Management in the Electricity Industry, T. Daim, T. Oliver, and J. Kim, Ed. London: Springer, 2013, pp. 17-30.
  10. J.R. San Cristobal, “Multi-criteria decision making in the selection of a renewable energy project in spain: The Vikor method,” Renewable Energy, vol. 36, pp. 498-502, 2011.
  11. C. Henggeler Antunes and C. Oliveira Henriques, “Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector,” in Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed., S. Greco, M. Ehrgott, and J.R. Figueira, Ed. New York: Springer, 2016, pp. 1067-1165.
  12. J. Jankowski, J. Wątróbski, P. Ziemba, “Modelling the impact of visual components on verbal comunication in online advertising,” in Computational Collective Intelligence. ICCCI 2015, Part II. LNAI, vol. 9330, Heidelberg: Springer, 2015, pp. 44-53.
  13. F. Cavallaro, “Multi-criteria decision aid to assess concentrated solar thermal technologies,” Renewable Energy, vol. 34, pp. 1678-1685, 2009.
  14. C.W. Holsapple, “DSS Architecture and Types,” in Handbook on Decision Support Systems, vol. 1, F. Burstein and C.W. Holsapple, Ed. Heidelberg: Springer, 2008, pp. 163-189.
  15. T.M. Yeh and Y.L. Huang, “Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL and ANP,” Renewable Energy, vol. 66, pp. 159-169, 2014.
  16. T. Kaya and C. Kahraman, “Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul,” Energy, vol. 35, pp. 2517-2527, 2010.
  17. A.H.I. Lee, H.H. Chen, and H.Y. Kang, “Multi-criteria decision making on strategic selection of wind farms,” Renewable Energy, vol. 34, pp. 120-126, 2009.
  18. S. Al-Yahyai, Y. Charabi, A. Gastli, and A. Al-Badi, “Wind farm land suitability indexing using multi-criteria analysis,” Renewable Energy, vol. 44, pp. 80-87, 2012.
  19. D. Latinopoulos and K. Kechagia, “A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece,” Renewable Energy, vol. 78, pp. 550-560, 2015.
  20. J.M. Sanchez-Lozano, M.S. Garcia-Cascales, and M.T. Lamata, “Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain,” Energy, vol. 73, pp. 311-324, 2014.
  21. J.M. Sanchez-Lozano, M.S. Garcia-Cascales, and M.T. Lamata, “GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain,” Applied Energy, vol. 171, pp. 86-102, 2016.
  22. N.Y. Aydin, E. Kentel, H.S. Duzgun, “GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey,” Energy Conversion and Management, vol. 70, pp. 90-106, 2013.
  23. Y. Noorollahi, H. Yousefi, and M. Mohammadi, “Multi-criteria decision support system for wind farm site selection using GIS,” Sustainable Energy Technologies and Assessments, vol. 13, pp. 38-50, 2016.
  24. A. Fetanat and E. Khorasaninejad, “A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran,” Ocean & Coastal Management, vol. 109, pp. 17-28, 2015.
  25. F. Cavallaro and L. Ciraolo, “A multicriteria approach to evaluate wind energy plants on an Italian island,” Energy Policy, vol. 33, pp. 235-244, 2005.
  26. W. Tian, J. Bai, H. Sun, and Y. Zhao, “Application of the analytic hierarchy process to a sustainability assessment of coastal beach axploitation: A case study of the wind power projects on the coastal beaches of Yancheng, China,” Journal of Environmental Management, vol. 115, pp. 251-256, 2013.
  27. P. Ziemba, J. Wątróbski, J. Jankowski, and M. Piwowarski, “Research on the Properties of the AHP in the Environment of Inaccurate Expert Evaluations,” in Selected Issues in Experimental Economics, K. Nermend and M. Łatuszyńska, Ed. Switzerland: Springer, 2016, pp. 227-243.
  28. J. Jankowski, J. Watrobski, and M. Piwowarski, “Fuzzy Modeling of Digital Products Pricing in the Virtual Marketplace,” in Proceedings of 6th International Conference on Hybrid Artificial Intelligent Systems, LNCS, vol. 6678. Heidelberg: Springer, 2011, pp. 338-346.
  29. J. Jankowski, K. Kolomvatsos, P. Kazienko, J. Wątróbski, "Fuzzy Modeling of User Behaviors and Virtual Goods Purchases in Social Networking Platforms," Journal of Universal Computer Science, vol. 22, no. 3, pp. 416-437, 2016.
  30. P. Ziemba and J. Wątróbski, “Selected Issues of Rank Reversal Problem in ANP Method,” in Selected Issues in Experimental Economics, K. Nermend and M. Łatuszyńska, Ed. Switzerland: Springer, 2016, pp. 203-225.
  31. J. Wątróbski, J. Jankowski, “Guideline for MCDA Method Selection in Production Management Area,” in New Frontiers in Information and Production Systems Modelling and Analysis. Intelligent Systems Reference Library, vol. 98, Heidelberg: Springer, 2016, pp. 119-138.
  32. Y. Kumar, J. Ringenberg, S.S. Depuru, V.K. Devabhaktuni, J.W. Lee, E. Nikolaidis, B. Andersen, and A. Afjeh, “Wind energy: Trends and enabling technologies,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 209-224, 2016.
  33. Plan sieci elektroenergetycznej najwyższych napięć, PSE, http://www.pse.pl/index.php?dzid=80&did=23
  34. H. Sadeghi, “A novel method for adaptative distance protection of transmission line connected to wind farms,” Electrical Power and Energy Systems, vol. 43, pp. 1376-1382, 2012.
  35. J. Paska and M. Kłos, “Elektrownie wiatrowe w systemie elektroenergetycznym – przyłączanie, wpływ na system i ekonomika,” Rynek energii, no. 1/2010, pp. 3-10, 2010.
  36. Wpływ energetyki wiatrowej na wzrost gospodarczy w Polsce, Report, Ernst & Young, March 2013.
  37. Wind energy in Poland, Report, TPA Horwath, November 2013.
  38. Informacja Prezesa Urzędu Regulacji Energetyki nr 46/2015 w sprawie średniej ceny sprzedaży energii elektrycznej na rynku konkurencyjnym w III kwartale 2015 roku, Energy Regulatory Office, 21 December 2015, http://www.ure.gov.pl/pl/stanowiska/6361,Informacja-nr-462015.html
  39. Ustawa o odnawialnych źródłach energii, Dziennik Ustaw RP, 20 February 2015, http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150000478
  40. Rozporządzenie Ministra Gospodarki w sprawie ceny referencyjnej energii elektrycznej z odnawialnych źródeł energii w 2016 roku, Dziennik Ustaw RP, 13 November 2015, http://dziennikustaw.gov.pl/du/2015/2063/1
  41. M. Bukowski and A. Śniegocki, Wpływ energetyki wiatrowej na polski rynek pracy. Warszawa: Warszawski Instytut Studiów Ekonomicznych, 2015.
  42. B. Mroczek, Akceptacja dorosłych Polaków dla energii wiatrowej i innych odnawialnych źródeł energii (streszczenie raportu). Szczecin: Polskie Stowarzyszenie Energetyki Wiatrowej, 21 March 2011.
  43. F. Santier, “Influence of Transmission Lines on Grid Connection,” in Proc. Deutsche Windenergie-Konferenz DEWEK 2006, Bremen, 22-23 November 2006.
  44. P. Michalak and J. Zimny, “Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 2330-2341, 2011.
  45. Ustawa o ochronie przyrody, Dziennik Ustaw RP, 18 April 2016, http://isap.sejm.gov.pl/DetailsServlet?id=WDU20040920880
  46. A. de Montis, P. De Toro, B. Droste-Franke, I. Omann, and S. Stagl, “Assessing the quality of different MCDA methods,” in Alternatives for Environmental Valuation, M. Getzner, C.L. Spash, and S. Stagl, Ed. New York: Taylor & Francis, 2005, pp. 99-133.
  47. P. Thokala and A. Duenas, “Multiple Criteria Decision Analysis for Health Technology Assessment,” Value in Health, vol. 15, no. 8, pp. 1172-1181, 2012.
  48. J. Wątróbski, J. Jankowski, “Knowledge Management in MCDA Domain,” in Proceedings of the Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450, 2015.
  49. T.L. Saaty and L.G. Vargas, Decision Making with the Analytic Network Process. Second Edition. New York: Springer, 2013.
  50. H.S. Lee, G.H. Tzeng, W. Yeih, Y.J. Wang, and S.C. Yang, “Revised DEMATEL: Resolving the Infeasibility of DEMATEL,” Applied Mathematical Modelling, vol. 37, no. 10-11, 2013, pp. 6746-6757.
  51. P. Ziemba, J. Jankowski, J. Wątróbski, J. Becker, „Knowledge Management in Website Quality Evaluation Domain,” Lecture Notes in Artificial Intelligence, vol. 9330, pp. 75-85, 2015.
  52. P. Ziemba, J. Jankowski, J. Wątróbski, W. Wolski, and J. Becker, “Integration of Domain Ontologies in the Repository of Website Evaluation Methods,” Annals of Computer Science and Information Systems, vol. 5, pp. 1585-1595, 2015. http://dx.doi.org/10.15439/2015F297
  53. P. Ziemba, J. Wątróbski, J. Jankowski, and W. Wolski, “Construction and Restructuring of the Knowledge Repository of Website Evaluation Methods,” Lecture Notes in Business Information Processing, vol. 243, pp. 29-52, 2016. http://dx.doi.org/10.1007/978-3-319-30528-8_3