
 Abstract—Designing a vehicle sharing system means locating 
stations which allow users to pick up and give back vehicles. 
One takes this strategic level decision while anticipating related 
rebalancing costs. We study here a strategic related bi-level Ve-
hicle Sharing Station Location (VSSL) model, which involves as 
slave  problem  a  static  Vehicle  Sharing  Rebalancing (VSR) 
model.

I. INTRODUCTION

ehicle  Sharing systems  (see  [4]),  involving  bikes  or 

electric  cars,  are  among  the  systems  which  currently 

strive in order to find their place in the urban mobility land-

scape as a compromise between full individual transporta-

tion and rigid public transportation. They most often work as 

one-way systems: customers should be allowed to pick up a 

vehicle at any station and give it back at any other station. 

But  the  system may fast  become unbalanced,  with  either 

empty  or  overfilled  stations,  making  arise  two  decision 

problems:

V

⁃ a  strategic level problem (see [4]) about the way sta-

tions are located and capacitated.

⁃ an operational (or tactical) level problem (see [2, 3, 5, 

6]), about the way the Rebalancing Process is performed.

This contribution deals with the  strategic level problem, 

which has been scarcely studied, and which we refer to as 

the  Vehicle  Sharing  Station  Location (VSSL).  We link  it 

with the operational level known as the Vehicle Sharing Re-

balancing Problem (VSRP).

Efficiently locating the stations of the system means:

⁃ locating the stations close to the origins and destina-

tions of the users, in such a way that a global Access De-

mand be  maximized,  or  at  least  some  target  value  be 

reached;

⁃ minimizing investment and infrastructure costs;

⁃ making in such a way that the expected running costs 

due to the periodic  Rebalancing Process be the smallest 

possible.

 

While the two first criteria yield standard  Facility Loca-

tion models, (see [9]), dealing with the last one leads us to 

explicit those expected running costs due to the periodic Re-

balancing  Process: This  process  consists  in  periodically 

picking up some vehicles at  excess stations, that means sta-

tions  which  may  be  considered  as  containing  more  than 

enough vehicles, and move them to deficit stations, while us-

ing  carriers (trucks,  self-platoon  convoys…).  Optimizing 

this  process  gives  rise  to  Vehicle  Sharing  Rebalancing 

(VSR) models. While on line VSR models received very lit-

tle attention, being only handled through application of em-

pirical decision rules (see [5, 7]), several static VSR models 

(see [2,  3,  7,  8]) have already been proposed and studied 

through heuristics and ILP models.

Our purpose is here to cast  operational VSR as a  slave 

sub-problem of a strategic Vehicle Sharing Station Location 

(VSSL) model. We first consider that the input data for VSSl 

problem mainly consists in an origin/destination matrix OD, 

and in additional information about demands and costs, and 

derive (Section II) a bi-level  Vehicle Sharing Station Loca-

tion (VSSL) whose master problem IS a  Facility Location 

model and slave sub-model is some static VSR model. Next 

we propose (Section III) a related bi-level algorithmic reso-

lution  scheme which  decomposes  in  turn  the  VSR model 

into  a  simple  Min-Cost  Assignment  master model  and  a 

slave PDP: Pick up and Delivery model (see [1, 5]) model. 

We end by providing a VSR lower bound and performing 

numerical experiments (Section IV).

II. THE VSSL MODEL

A. Vehicle Sharing Station Location Instances

VSSL (Vehicle Sharing Station Location) input is a set VS 

of virtual stations, given together with:

⁃ a  demand matrix  OD:  for  any  x,  y in  VS,  OD(x,  y) 

means  the  access  demand to  the  system in  x,  y, that  

means  the  number  of  vehicles which  should  be
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picked up at station x and given back at station y 

by the users during a reference period P. 

-  a distance matrix DIST : DIST(x,y) means the 

distance (time required) from x to y.   

 

Demands and Costs: Solving VSSL means computing 

a real station subset X of VS and its related capacity 

function C Given a subset X of VS and a station u in 

VS, we denote by Prox(u, X) the element x in X which 

is the closest to u Then the Access Demand Acc(x, y, 

X) which is induced by X between two stations x and y 

of X is given by:   

- Acc(x, y, X) =  u, v in VS such that x = Prox(u, X), y = Prox(v, X) 

OD(u,v).(Dist(u, Prox(u, X)).(Dist(v, Prox(v, 

X)),  being a decreasing [0, 1]-valued function. 

We set: Global-Demand(X) =  x,y in X Acc(x, y, X). 

This Access Demand induces, for any station x in X, a 

residual quantity Res(x, X) :  

- Res(x, X) =  y Acc(y, x, X) -  y Acc(x, y, X). 

This residual quantity means the number of vehicles 

which is likely to be in excess (Res(x, X) > 0) or in 

deficit at station x at the end of standard period P.   

The Top Demand in station x X, i.e. the variation 

between the least and the largest numbers of vehicles 

in station x during period P, is given by:   

 Top(x, X) = Q(x, X).H(x, X) with : 

 Q(x, X) = Sup( y Acc(y, x, X)),  y Acc(x, y, X))   

  H(x, X) = (Res(x, X)/Q(x, X)),   

 being a decreasing [, 1]-valued function,  > 0. 

  

Setting a station at node x in VS with capacity C = 

C(x), has a fixed cost Fix(x), augmented with a 

flexible cost C.Prop(x), which linearly depends on C.  

Besides, since running the system defined by X and 

function C periodically requires relocating vehicles 

from excess stations to deficit stations, we denote by 

Run-Cost(X, C) the cost of this rebalancing process.   

 

Constraints: X  VS and C are subject to: 

- Capacity Constraints: for any x  X, Top(x, X) ≤ 
C(x);  

- Demand Constraints: Global  Demand should be 

at least equal to some target level Goal: Global-

Demand(X)  Goal. 

 

Then the VSSL model comes as follows: 

 

VSSL Model : {Compute the subset X, the Depot 

station D, and the capacity function C in such a 

way that the Capacity and Demand Constraints be 

satisfied and that: 

- Cost =  x  X (Fix(x) + C(x).Prop(x)) + Depot-

Cost(D) + Run-Cost(X, C, D) is minimal. 

 

We denote by Relax-VSSL the restriction of VSSL 

which is obtained by removing the Run-Cost quantity.  

 

B. The Vehicle Sharing Rebalancing Problem: VSR    

Let us suppose that X and C are given, together 

with the Depot station D. For any station x, v(x) = 

Res(x, X) vehicles are in excess at station x: if v(x) < 0, 

we talk about deficit. We suppose  x  X v(x) = 0, 

which means that D may bring additional vehicles to 

the system. K-Max is the number of available carriers, 

all with capacity CAP and initially located at D. This 

defines the VSR instance (X, v, C, D, K-Max).   

 

 VSR Feasible Solutions: A VSR tour  is a finite 

sequence Route = {x0 = D, x1, .., xn() = D}, of stations, 

given together with a loading strategy, that means 

with 2 sequences Load ={L0, L1, .., Ln()} and Time 

={T0 = 0, T1, .., Tn()} of coefficients whose meaning 

is: a carrier which follows the route  Route loads, at 

time Ti , Li vehicles at station xi (unloads in case Li < 

0). This VSR tour  is feasible if: 

- For any i = 0, .., n()-1,  

Ti+1  Ti + DIST(xi, xi+1);     (E1) 

- For any i = 0, .., n()-1,  

L*i =  j = 0..i Lj   ≤ CAP;     (E2)  

-  j = 0..n() Lj   = 0;            (E3) 

- For any j such that v(xj)  0, v(xj)  Lj  0;   (E4) 

- For any j such that v(xj) ≤ 0, v(xj) ≤  Lj ≤ 0.  (E5) 

 

Then a feasible solution for the VSR  instance (X, 

v, C, D, K-Max, DIST) is a collection  = ((k), k = 

1..K ≤ K-Max) of feasible tours, such that, for any 

station x:   k  i such that x(k)i = x L(k)i  = v(x).    (E6) 

The cost of  is given by:  R-Cost() = .K +  

. Sup k T(k)n((k))  +  k T(k)n((k))  

+ .( k  j  DIST(x(k)j, x(k)j+1).L*j),  

where  are some scaling coefficients. 

 

We derive the following VSR Model: {Compute a 

feasible VSR solution  = ((k), k = 1..K) which 

minimizes the above quantity R-Cost()}. 

 

Remark 1: The Run-Cost(X, C, D) quantity of the 

VSSL model is the optimal value of this VSR model.  

 

III. ALGORITHMS 

 

We deal with the VSSL model according to a GRASP 

hierarchical decomposition scheme:  

 

VSSL-GRASP Scheme 

Initialize X and C while solving Relax-VSSL;  

Not Stop; While Not Stop do 

Solve the slave VSR model induced by X;  (*) 

Derive an additional constraint C-Aux(X), and 

update X, C through local search;   
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We implement the first instruction by adapting 

Facility Location algorithms (see [8]) into a Relax-

VSSL procedure, while observing that the capacity 

function C derives from X and the Top Demand 

function x, X -> Top(x, X) in a straighforward way.  

The resulting procedure is a GRASP Algorithm, 

which involves local search operators Insert(x) 

Remove(x), Replace(x, y) and Merge(x, y).  

 

X being given, let us now explain how we deal 

with the resulting VSR sub-problem ((*) instruction).   

 

A. Decomposing VSR into Min Cost Assignment 

and PDP: The Distance Strategy.   

 

In case we could decide, for any pair (x, y), x 

excess, y deficit station, which quantity Qx,y has to 

move from x to y in order to achieve the rebalancing 

process, then we derive a VSR solution by solving the 

Load Splitable PDP instance (see [1]) defined by: 

- Requests correspond to the 3-uple (o(j) = x, d(j) = 

y, Load(j) = Qx,y ≠ 0) 
- Minimize ..K + . Sup k Length((k)) + .  k 

Length((k)) + .  j  Ride(j): k denotes the 

vehicles, ((k)) the related PDP tours and   Ride(j) 

is the time spent by Load(j) inside a truck.  

We check that: 

 

Theorem 1: We may restrict ourselves to vectors Q = 

(Qx,y, x excess station, y deficit station) which are 

vertices of the Assignment polyhedron P-Assign:  

P-Assign: {Z = (Zx,y, x excess, y deficit) such that:  

o For any excess station x, y deficit Zx,y = v(x); 

o For any excess station x, x excess Zx,y = - v(x)} 

 

This leads us to handle VSR through the following 

decomposition scheme:  

 

VSR Assignment/PDP Decomposition Scheme: 

Initialize cost vector Q; Not Stop; 

While Not Stop do  

Derive Z and the Request set J = J(Z)) 

Solve the Load Splitable PDP related instance; 

Update Q;  

The Distance Strategy: Initializing Q comes in a 

natural way by setting: for any x, y, x excess, y deficit 

stations, Qx,y = DIST(x, y). We call this strategy, the 

Distance Strategy. We may state: 

 

Theorem 2: If K is fixed and ,  equal to 0 (we 

minimize the carrier riding time), then the Distance 

strategy induces a VSR approximation ratio of 

(1+CAP). This is the best possible ratio. 

 

Theorem 3:  If K is fixed and ,  equal to 0 (we 

minimize the makespan), then the Distance Strategy 

induces a VSR approximation ratio of (1+K.CAP). 

This is the best possible ratio.  

 

B. VSR-Assignment/PDP  Algorithm 

We follow the guideline of the previously 

described hierarchical decomposition scheme. As a 

matter of fact, we revisit it as follows 

 

VSR-Assignment/PDP Algorithm: 

Initialize cost vector Q; Derive Z and the Request 

set J =J(Z); Solve the Load Splitable PDP related 

instance through some generic Insertion algorithm 

and get a current VSR solution ; Not Stop; 

While Not Stop do  

Update cost vector Q and the Request set J = 

J(Z); Let J0 the set of formerly existing 

requests which have been removed from J and 

J1 the set of newly created requests;  Remove 

J0 and next Reinsert J1, in the sense of the PDP 

Insertion algorithm, into current solution ; 

 

Cost vector Q and related Request set J are 

updated by: 

- 1 th Step: Identify a subset J0  J of poorly 

inserted requests (those with a large gap 

between cost Qx,y and mean riding time Rx,y);   

- 2 th step: Set, for any x, y involved into  J0,  x 

excess, y deficit, Qx,y = (Qx,y + Rx,y)/2. 

 

C. Retrieving Sensitivity Constraint C-Aux(X) 

A key instruction inside the main loop of the 

VSSL-GRASP algorithm is the following:  

“Derive an additional constraint C-Aux(X)…” 

We implement it while using the dual solution x, x  

VS of the Min-Cost Assignment problem related to 

current vector Q, as a sub-gradient vector and derive 

the following Bender’s like constraint C-Aux(X):   

 x  VS Res(x, X).x   ≤  x  VS Res(x, X0).x .  

  

D. A Lower Bound for the VSR model 

We get a VSR lower bound LB by introducing (see 

[8]) a network with time indexed nodes and turning 

Preemptive VSR (carriers may exchange vehicles 

while performing the Rebalancing process) into a 

network flow model, which involves an integral 

carrier flow vector dominating some rational vehicle 

flow vector.  Practically, we compute LB while using 

an ILP solver and applying some rounding process 

when the size of G is too large.  
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IV. NUMERICAL EXPERIMENTS

Since we can’t provide exact reference values for

the VSSL model, we separately evaluate the distinct

components of the VSSL-GRASP Algorithm.

A. Testing VSR-Assignment/PDP and Relax-VSSL

A VSR  instance  is  identified  by  the  numbers  n,  nd,  

K-Max, by the matrix DIST, and by function v. T-Max is set 

to 480. We compute, for any instance:

⁃ the value LB of the lower bound of Section III;

⁃ the value  V-NP-Dist (V-NP) of the solution related to 

the  Distance strategy (VSR-Assignment/PDP) and its re-

lated CPU time;

Assignment/PDP ) and its related CPU time; We get (on 

PC AMD Opteron  2.1GHz,  while using  gcc  4.1  compiler 

and the CPLEX12 library):

TABLE I:
TESTING VSR-ASSIGNMENT/PDP

Comment: The LB value provides us with a rather good 

approximation. Though the  Distance strategy is rather effi-

cient, we improve V-NP values in a significant way by fully 

performing local search.

In  order  to test  Relax-VSSL,  we generate a set  VS of  n 

points of the Euclidian space R2, (so DIST means the Euclid-

ian distance), and an origin/destination matrix OD, with all 

values OD(x, y) between 0 and a given parameter S, and uni-

formly distributed. Functions Φ and Π are piecewise linear. 

We  compute,  for  every  instance,  the  gap  G between  the 

CPLEX  optimal  solution  and  the  of  Relax-VSSL together 

with related CPU times T-ILP and T-Rel. Then we get, while 

always setting S to 10:

TABLE II:
TESTING RELAX-VSSL

B.  Testing VSSL-GRASP

A VSSL test is identified here by:

⁃ the coefficients  n (cardinality of  VS,  S (top  OD(x, y) 

value),  q (relative weight of  Run-Cost inside the global 

cost of a solution);

⁃ the  number  M  of  replications  of  the  VSSL-GRASP 

scheme;

⁃ the length L of the main loop of VSSL-GRASP.

We compute, for any instance, the gap G between the ini-

tial cost obtained through Relax-VSSL and the final cost ob-

tained  through  VSSL-GRASP,  together  with  related  CPU 

times T0 and T1. Then we get:

TABLE III:
TESTING VSSL-GRASP

Comment: Computing costs increase with the S value.
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