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Abstract—This paper presents an application of a Gaussian
Mixture Model-based voting mechanism for an ensemble of
Support Vector Machines (SVMs) to the problem of predicting
dangerous seismic events in active coal mines. The author
proposes a method of preparing an ensemble of SVMs with
different parameters and using the "wisdom of the crowd" for
a classification problem. Experiments performed during the re-
search showed an improvement in the quality of the classification
after the mixture of Gaussian distributions was applied as votes
distribution. The author also proposes a method of data selection
for long sequences of measurement arranged chronologically with
highly unbalanced occurrence of the positive class in the two-
class classification problem. Finally, using the proposed model
to solve the problem defined by the organizers of AAIA’16 DM
showed an increase in the stability of the ensemble classifier
and an improvement in the quality of the classification problem
solution.

I. INTRODUCTION

T
HE AIM of this paper is to present a solution to the

problem introduced in AAIA’16 Data Mining Challenge:

Predicting Dangerous Seismic Events in Active Coal Mines

[1]. The task was related to the issue of predicting periods

of increased seismic activity that may cause life-threatening

accidents in underground coal mines. The task was divided

into a classification problem of risk states with low hazard

called ”normal” and the state with high hazard called ”warn-

ing”. Application of hybrid methods of machine learning for

a similar problem was presented in [2], but instead of a

two-class problem, the authors of the experiments proposed

a tripartite division: ”normal”, ”warning” and ”hazard”, and

focused on the medium-term (several minutes) forecasting of

the maximum methane concentration at the wall end area.

They also pointed out that ”mathematical models correlating

methane emission with methane content of a seam, ventilation

method and geological features of mine workings facilitate

overall prediction of average methane concentrations during

exploitation of a working, nevertheless they cannot be applied

for a direct short- or medium-term prediction of methane

concentration” [2]. The problem discussed at AAIA’16 Data

Mining Challenge focused on a different scope of time.

Granulation of data is adjusted to one-hour windows. During

this time, various kinds of information are accumulated, i.e.

the number of registered seismic bumps of a specific energy

level, or the average activity of the most active geophone. This

problem does not allow to use information on the dynamics

of changes within the hour during which signals were col-

lected, and forces the participants of the challenge to process

coarse-grained information about general characteristics of the

signals.

Another solution for a similar problem with regression rule

learning was described in [3]. The main objective of research

presented in [4] was to reduce the number of forecasting

errors during monitoring natural hazards and machinery in

coal mines, achieved by the application of the regression rule

induction, the k-nearest neighbors method, and the time series

ARIMA forecasting.

A. Proposed solution

I propose a solution based on an ensemble of Support

Vector Machines (SVM) of the kind described in [5][6],

and on a voting mechanism based on the Gaussian Mixture

Model described in [7]. Common approach based on ensemble

of classifiers like boosting and bagging focus on preparing

different training data set for each member of ensemble

[8][9]. Instead of that my solution focus on receiving different

information by changing parameters of SVMs in ensemble.

Each SVM was trained on the same data. The GMM voting-

based mechanism allows to extract correlation between SVMs

outputs and evaluate likelihood of class occurrence. Process

of preparing solution is illustrated in Fig. 1

The solution ranked 4th in AAIA’16 Data Minning Chal-

lenge with a final result 0.934. The final results were evaluated

in accordance with Area under Curve values on a specially

curated testing set. Finding parameters of model was mostly

leaded by data driven strategy. Preparing solution focused on

achieving balance between quality of solution scored by AUC

value evaluated in cross-validation procedure and computation

complexity.

II. PREPARING DATA

The data set included 133 151 records, each corresponding

to a 24-hour measurement. Vectors had 541 columns. Values

stored in a single record can be divided into two separate parts.

The first part consists of an identifier of the main working site

and 12 other characteristics related to the whole period of 24

hours described by the record. The second part is composed of
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Fig. 1. Procedure of preparing data and training GMM-SVM classifier. Ensemble training was repeated 300 times and the best classifier was chosen based
on cross-validation results.

hourly aggregated measurements, thus for each characteristic

it includes 24 consecutive values associated with readings of

geophones [1].

Measurement was labelled as ”normal” or ”warning” which

indicate whether a total seismic energy perceived with 8 hours

after the period covered by a data record exceeds the warning

threshold, in correspondence with the classes prepared for

solving the classification task. The distribution of classes was

highly unbalanced. The ”normal” class covered 130 187 of all

records, while the ”warning” class only corresponded to 2 962

”warning” measurements. Records were sorted chronologi-

cally, which highlighted the tendency of ”warning” states to

occur in short sequences. The testing set provided by AAIA’16

Data Mining Challenge consisted of 3 860 records.

A. Record selection

Before any operations on the data, the set vectors were

linearly normalized to [−1; 1]. The first step towards the

proposed solution was to choose the data vectors that would

provide the most discriminative information. I assumed that

this information was kept in boundary periods of an occurrence

of ”warning” measurement. Because of that, ”normal” records

were limited to the period corresponding to six hours before

and to six hours after the ”warning” sequence occurred. This

approach permits focusing on the most important records

and to solving the problem of highly unbalanced classes

occurrence in the training set. In the next part of this paper

all references to the training set are corresponding to the set

prepared in this way.

B. Preparing base model

The next step was to prepare a base classification model

which allows future data analysis. Since the problem is a

high-dimensional one, it required a model with high resistance

to high dimensionality of data. Another criterion of choosing

the model was the fact that almost all attributes in a vector

was represented by floating or integers values and represented

measurements of signal sensors which suggested that data

could be naturally represented in a Hilbert space. The chosen

model was SVM. The procedure of adjusting parameters of

hyperplane splitting space into areas corresponding to two

classes is not highly sensitive to high dimensionality of space.

Moreover, expanding dimensionality of space with a constant

number of data records could enable the SVM to simplify

finding optimal hyperplane splitting space into two subspaces

problem [8]. The SVM was also designed to solve the problem

of classification of two classes. Finally, proven high effective-

ness of SVM for a classification problem [10] [11] made it a

natural candidate to being the base classification model for this

problem. Radial Basis Function (RBF) was chosen as kernel

function, for it allows SVM to map a non-linear relationship

between attributes and outputs. This ability is not approachable

for the linear kernel. In [12], it has been shown that the linear

kernel is a special case of the RBF kernel.

Before proceeding further, the SVM was trained on a set

with all attributes. Parameters of the SVM were adjusted based

on the grid search procedure. In the end, the base SVM took

parameters γ = 0.015625 and C = 2.

C. Feature selection

Firstly, record attribute corresponding to the record ID was

excluded from the training set. 529 attributes of training set

records was grouped in a sequence of 24 elements corre-

sponding to values in 24-hour period of measurement. A

backward elimination was performed to drop out some of

these sequences. The evaluation was based on 2-fold cross-

validation method. The influence of removing the whole 24-

hours sequence was investigated on each step. The procedure

showed that removing 12 sequences significantly increased the

accuracy of the base classificator and limited vector to 252

attributes. Four attributes corresponding to the latest available

hazard assessment prepared by experts took on ordinal values,

which represented the level of hazard were transformed to

choose only from two values ”no hazard” or ”hazard”.

III. CLASSIFICATION MODEL

After preparing the data, a classifier based on the generated

ensemble of SVMs classifier was proposed. Creation of this

ensemble could be divided into two steps: choosing appropri-

ate SVMs classifiers and preparing the voting mechanism.

A. Choosing SVMs

At this step, a grid search was performed and the best

result it yielded was collected. I decided to use the base

SVM described in the previous section of this paper and two

additional SVM classifiers.

Since the high value of C allows the SVM to select more

vectors as support vectors, the method could overfit. Thus,

I took the first additional SVM γ = 0.015625 and C = 1.

A second additional SVM was selected by getting a smaller

value of γ, because a high value γ parameter could prevent the
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SVM from finding the boundaries which allow to generalize

the ”shape” of the area covered by class. Based on the cross-

validation results, I have chosen the SVM with parameters γ =
1.22 × 10(−4) and C = 1024. Because procedure of training

ensemble was repeated 300 times to avoid underfitting problem

number of additionally SVMs was limited for computation

time reduction.

Choosing base SVM and two additional SVMs for ensemble

allow to achieve balance between computation complexity and

quality of classification.

B. Voting mechanism

Instead of a simple voting mechanism, the GMM was used

to represent a distribution of voting for each class. Since

the testing set contains only 3 860 records, it was extremely

probable that the sample would not have the same a priori

distribution as the training set. It limits the possibility of

a correct application of Bayes theorem in the classification

model based on the estimated priori distribution. The priori

likelihood of occurrence for all classes was assumed as equal

in the testing data. In order to make the data represent the

priori, I have limited the training set of the ”normal” class for

GMM to four hours before and four hours after the ”warning”

sequence occurs. The experiments showed that the results of

the model has improved, since the data information about

working wall, where measurement had been collected, was

added to the vector. The working walls could be correctly

identified by their IDs, but IDs do not fit well into the normal

distribution âĂ¿ the base of the GMM. Hence, the ID was

replaced with the height of a working wall.

The m parameter, representing the number of Gaussian

components in the GMM for each class, was estimated on

the basis of choosing the best results of the cross-validation

procedure. If we describe parameters of a distribution as θ,

a density function of the mixture distribution of features is

described by:

f(x) =

m
∑

i=1

wip(x | θ), (1)

where p(x | θ) = N (x | µi,Σi) corresponds to normal

distribution that:

p(x | θ) =
1

2π
d

2

√

|Σi|
exp

(

−
1

2
(x− µi)

T
Σ−1

i (x− µi)

)

.

(2)

Σi, µi and wi are covariance matrix, mean vector and wi

represent the weight of the ith component in the mixture and

d is a number of dimension in the modeled space. Parameters

were estimated in EM procedure [13]. If y is assumed to be

an unobserved data, then EM method takes the form of:

E-step : calculate the expectation of the unobserved data

Ef(y|x,θ(t))

[

log f(x, y | θ(t))
]

M-step: find θ(t+1) such that:

θ(t+1) = argmax
θ

Ef(y|x,θ(t)) [log f(x, y | θ)]

For n elements in the training set and an unobserved

variable y
j
i takes:

y
j
i =

{

1, if ith element was generated by jth component,

0, otherwise.
(3)

To estimate parameters of the jth Gaussian component esti-

mators take the form of:

w
(t+1)
j =

1

n

n
∑

i=1

E(yji | xi, θ
(t));

µ
(t+1)
j =

n
∑

i=1

(

E(yji | xi, θ
(t))xi

)

n
∑

i=1

E(yji | xi, θ(t))
; (4)

Σ
(t+1)
j =

n
∑

i=1

(

E(yji | xi, θ
(t))(xi − µ

(t+1)
j )(xi − µ

(t+1)
j )T

)

n
∑

i=1

E(yji | xi, θ(t))
.

The mixture of Gaussian components was prepared as a

distribution of feature occurrences under the condition of class

occurrence. Finally, the likelihood of the ”warning” class was

predicted on the basis of a posterior likelihood, which was

evaluated basing on the Bayes theorem [14].

As Table I shows, the GMM with only one Gaussian

component obtained the best results. It suggests that the

SVMs’ results tend to evaluate likelihood unanimously, which

reduced the GMM-based voting mechanism to a single Gaus-

sian component discriminant analysis.

C. Learning classifier

The training set for the ensemble of SVMs was different

than for the GMM. Ensemble of SVMs was trained on a ran-

dom sample of 30 percent of the training data. The objective

of this mechanism was to avoid the overfitting problem.

Since the ensemble of SVMs was trained only on 30

percent of the training data, the risk of underfitting increased

considerably. In order to solve this problem, the procedure of

learning classifier GMM-SVMs was repeated. The model was

learnt 300 times and the best train set for SVMs was chosen

basing on the cross-validation results.

IV. EXPERIMENTAL RESULTS

Application of the SVM to the proposed solution was based

on a LIBSVM implementation [15]. The organizers of AAIA

Data Mining Challenge provided the training set in two steps.

Initially, only half of the training data was available for

participants. The rest of the training data was divided into four

parts and supplied after some conditions, associated with the

number of submissions, were met. My experiments focused

on the quality of the classification performed by different

approaches and the variance of results of SVM ensembles. For

research variance of different strategy of voting I had collected

results of an average voting, which corresponds to the voting

based on simple mean of generated outputs of each SVM in
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the ensemble and a GMM-based voting mechanism times 50

and then estimated the mean and standard deviation of the

results.

The experiments concerned with data preparation were

performed on the training set provided in the first stage.

The quality of solution was described by AUC and evaluated

in cross-validation procedure. Other experiments, concerning

the classifier quality, covered the whole training data. All

cross-validation procedures were performed with fold = 2. As

shown in the Table I, GMM-SVM provided the best results.

I compared the average voting strategy with the GMM voting

mechanism. SVM ensemble based on a simple average voting

achieved worse results, but still better than a single SVM

classifier.
As shown in Table II, the results of an average voting are not

stable. One reason may be that all SVMs lacked the ability

to cope with underfitting, which resulted in higher standard

deviation of the AUC results. Since the GMM learning method

calculates parameters to fit the best maximum likelihood of the

prediction based on the training set, it has the ability to obtain

information on the errors of each SVM and the correlation

between their outputs. This allows for the use of information

about the areas in space that were problematic for some of the

ensemble classifiers.

TABLE I
EXPERIMENTAL RESULTS - CLASSIFICATION QUALITY

Data set Experiment AUC %

First part of training data
Raw data 69.098

After backward elimination 71.923

Whole training data
SVM 71.346

Average vote 73.428

GMM-SVM m = 1 75.346

GMM-SVM m = 2 74.474

TABLE II
EXPERIMENTAL RESULTS - STABILITY OF VOTING MECHANISMS

Voting mechanism Mean AUC % Standard deviation of AUC %

Average vote 54.537 17.055

GMM-SVM m = 1 73.746 0.746

GMM-SVM m = 2 72.963 0.831

V. SUMMARY

This paper presents an application of the GMM-based

voting mechanism for an ensemble of SVMs for the problem

of predicting dangerous seismic events in active coal mines.

The problem defined by the organizers of AAIA Data Mining

Challenge allows for the successful use of GMM-SVM model

of classification. My experiments showed that using the GMM

voting instead of the average of outputs allows to decrease

model variance. The GMM also makes obtaining information

about classifier errors in the ensemble possible.
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