
 Abstract—Designing a vehicle sharing system means locating
stations which allow users to pick up and give back vehicles.
One takes this strategic level decision while anticipating related
rebalancing costs. We study here a strategic related bi-level Ve-
hicle Sharing Station Location (VSSL) model, which involves as
slave problem a static Vehicle Sharing Rebalancing (VSR)
model.

I. INTRODUCTION

ehicle Sharing systems (see [4]), involving bikes or

electric cars, are among the systems which currently

strive in order to find their place in the urban mobility land-

scape as a compromise between full individual transporta-

tion and rigid public transportation. They most often work as

one-way systems: customers should be allowed to pick up a

vehicle at any station and give it back at any other station.

But the system may fast become unbalanced, with either

empty or overfilled stations, making arise two decision

problems:

V

⁃ a strategic level problem (see [4]) about the way sta-

tions are located and capacitated.

⁃ an operational (or tactical) level problem (see [2, 3, 5,

6]), about the way the Rebalancing Process is performed.

This contribution deals with the strategic level problem,

which has been scarcely studied, and which we refer to as

the Vehicle Sharing Station Location (VSSL). We link it

with the operational level known as the Vehicle Sharing Re-

balancing Problem (VSRP).

Efficiently locating the stations of the system means:

⁃ locating the stations close to the origins and destina-

tions of the users, in such a way that a global Access De-

mand be maximized, or at least some target value be

reached;

⁃ minimizing investment and infrastructure costs;

⁃ making in such a way that the expected running costs

due to the periodic Rebalancing Process be the smallest

possible.

While the two first criteria yield standard Facility Loca-

tion models, (see [9]), dealing with the last one leads us to

explicit those expected running costs due to the periodic Re-

balancing Process: This process consists in periodically

picking up some vehicles at excess stations, that means sta-

tions which may be considered as containing more than

enough vehicles, and move them to deficit stations, while us-

ing carriers (trucks, self-platoon convoys…). Optimizing

this process gives rise to Vehicle Sharing Rebalancing

(VSR) models. While on line VSR models received very lit-

tle attention, being only handled through application of em-

pirical decision rules (see [5, 7]), several static VSR models

(see [2, 3, 7, 8]) have already been proposed and studied

through heuristics and ILP models.

Our purpose is here to cast operational VSR as a slave

sub-problem of a strategic Vehicle Sharing Station Location

(VSSL) model. We first consider that the input data for VSSl

problem mainly consists in an origin/destination matrix OD,

and in additional information about demands and costs, and

derive (Section II) a bi-level Vehicle Sharing Station Loca-

tion (VSSL) whose master problem IS a Facility Location

model and slave sub-model is some static VSR model. Next

we propose (Section III) a related bi-level algorithmic reso-

lution scheme which decomposes in turn the VSR model

into a simple Min-Cost Assignment master model and a

slave PDP: Pick up and Delivery model (see [1, 5]) model.

We end by providing a VSR lower bound and performing

numerical experiments (Section IV).

II. THE VSSL MODEL

A. Vehicle Sharing Station Location Instances

VSSL (Vehicle Sharing Station Location) input is a set VS

of virtual stations, given together with:

⁃ a demand matrix OD: for any x, y in VS, OD(x, y)

means the access demand to the system in x, y, that

means the number of vehicles which should be

Facility Location Models forVehicle Sharing Systems

Alain Quilliot
LIMOS CNRS, Labex IMOBS3

Université Blaise Pascal
63000 Clermont-Ferrand, France

Email: alain.quilliot@isima.fr

Antoine Sarbinowski
LIMOS CNRS, Labex IMOBS3

Université Blaise Pascal
63000 Clermont-Ferrand, France.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 605–608

DOI: 10.15439/2016F10

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 605

picked up at station x and given back at station y

by the users during a reference period P.

- a distance matrix DIST : DIST(x,y) means the

distance (time required) from x to y.

Demands and Costs: Solving VSSL means computing

a real station subset X of VS and its related capacity

function C Given a subset X of VS and a station u in

VS, we denote by Prox(u, X) the element x in X which

is the closest to u Then the Access Demand Acc(x, y,

X) which is induced by X between two stations x and y

of X is given by:

- Acc(x, y, X) =  u, v in VS such that x = Prox(u, X), y = Prox(v, X)

OD(u,v).(Dist(u, Prox(u, X)).(Dist(v, Prox(v,

X)),  being a decreasing [0, 1]-valued function.

We set: Global-Demand(X) =  x,y in X Acc(x, y, X).

This Access Demand induces, for any station x in X, a

residual quantity Res(x, X) :

- Res(x, X) =  y Acc(y, x, X) -  y Acc(x, y, X).

This residual quantity means the number of vehicles

which is likely to be in excess (Res(x, X) > 0) or in

deficit at station x at the end of standard period P.

The Top Demand in station x X, i.e. the variation

between the least and the largest numbers of vehicles

in station x during period P, is given by:

 Top(x, X) = Q(x, X).H(x, X) with :

 Q(x, X) = Sup( y Acc(y, x, X)),  y Acc(x, y, X))

 H(x, X) = (Res(x, X)/Q(x, X)),

 being a decreasing [, 1]-valued function,  > 0.

Setting a station at node x in VS with capacity C =

C(x), has a fixed cost Fix(x), augmented with a

flexible cost C.Prop(x), which linearly depends on C.

Besides, since running the system defined by X and

function C periodically requires relocating vehicles

from excess stations to deficit stations, we denote by

Run-Cost(X, C) the cost of this rebalancing process.

Constraints: X  VS and C are subject to:

- Capacity Constraints: for any x  X, Top(x, X) ≤
C(x);

- Demand Constraints: Global Demand should be

at least equal to some target level Goal: Global-

Demand(X)  Goal.

Then the VSSL model comes as follows:

VSSL Model : {Compute the subset X, the Depot

station D, and the capacity function C in such a

way that the Capacity and Demand Constraints be

satisfied and that:

- Cost =  x  X (Fix(x) + C(x).Prop(x)) + Depot-

Cost(D) + Run-Cost(X, C, D) is minimal.

We denote by Relax-VSSL the restriction of VSSL

which is obtained by removing the Run-Cost quantity.

B. The Vehicle Sharing Rebalancing Problem: VSR

Let us suppose that X and C are given, together

with the Depot station D. For any station x, v(x) =

Res(x, X) vehicles are in excess at station x: if v(x) < 0,

we talk about deficit. We suppose  x  X v(x) = 0,

which means that D may bring additional vehicles to

the system. K-Max is the number of available carriers,

all with capacity CAP and initially located at D. This

defines the VSR instance (X, v, C, D, K-Max).

 VSR Feasible Solutions: A VSR tour  is a finite

sequence Route = {x0 = D, x1, .., xn() = D}, of stations,

given together with a loading strategy, that means

with 2 sequences Load ={L0, L1, .., Ln()} and Time

={T0 = 0, T1, .., Tn()} of coefficients whose meaning

is: a carrier which follows the route  Route loads, at

time Ti , Li vehicles at station xi (unloads in case Li <

0). This VSR tour  is feasible if:

- For any i = 0, .., n()-1,

Ti+1  Ti + DIST(xi, xi+1); (E1)

- For any i = 0, .., n()-1,

L*i =  j = 0..i Lj ≤ CAP; (E2)

-  j = 0..n() Lj = 0; (E3)

- For any j such that v(xj)  0, v(xj) Lj  0; (E4)

- For any j such that v(xj) ≤ 0, v(xj) ≤ Lj ≤ 0. (E5)

Then a feasible solution for the VSR instance (X,

v, C, D, K-Max, DIST) is a collection  = ((k), k =

1..K ≤ K-Max) of feasible tours, such that, for any

station x:  k  i such that x(k)i = x L(k)i = v(x). (E6)

The cost of  is given by: R-Cost() = .K +

. Sup k T(k)n((k)) +  k T(k)n((k))

+ .( k  j DIST(x(k)j, x(k)j+1).L*j),

where  are some scaling coefficients.

We derive the following VSR Model: {Compute a

feasible VSR solution  = ((k), k = 1..K) which

minimizes the above quantity R-Cost()}.

Remark 1: The Run-Cost(X, C, D) quantity of the

VSSL model is the optimal value of this VSR model.

III. ALGORITHMS

We deal with the VSSL model according to a GRASP

hierarchical decomposition scheme:

VSSL-GRASP Scheme

Initialize X and C while solving Relax-VSSL;

Not Stop; While Not Stop do

Solve the slave VSR model induced by X; (*)

Derive an additional constraint C-Aux(X), and

update X, C through local search;

606 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

We implement the first instruction by adapting

Facility Location algorithms (see [8]) into a Relax-

VSSL procedure, while observing that the capacity

function C derives from X and the Top Demand

function x, X -> Top(x, X) in a straighforward way.

The resulting procedure is a GRASP Algorithm,

which involves local search operators Insert(x)

Remove(x), Replace(x, y) and Merge(x, y).

X being given, let us now explain how we deal

with the resulting VSR sub-problem ((*) instruction).

A. Decomposing VSR into Min Cost Assignment

and PDP: The Distance Strategy.

In case we could decide, for any pair (x, y), x

excess, y deficit station, which quantity Qx,y has to

move from x to y in order to achieve the rebalancing

process, then we derive a VSR solution by solving the

Load Splitable PDP instance (see [1]) defined by:

- Requests correspond to the 3-uple (o(j) = x, d(j) =

y, Load(j) = Qx,y ≠ 0)
- Minimize ..K + . Sup k Length((k)) + .  k

Length((k)) + .  j Ride(j): k denotes the

vehicles, ((k)) the related PDP tours and Ride(j)

is the time spent by Load(j) inside a truck.

We check that:

Theorem 1: We may restrict ourselves to vectors Q =

(Qx,y, x excess station, y deficit station) which are

vertices of the Assignment polyhedron P-Assign:

P-Assign: {Z = (Zx,y, x excess, y deficit) such that:

o For any excess station x, y deficit Zx,y = v(x);

o For any excess station x, x excess Zx,y = - v(x)}

This leads us to handle VSR through the following

decomposition scheme:

VSR Assignment/PDP Decomposition Scheme:

Initialize cost vector Q; Not Stop;

While Not Stop do

Derive Z and the Request set J = J(Z))

Solve the Load Splitable PDP related instance;

Update Q;

The Distance Strategy: Initializing Q comes in a

natural way by setting: for any x, y, x excess, y deficit

stations, Qx,y = DIST(x, y). We call this strategy, the

Distance Strategy. We may state:

Theorem 2: If K is fixed and ,  equal to 0 (we

minimize the carrier riding time), then the Distance

strategy induces a VSR approximation ratio of

(1+CAP). This is the best possible ratio.

Theorem 3: If K is fixed and ,  equal to 0 (we

minimize the makespan), then the Distance Strategy

induces a VSR approximation ratio of (1+K.CAP).

This is the best possible ratio.

B. VSR-Assignment/PDP Algorithm

We follow the guideline of the previously

described hierarchical decomposition scheme. As a

matter of fact, we revisit it as follows

VSR-Assignment/PDP Algorithm:

Initialize cost vector Q; Derive Z and the Request

set J =J(Z); Solve the Load Splitable PDP related

instance through some generic Insertion algorithm

and get a current VSR solution ; Not Stop;

While Not Stop do

Update cost vector Q and the Request set J =

J(Z); Let J0 the set of formerly existing

requests which have been removed from J and

J1 the set of newly created requests; Remove

J0 and next Reinsert J1, in the sense of the PDP

Insertion algorithm, into current solution ;

Cost vector Q and related Request set J are

updated by:

- 1 th Step: Identify a subset J0  J of poorly

inserted requests (those with a large gap

between cost Qx,y and mean riding time Rx,y);

- 2 th step: Set, for any x, y involved into J0, x

excess, y deficit, Qx,y = (Qx,y + Rx,y)/2.

C. Retrieving Sensitivity Constraint C-Aux(X)

A key instruction inside the main loop of the

VSSL-GRASP algorithm is the following:

“Derive an additional constraint C-Aux(X)…”

We implement it while using the dual solution x, x 

VS of the Min-Cost Assignment problem related to

current vector Q, as a sub-gradient vector and derive

the following Bender’s like constraint C-Aux(X):

 x  VS Res(x, X).x ≤  x  VS Res(x, X0).x .

D. A Lower Bound for the VSR model

We get a VSR lower bound LB by introducing (see

[8]) a network with time indexed nodes and turning

Preemptive VSR (carriers may exchange vehicles

while performing the Rebalancing process) into a

network flow model, which involves an integral

carrier flow vector dominating some rational vehicle

flow vector. Practically, we compute LB while using

an ILP solver and applying some rounding process

when the size of G is too large.

ALAIN QUILIOT AND ANTOINE SARBINOWSKI: FACILITY LOCATION MODELS FOR VEHICLE SHARING SYSTEMS 607

IV. NUMERICAL EXPERIMENTS

Since we can’t provide exact reference values for

the VSSL model, we separately evaluate the distinct

components of the VSSL-GRASP Algorithm.

A. Testing VSR-Assignment/PDP and Relax-VSSL

A VSR instance is identified by the numbers n, nd,

K-Max, by the matrix DIST, and by function v. T-Max is set

to 480. We compute, for any instance:

⁃ the value LB of the lower bound of Section III;

⁃ the value V-NP-Dist (V-NP) of the solution related to

the Distance strategy (VSR-Assignment/PDP) and its re-

lated CPU time;

Assignment/PDP) and its related CPU time; We get (on

PC AMD Opteron 2.1GHz, while using gcc 4.1 compiler

and the CPLEX12 library):

TABLE I:
TESTING VSR-ASSIGNMENT/PDP

Comment: The LB value provides us with a rather good

approximation. Though the Distance strategy is rather effi-

cient, we improve V-NP values in a significant way by fully

performing local search.

In order to test Relax-VSSL, we generate a set VS of n

points of the Euclidian space R2, (so DIST means the Euclid-

ian distance), and an origin/destination matrix OD, with all

values OD(x, y) between 0 and a given parameter S, and uni-

formly distributed. Functions Φ and Π are piecewise linear.

We compute, for every instance, the gap G between the

CPLEX optimal solution and the of Relax-VSSL together

with related CPU times T-ILP and T-Rel. Then we get, while

always setting S to 10:

TABLE II:
TESTING RELAX-VSSL

B. Testing VSSL-GRASP

A VSSL test is identified here by:

⁃ the coefficients n (cardinality of VS, S (top OD(x, y)

value), q (relative weight of Run-Cost inside the global

cost of a solution);

⁃ the number M of replications of the VSSL-GRASP

scheme;

⁃ the length L of the main loop of VSSL-GRASP.

We compute, for any instance, the gap G between the ini-

tial cost obtained through Relax-VSSL and the final cost ob-

tained through VSSL-GRASP, together with related CPU

times T0 and T1. Then we get:

TABLE III:
TESTING VSSL-GRASP

Comment: Computing costs increase with the S value.

REFERENCES

[1] C. Archetti, M. Speranza: Vehicle routing problems with split
deliveries; p 3-22, ITOR, (2012). http://dx.doi.org/10.1111/j.1475-
3995.2011.00811.x

[2] M. Benchimol, P. Benchimol, B. Chappert, A. De la Taille, F. Laroche,
F. Meunier, L. Robinet: Balancing the stations of a self service bike
hiring systems, RAIRO-RO 45, p 37-61, (2011). http://dx.doi.org/
10.1051/ro/2011102

[3] D. Chemla, F. Meunier, R. Wolfler Calvo: Bike sharing systems:
solving the static rebalancing problem; Discrete Optimization 10 (2),
p. 120-146, (2013). http://dx.doi.org/10.1016/j.disopt.2012.11.005

[4] D. Gavalas, C. Konstantopoulos, G. Pantziou: Design and manage-
ment of vehicle sharing systems: a survey of algorithmic approaches;
ArXiv e-prints, October 2015. https://arxiv.org/abs/1510.01158v1

[5] G. H. Kek, R. L. Cheu, Q. Meng, C. Ha Fung: A study on the vehicle
size and transfer policy for car rental problems Transportation Res. E:
Logistics and Transp. Review 64 (1), p 110-121, (2014),
http://dx.doi.org/10.1016/j.tre.2014.01.007

[6] M. Nourinedjad, M. J. Roorda: A dynamic carsharing decision support
system; Transp. Res. E, 66, p 36-50, 2014). http://dx.doi.org/10.1016/
j.tre.2014.03.003

[7] B. Bernay, S. Deleplanque, A. Quilliot: Routing in Dynamic
Networks: Grasp Versus Genetics, 7 th WCO Workshop, FEDCIS
Conf, Warwsaw, p 487, 492, (2014) http://dx.doi.org/10.15439/978-
83-60810-58-3

[8] A. Klose, A. Drexl: “Facility location models for distribution
systems”; EJOR 162, p 429-449, 2005. http://dx.doi.org/10.1016/
j.ejor.2003.10.031.

608 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

