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Abstract—This paper is an application of Edelsbrunner-Harer
(EH) nerves as approximating tools in discovering interesting
perceptual clusters in Pawlak’s painting of landscapes, thus
giving us an insight into the style of the artist. A variation
of EH nerves (collections of Voronoı̈ regions called nucleus
clusters) are used in this paper. The Rényi entropy is used to
measure the information level of Voronoı̈ regions. It is shown that
the information levels (i.e., Rényi entropy) of maximal nucleus
clusters in tesselled paintings are the highest compared with
surrounding regions, thereby highlighting regions in the paintings
with the greatest detail by the artist.

I. INTRODUCTION

IN THIS paper, we are seeking to discover interesting

clusters using the concept of nerves useful in visual arts.

Visual art forms include paintings, ceramics, photography

amongst others. Both spatial and descriptive forms of repre-

sentation will be considered [1]. First, we start by considering

a representative space for the visual information in paintings

by Z. Pawlak. Spatial representation can be considered in two

ways: i) one where a space is given and its characteristics are

studied via geometry and topology ii) a space is approximated

using some form of tool [2]. Descriptive representation starts

with probe functions that map features of objects to numbers

in R
n [1]. Probe values provide a description of an object.

The problem of finding interesting clusters in an object space

X is mapped to the problem of finding interesting clusters in

a feature space Φ(X). The nearness of feature space clusters

is studied in the context of proximity spaces.
Various forms of geometric nerves are usually collections

known as simplicial complexes in a normed linear space (for

details see, e.g. , [3], [1, §1.13]). A nerve N(C) in a finite

collection of sets C is a simplicial complex with vertices of

sets in C and with simplices corresponding to all non-empty

intersections among these sets.
In a descriptive representation, the simplicial complexes are

a result of nerve constructions of observations (objects) in

the feature space. To construct the simplicial complexes, we

tessellate Pawlak Paintings with Voronoi diagram overlays.

Then we compute nerves of sets of collections derived from

these Voronoi regions [4]. A variation of Edelsbrunner-Harer

nerves which are collections of Voronoı̈ regions (called nucleus

clusters) are used in this paper. Rényi entropy is used to

measure the information level of Voronoı̈ tessellation cells [5].

The focus here is on maximal nucleus clusters (MNCs) that

are strongly proximal Edelsbrunner-Harer nerves. A proximity

space setting for MNCs makes it possible to investigate the

strong closeness of subsets in MNCs as well as the spatial and

descriptive closeness of MNCs themselves.

Voronoi tessellation has great utility and has many applica-

tions such as geometric modelling in physics, astrophysics,

chemistry and biology [6] and in the study of digital im-

ages [1], [7], [8]. The form of clustering introduced in this

article has proved to be important in the analysis of brain

tissue [9]. The contribution of this paper is an application of

Edelsbrunner-Harer nerves as approximating tools in discov-

ering interesting perceptual clusters in Pawlak’s painting of

landscapes, thus giving us an insight into the style of the artist.

II. DEFINITIONS PLUS MNC CONSTRUCTION

Every Voronoı̈ region of a site s is a convex polygon

containing all points that are nearer s than another site in a

Voronoı̈ tessellation of a surface. Voronoı̈ regions are strongly

near, provided the regions have points in common. In Fig. 1,

Voronoı̈ region N in the tessellation, is the nucleus of a mesh

cluster containing all of those polygons adjacent to N. This

form of clustering leads to the introduction of what are known

as nucleus-clusters.

Fig. 1.
Voronoı̈ nucleus

A Voronoı̈ mesh nucleus is any

Voronoı̈ region that is the center of a

collection of Voronoı̈ regions adjacent to

the nucleus. A maximal nucleus cluster

is a collection of a maximal number

of Voronoı̈ regions that are strongly

near the mesh nucleus. Maximal nu-

cleus clusters (MNCs) serve as indica-

tors of high object concentration in a tessellated image.

Definition 1 (Voronoı̈ region V (s)). Let E be the Euclidean

plane, S ⊂ E (set of mesh generating points), s ∈ S.

V (s) = {x ∈ E ∶ ∥x − s∥ ≤ ∥x − q∥ , for all q ∈ S} .
Nonempty sets A,B in a topological space X equipped

with the relation
⩕

δ , are strongly near (i.e., strong proximity)

(denoted A
⩕

δ B), provided the sets have at least one point in

common.
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Definition 2. Nucleus Cluster (see, e.g., Fig. 1). Let X be a

collection of Voronoı̈ regions containing N , endowed with the

strong proximity
⩕

δ , A ⊂ X, clA = {x ∈X ∶ x ⩕

δ A} (closure

of A), and

C N = {A ∈X ∶ cl A
⩕

δ N} (NC) ∎.
Let A,B ⊂ X and let Φ(x) be a feature vector

for x ∈ X , a nonempty set of non-abstract points

such as picture points. A δΦ B reads A is descrip-

tively near B, provided Φ(x) = Φ(y) for at least

one pair of points, x ∈ A,y ∈ B where Φ(A) =
{Φ(x) ∈ Rn ∶ x ∈ A} which are a set of feature vectors

The descriptive strong proximity
⩕

δ
Φ

is the descriptive coun-

terpart of
⩕

δ defined in the feature space Φ(A). Let re-

gions A,B be described by a feature vector of the form

(x, y, area, diameter). Then A
⩕

δ
Φ

B, provided A and B

have matching descriptions. Formal proofs of the connection

between relations and proximities are given in [1], [4].

Definition 3. Maximum Nuclear Cluster [4]. A nucleus

cluster with nucleus N is maximal, provided N has the highest

number of adjacent polygons in a tessellated surface denoted

by maxCN . Similarly, a descriptive nucleus cluster is maximal,

provided N has the highest number of polygons in a tessellated

surface descriptively near N , (denoted by maxCΦN ). ∎

Fig. 2. C N1

⩕

δ C N2 and C N1

⩕

δ
Φ
C N2

Example 1. Let X be the collection of Voronoı̈ regions in a

tessellation of a subset of the Euclidean plane shown in Fig. 2

with nuclei N1,N2,N3 ∈X . In addition, let 2X be the family

of all subsets of Voronoı̈ regions in X containing maximal

nucleus clusters CN1,CN2,CN3 ∈ 2
X in the tessellation.

Then, for example, intCN2 ∩ intCN3 ≠ ∅ where int is

the interior of a set, since CN2,CN3 share Voronoı̈ regions.

Hence, CN2

⩕

δ CN3 ≠ ∅ (for proof, see [4]). Similarly,

CN1

⩕

δ CN2.

�

Algorithm 1: Construct Maximal Nucleus Cluster

Input : Digital images img.

Output: MNCs on image img.

1 img z→ T itledImg/*(Voronoı̈ tessellation)*/;

2 Choose a Voronoı̈ region in T itledImg: *;

3 ngon←Ð[ T iledImg;

4 NoOfSides←Ð[ ngon;

5 /* Count no. of sides in ngon & remove it from

T itledImg. */;

6 T iledImg ∶= T iledImg ∖ ngon;

7 ContinueSearch ∶= True;

8 while (T iledImg ≠ ∅ and ContinueSearch) do

9 ngonNew ←Ð[ T iledImg;

10 T iledImg ∶= T iledImg ∖ ngonNew;

11 NewNoOfSides←Ð[ ngonNew;

12 if (NewNoOfSides > NoOfSides) then

13 ngon ∶= ngonNew;

14 else

15 /* Otherwise ignore ngonNew: */

16 if (T iledImg = ∅) then

17 ContinueSearch ∶= False;

18 maxCN ∶= ngon;

19 /* MNC found; Discontinue search */;

Let F be a finite collection of sets. An Edelsbrunner-Harer

nerve (denoted by Nrv F ) consists of all nonempty sub-

collections of F that have a non-void common intersection,

i.e.,

Nrv F = {X ∈F ∶ ⋂X ≠ ∅} .
Lemma 1. [4] Let F

MNC
be a collection of polygons in

a Voronoı̈ MNC endowed with the strong proximity
⩕

δ . The

structure NrvFMNC is an Edelsbrunner-Harer nerve.

Theorem 1. [10, §III.2, p. 59] Let F be a finite collection

of closed, convex sets in Euclidean space. Then the nerve of

F and the union of the sets in F have the same homotopy

type.

Theorem 2. [4] Let the nucleus cluster CN be a finite

collection of closed, convex sets in a Voronoı̈ mesh V in the

Euclidean plane. The nerve NrvFMNC in CN and the union

of the sets in CN have the same homotopy type.

Theorem 3. [4] Let X be a finite collection of MNC

Edelsbrunner-Harer nerves NrvF
MNC

in a Voronoı̈ mesh with

nuclei N in the Euclidean plane and let X be equipped with

the relator {⩕δ, ⩕δΦ
} with strongly close mesh nerves. Each

nucleus N has a description Φ(N) = number of sides of N .

Then ⋂
Φ

NrvF
MNC

≠ ∅.

III. EXPERIMENTS AND DISCUSSION

Let p(x1), . . . , p(xi), . . . , p(xn) be the probabilities of a

sequence of events x1, . . . , xi, . . . , xn and let β ≥ 1. Then the
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Rényi entropy [11] Hβ(X) of a set of event X is defined by

Hβ(X) = 1

1 − β ln
n

∑
i=1

pβ(xi) (Rényi entropy).

Rényi’s entropy is based on the work by R.V.L. Hartley [12]

and H. Nyquist [13] on the transmission of information. The

information of order β contained in the observation of the

event xi with respect to the random variable X is defined

by H(X). Here, H(X) is used to measure the information

levels of maximal nucleus clusters in tesselled paintings by Z.

Pawlak (places reflecting the greatest detail by the artist).

Fig. 3. 1954 Waterscape by Zdzisław Pawlak

Fig. 4. MNC in 1954 Waterscape by Zdzisław Pawlak

Fig. 5. MNC Rényi’s entropy in 1954 Waterscape

The three sample paintings by Z. Pawlak, span 45 years,

starting in 1954 and ending in 1999. In Z. Pawlak’s paint-

ings, places where the artist rendered with the greatest detail

(splashes of colour, slanting brush strokes, clustering of paint

Fig. 6. 1999 Landscape by Zdzisław Pawlak

Fig. 7. MNC in 1999 Landscape by Zdzisław Pawlak

Fig. 8. MNC Rényi’s entropy in 1999 Landscape
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Fig. 9. 1999 Waterscape by Zdzisław Pawlak

Fig. 10. MNC in 1999 Waterscape by Zdzisław Pawlak

Fig. 11. MNC Rényi’s entropy in 1999 Waterscape

patches) occurs where the Rényi’s entropy is highest. In the

examples, the entropy of the MNCs is consistently higher than

the non-MNC areas in the paintings. Each of these paintings

reflects a style very similar to the impressionist painting by

Oscar-Claude Monet (1840-1926). The basic approach was

to express one’s perceptions of nature in which he created

a record of the French countryside. Similarly, Pawlak’s per-

ceptions of Polish countryside are represented by dabs of paint

to suggest things like buildings (see the red-roofed building in

Fig. 3), long and short strokes of colour (see the trees in Fig. 9

and bits of white for distant roads and villages in Fig. 6). The

MNCs in Z. Pawlak’s paintings occur in those places in the

paintings where the artist has expended his greatest efforts on

the detailed woodland and waterscape structures he observed.

In conclusion, this paper presents a Voronoı̈ diagram-based

clustering which partitions a descriptive space represented

by paintings into regions around a set of seed points. The

clustering approach leads to the introduction of maximal

nucleus clusters that are collections of a maximal number of

Voronoı̈ regions that are strongly near the mesh nucleus. It can

also be observed that there can be several MNCs depending

on the number of selected seed points. It is interesting to note

that the Rényi’s entropy shown in Figures 5,8,11 indicate the

entropy of the MNC is higher than those of the surrounding

polygons.
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