
Speculative Query Execution in Relational
Databases with Graph Modelling.

Anna Sasak-Okoń
University of Maria Curie-Skłodowska

in Lublin
Pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: anna.sasak@umcs.pl

Abstract—In computer architecture, speculative execution is
the process of executing instructions ahead of their normal
schedule[1]. Grama et al.[2] introduce the concept of speculative
decomposition as a possibility to execute one or more of possible
branches in parallel with computation which are expected to
determine the branch choice. The following paper introduces the
method of speculative query execution in relational databases.
Query queue can be seen as a line of sequential instructions
and thus changing their order can result in some errors. Author
introduce a middleware called the Speculative Layer which, based
on a specific graph representation, executes some additional
Speculative Queries. Results of those Speculative Queries can
be used while executing queries from the queue providing a befit
which is a shorter response time. The paper describes the process
of graph modelling for groups of queries in order to initiate
speculative computations, metrics used to evaluate Speculative
Queries and experimental results for a test database and a group
of input queries.

I. INTRODUCTION

O
RIGINS of the speculative execution are the early works
of branch prediction[3][4]. The sequential semantics

imposes a certain order in which instructions should be loaded,
decoded, executed and ended[5]. Code branches, usually de-
pendent on some logical conditions, disturb the fluency of
loading and executing, causing delays. As an attempt to
prevent delays there were experiments to predict a branch di-
rection and to execute an instruction or a group of instructions
in advance.

In general, there are three types of Thread Level Specula-
tions (TLS)[6]:

• Control Speculation – origins from branch prediction
strategy. The assumptions could be made based on some
static (e.g. op codes) or dynamic values [7][8].

• Data Dependence Speculation – If two instructions are
fully independent, only then the parallel execution is
possible. Before memory access instructions are executed,
the addresses they refer to are often undetermined. To
prevent data load from an address where store should be
executed earlier, a certain secure mechanism should be
introduced[8].

• Data Value Speculationis – is expected to prevent data
dependency with the value prediction mechanisms which
allow to propagate data values to succeeding instructions
in advance.

II. RELATED WORK

There is already much research done around the world in
adopting speculative execution in database computations.

Polyzotis N. and Ioannidis Y[10]. introduce speculation as a
parallel, intelligent technique of query processing assistance.
Exploiting idle time[11] of the system the application pro-
cesses some asynchronous database manipulations which in
case of success would be beneficial for the final query.

Barish G. and Knoblock C.A.[12][13] in order to overcome
the limits imposed by binding patterns between data sources
propose mechanisms of applying speculative execution for In-
formation Gathering Plans. The general process of speculative
execution involves issuing operations ahead of their normal
schedule based on data (hints) received earlier in the plan.

Hristidis V. and Papakonstantinou Y[14] analyse speculative
computations for ranked queries. Authors create a speculative
version of a ranking algorithm which in case of a slower data
source assumes speculatively that there are no tuples satisfying
the preference function and thus can return top-N results faster
but with some inaccuracies.

Reddy P., Kitsuregawa M.[15], Ragunathan T., Krishna
R.P.[16][17] deal with speculative execution for transaction
protocols in database systems. They introduce the speculative
protocol (SL). With SL the waiting transaction is able to
access locked data as soon as blocking transaction produces
its images.

III. THE SPECULATIVE LAYER

An inspiration for this experiment is an idea of speculative
execution briefly described in the previous section. Authors
proposes a speculative execution mechanism for relational
databases executing SQL queries of accepted structure which
are CQAC queries with additional IN and LIKE operators.
What is important, an analysed database must show a specific
use template. Databases which suit our interests usually have
to execute similar queries from different users. What’s more,
data modifications are rare and usually concentrate around
some fixed points.

A queue of queries awaiting for execution, called the input
queries, presents an interesting analogy to the sequential order
of instructions. The consecutive queries can, like sequential
instructions, show some dependencies. On the other hand,

Proceedings of the Federated Conference on Computer Science
and Information Systems pp. 1383–1387

DOI: 10.15439/2016F123
ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1383

carefully identified similarities allow to use some of the results
many times[18][19][20].

A model described above is implemented as an additional
middleware between users and DBMS called the Speculative
Layer, which dynamically supports execution of input queries.
The Speculative Layer, based on precise Speculative Analysis,
creates a subset of data in RAM called further a Speculative
DB. The data from the Speculative DB used while executing
an input query improves system throughput and shortens users
waiting time.

All actions of the Speculative Layer are controlled by the
main worker thread called the Manager. In each step N input
queries are analysed. This group of input queries is called the
Window of Speculations. Based on those analysis, supported
by a specific graph representation described in Sections IV
and V, Manager assigns tasks to K Worker Threads.

In particular Manager implements the following functions
of the Speculative Layer:

1) System Start.
All initial actions required for the first run of the
Speculative Layer. In particular graph representations
are created for N input queries from the Window of
Speculation. Next, those representations are combined to
create the Queries Multigraph ready for the Speculative
Analysis.

2) Nonspeculative Query Execution.
Process of executing the first input query from the Win-
dow of Speculation, called the Nonspeculative Query.
If there are Executed Speculative Queries assigned to
the Nonspeculative Query, then it must by modified so
it would use those results. If there are more than one
Executed Speculative Query assigned, then the choice
which to use is based on the values of the defined metrics
- Horizontal an Vertical Selectivity. Vertical Selectivity
models the reduction of the number of columns while
the Horizontal Selectivity approximates of number of
records returned by the Speculative Query.

3) Speculative Analysis.
Process of the Queries Multigraph analysis which iden-
tifies speculation points and generates Awaiting Specu-
lative Queries. The other result of the Speculative Anal-
yses is a Speculative Queries Multigraph i.e. Queries
Multigraph with additional speculative edges represent-
ing points and types of speculations.

4) Window of Speculation Move.
After the Nonspeculative Query is executed and its re-
sults are returned to the user the Window of Speculations
moves. It means that the representation of executed Non-
speculative Query in the Queries Multigraph is replaced
by the representation of the next input query from the
queue.

5) Speculative Query Execution.
If there are idle Worker Threads then, if it is possible,
they should be assigned available Speculative Queries
from the Awaiting Speculative Queries List, according
to the values of aforementioned metrics. The highest ex-

ecution priority should have those queries which provide
the highest potential reduction of records or/and can be
used by the most of Input Queries.

6) Executed Speculative Query Assignment.
After an Awaiting Speculative Query is executed and
becomes an Executed Speculative Query, it has to be
assigned to the specific Input Query/Queries from the
Window of Speculations, which marks the possibility to
use its results.

7) Speculative DB Refreshment.
When the Speculative DB reaches its maximum size,
it has to be reduced. The reduction process consists in
removing the results of chosen Executed Speculative
Queries based on its characteristics. First to remove
are always those queries with the highest Vertical and
Horizontal Selectivity and those which are used the least
often.

IV. QUERY GRAPH

A. CQAC queries

Each accepted CQAC query is represented by its Query
Graph GQ(VQ, EQ). Graph creation rules follow the example
of [22][23] works, and are as follows. Each Query Graph
Vertex is one of three types:

• Relation Vertex (Ri) – one for each relation,
• Attribute Vertex (Ai

j) – one for each attribute,
• Value Vertex (Ω) = {V alij|A

i
j} – one for each value or

set of values.

Each Query Graph Edge is one of the following types:

• Membership Edge – eµ : Ri
µAi

j – one between relation
Ri and each of its attributes Ai

j from SELECT clause,
• Predicate Edge – eθ : Ai

j
θ{V alij |A

m
k } – one for each

predicate of WHERE clause Ai
jθΩ, where θ is one of

accepted operators. Ω is a single value or a set of values
(V alij) or an attribute (Am

k) for JOIN condition.
• Selection Edge – eσ : Ri

σAi
j – one for each predicate

of WHERE clause Ai
jθΩ, where θ is one of accepted

operators. Ω is a set of values (V alij) or an attribute (Am
k)

for JOIN condition.

B. Embedded queries

Each embedded query qm is represented by its own query
graph joined with its parent query Q graph in the following
way – for each predicate Ai

jθA
m
k where Ai

j ∈ (Q WHERE
clause) and Am

k ∈ (qm SELECT clause), there is a predicate
edge between Ai

j and Am
k .

C. Modifying queries

Next to SELECT queries there are also modifying queries
which are accepted by the Speculative Layer and thus need to
have a proper graph representation. For each type of modifying
query there is another edge type representing a possible change
in the database state:

• DELETE: eδ : Ri
δAi

j and eδ : Ai
j
υθΩ where θ is one of

accepted operators and Ω is a set of values,

1384 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 1. Queries Multigraph

• INSERT: eη : Ri
ηRi

• UPDATE: eυ : Ri
δAi

j and eυ : Ai
j
υθΩ where θ is one

of accepted operators and Ω is a set of values.

V. QUERIES MULTIGRAPH

To represent a group of queries with one graph some
additional rules have to be defined. Such graph Gs(Vs, Es)
will be called the Queries Multigraph or QM. QM Vertices
set is an union of Vertices of all component query graphs:
Vs = Vq1 ∪ Vq2 ∪ . . .∪ Vqn. QM Edges set is a multiset of all
component query graphs edges: Es = Eq1 +Eq2+ . . .+Eqn.
This way multiple edges of the same type are allowed. It
is important for the Speculative Analysis process raising the
importance of some edge connections. Fig.1 presents the
Queries Multigraph representing three following component
queries:

• SELECT A3,3, A2,6, A2,7 FROM R2, R3 WHERE
A2,0 = A3,5 AND A2,6 = C2

• SELECT A2,6, A2,8 FROM R2, R3 WHERE A2,0 = A3,5

AND R2.A2,6 < C3

• SELECT A3,3 FROM R3 WHERE R3.A3, 4 IN (C4, C5)

VI. TYPES OF SPECULATIVE QUERIES

The process of Speculative Analysis is expected to de-
termine a set of Speculative Edges. Those edges represent
different strategies of creating Speculative Queries. Based on
the results usage, there are three types of Speculative Edges
which represent three types of Speculative Queries:

• Speculative Parameter – those edges/queries relate to
the presence of embedded queries. Due to separating an
embedded query as a Speculative Query, it is possible
to use its results as a parameter in a parent query.
The Speculative Parameter Speculation is identified the
moment the query with an embedded select enters the
Window of Speculation. An embedded query as a whole
is added to the head of the Awaiting Speculative Queries
List (Qi

PS). As a consequence those queries are always
first to be executed by the Worker Thread.

• Speculative Data – the aim of those speculative queries
is to obtain and save in the Speculative DB a specific
subset of records or/and attributes of a relation. The
main goal is to create this subset so as it could be
used while executing as many input queries as possible.

Fig. 2. Multigraph with Speculative Data and Speculative State edges

Speculative Data queries are the most frequent in the
group of identified speculations.

• Speculative State – those edges/queries relate to the pres-
ence of modifying queries. If there is a modifying query
in the Window of Speculation then both Executed and
Awaiting Speculative Queries are in danger of processing
invalid data. Speculative State edges are referring to the
modifying queries represented by eδ, eη, eυ edges. If a
modifying query has a number K in an input queries
queue, then all succeeding queries (K+) are in danger
of processing invalid data.

The Fig. 2 presents an example of Queries Multigraph with
Speculative Data and Speculative State edges.

VII. EXPERIMENTAL RESULTS

The Speculative Layer was implemented with C++ and
Visual Studio 2013 with Pthread library and SQLite 3.8.11.1.
Experimental results were obtained in Windows 8.1 64b with
Intel Core i7-3930K and 8GB RAM.

A. Test Database and Test Input Queries

The Database used for experiments was generated with the
TPC[21] data and structure generator. It consists of 8 relations
storing 1GB data. It represents 150 000 orders from 150
000 customers which include chosen from 200 000 products
delivered by 10 000 suppliers. Such database is a fine example
of a medium sized Internet store. Eight SQL Query Templates
were prepared and used to generate a set of Input Queries
executed with the Speculative Layer.

B. Window of Speculation Size and the Number of Speculative

Threads

At the beginning the series of experiments were conducted
to determine the size of Window of Speculation and the
number of Speculative Threads for which the experiments
would continue. The size of the Window of Speculation stands
for the number of input queries represented by the Query
Multigraph and thus it determines the number of generated
Awaiting Speculative Queries. Fig.3 presents how the Size
of Window of Speculation affects the number of generated
Awaiting Speculative Queries.

The number of executed Speculative Queries depends on the
number of active Speculative Threads and not on the size of the
Window of Speculation itself. In the Fig.4, two series of data
are presented. First one, marked with black squares, presents
the number of Executed Speculative Queries for the number
of active Speculative Threads. The second one, marked with

ANNA SASAK-OKO’N: SPECULATIVE QUERY EXECUTION IN RELATIONAL DATABASES 1385

0 2 4 6 8 10 12 14
0

5000

10000

15000

20000

25000

30000

35000

N
U

M
BE

R
 O

F
G

EN
ER

AT
ED

SP
EC

U
LA

TI
VE

 Q
U

ER
IE

S

WINDOW OF SPECULATION SIZE

 NUMBER OF GENERATED
SPECULATIVE QUERIES

Fig. 3. The number of generated Awaiting Speculative Queries.

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

N
U

M
BE

R
 O

F
SP

EC
U

LA
TI

VE
 Q

U
ER

IE
S

NUMBER OF ACTIVE SPECULATIVE THREADS

 NUMBER OF EXECUTED SPECULATIVE QUERIES
 NUMBER OF USED SPECULATIVE QUERIES

Fig. 4. The number of executed and used Speculative Queries.

red dots, presents the number of Used Speculative Queries for
the number of active Speculative Thread. The experiment was
carried for the Window of Speculation Size = 5.

Fig. 3 shows almost linear dependency between the Size
of the Window of Speculation and the number of generated
Awaiting Speculative Queries. Fig. 4 also presents almost
linear dependency between the number of executed Specu-
lative Queries and the number of active Speculative Threads.
On the other hand the number of Used Speculative Queries
hardly changes for the number of threads 3 and more and
thus the percent of Used Speculative Queries is decreasing.
Based on those observations it was decided that the further
experiments would be carried for the Window of Speculation
Size=5. The experimental results are presented for the set of
1000 input queries generated from Templates T1-T8. The size
of Speculative DB is 700MB RAM.

C. Query Execution Times

Fig. 5 presents the reduction of average execution time for
input queries of each Template. First column represents the
sequential execution time when there were no active Spec-
ulative Threads. The following columns represent execution
times obtained for each query Template for 1 to 5 active
Speculative Threads, which execute Speculative Queries. It
appears that the highest execution time reduction was obtained
by initiating the first Speculative Thread (up to 55% execution
time reduction for Template 1). Further improvement, up to
20% brings the second active Speculative Thread. Activating

Fig. 5. The average Execution Time for Each Template for 0-5 Active
Speculative Threads.

0 50 100 150 200
0,0

0,5

1,0

 AVERAGE EXECUTION TIME
 NO SPECULATION AV. EX. TIME
 EXECUTION TIME

EX
EC

U
TI

O
N

 T
IM

E

QUERY ID, TEMPLATE 6

Fig. 6. Query Execution Times for Template 6.

more than two Speculative Threads doesn’t affect the Average
Execution Time.

Fig. 6 presents execution times of input queries for Tem-
plate 6, with the Window of Speculation Size=5 and 2 active
Speculative Worker threads. In the picture there are two
additional lines presented showing the average execution time
with (green line) and without (red line) speculative execution.
Template 6 was chosen for presentation as its queries show
an interesting behaviour. There is a clear division for three
groups of input queries. First group are the input queries
executed without the opportunity to use results of Executed
Speculative Query. They have the longest execution times
and thus are located close to the red line. The remaining
two groups are input queries which were able to use the
results of Executed Speculative Queries, however, the obtained
execution times vary significantly. It turned out the group with
the lowest execution times had an opportunity to use results
of the Speculative Query with the Horizontal Selectivity equal
to 0,01. The rest of them had to use the results of Speculative
Queries with the Horizontal Selectivity equal to 0,9 which are
almost full copy of the original ORDERS relation.

Fig. 7 presents how many Input Queries of each Template
were executed using results of the Executed Speculative Query.
It is expressed as a proportional dependency where each
column stands for 100% of Input Queries of each Template.
As you can see Templates T3 and T4 are the least responsive

1386 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

T1 T2 T3 T4 T5 T6 T7
0

50

100

PE
R

C
EN

T
O

F
Q

U
ER

Y
N

U
M

BE
R

Query Templates

 Without Use of Speculation
 With Use of Speculation

Fig. 7. The number of Input Queries which used the Executed Speculative
Query Results as a proportional relation to the total number of Input Queries
of each Template.

to Speculation and thus the average execution time reduction
of those templates (Fig.5) was also the lowest. The reason is
that those queries has low occurrence density (10%) in the
Input Query Set. As a consequence its multigraph vertices has
low Selection Degrees and thus they are rarely chosen to be
executed by Speculative Threads. What’s more, in both those
Templates, T3 and T4, IN and LIKE operators are dominating.
Those operators refer to the narrow subgroups of attribute
values, making it especially difficult to generate Speculative
Queries useful for more than one query from the Window of
Speculation.

VIII. CONCLUSION

The following paper presents a model of Speculative Execu-
tion to support SQL query execution in relative databases. The
Speculative Layer executing Speculative Queries is carefully
described. In particular the details of an adopted query graph
representation are presented. Experimental results obtained
for the test database and a group of 1000 input queries
are very promising. In case of Template 5, 100% of input
queries were execute using the results of executed Speculative
Query. Templates: 1, 2, 6 and 7 show around 75% and
above execution with Speculative Query. All groups of queries
show its execution time reduction: from 10%(Template 3) to
70%(Template 6). Further work should concentrate on the
improvement of the number of input queries executed with
the Speculative Query results (especially for Template 3 and
4). Worth consideration is also allowing more flexible structure
of accepted queries and intensifying the number of modifying
queries which would require more sophisticated speculation
validation methods.

REFERENCES

[1] D. Kaeli, P. Yew, “Speculative Execution in High Performance Computer
Architectures,” Chapman Hall/CRC, 2005, ISBN:978-1-584-88447-7.

[2] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Introduction to Parallel
Computing (Second Edition),” Addison Wesley, 2003, ISBN: 978-0-201-
64865-2.

[3] E. A. Jr. Liles, B. Wilner, “Branch prediction mechanism.,” IBM
Technical Disclosure Bulletin, 1979, Vol.22(7), p. 3013-3016.

[4] J. E. Smith, “A study of branch prediction strategies.,” ISCA
98 Conference Proceedings, 1998, New York, p.202-215,
http://dx.doi.org/10.1145/285930.285980.

[5] D. Padua, “Encyclopedia of Parallel Computing A-D.,” Springer, 2011,
ISBN: 978-0-387-09765-7.

[6] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito, U.
Banerjee, A. Nicolau, A.V. Veidenbaum, C.D. Polychronopoulos, “On
the performance potential of different types of speculative thread-level
parallelism.,” International Conference on Supercomputing Proceedings.,
2006, Cairns, p.24, http://dx.doi.org/10.1145/1183401.1183407.

[7] J. Šilc, T. Ungerer,B. Robič, “Dynamic branch prediction and control
speculation.,” Int. Journal of High Performance Systems Architecture,
2007, Vol.1(1), p.2-13, http://dx.doi.org/10.1504/IJHPSA.2007.013287.

[8] D. Kaeli, P. Yew, “Speculative Execution in High Performance Computer
Architectures.,” Chapman & Hall,CRC, 2005, ISBN:978-1-584-88447-7.

[9] S. T. Pan, K. So, J. T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation.,” International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 1992, Boston, p.76-84, http://dx.doi.org/10.1145/143371.143490.

[10] N. Polyzotis, Y. Ioannidis, “Speculative query processing,”
CIDR Conference Proceedings, Asilomar, 2003, p.1-12,
http://dx.doi.org/10.1.1.11.8541.

[11] R. M. Karp, R. E. Miller, S. Winograd, “The Organization of Compu-
tations for Uniform Recurrence Equations,” Journal of the ACM, 1967,
Vol.14(3): p.563-590, http://dx.doi.org/10.1145/321406.321418.

[12] G. Barish, C.A. Knoblock, “Speculative Plan Execution for Informa-
tion Gathering,” Artificial Intelligence, 2008, Vol.172(4-5), p.413-453,
http://dx.doi.org/10.1016/j.artint.2007.08.002.

[13] G. Barish, C.A. Knoblock, “Speculative Execution for Information
Gathering Plans,” AIPS Conference Proceedings, Toulouse, 2002, p.184-
193, http://dx.doi.org/10.1.1.11.3505.

[14] V. Hristidis, Y. Papakonstantinou, “Algorithms and Applications for
answering Ranked Queries using Ranked Views,” The VLDB Journal,
2004, Vol.13(1), p.49-70, http://dx.doi.org/10.1007/s00778-003-0099-8.

[15] P.K. Reddy, M. Kitsuregawa, “Speculative locking Protocols to Improve
Performance for Distributed Database Systems,” IEEE Transactions
on Knowledge and Data Engineering, 2004, Vol.16(2), p.154-169,
http://dx.doi.org/10.1109/TKDE.2004.1269595.

[16] T. Ragunathan, R. P. Krishna, “Performance Enhancement of Read-
only Transactions Using Speculative Locking Protocol,” IRISS - Sixth
Annual Inter Research Institute Student Seminar in Computer Science,
Hyderabad, 2007.

[17] T. Ragunathan T, R. P. Krishna, “Improving the performance
of Read-only Transactions through Speculation,” Databases in
Networked Information System, 2007, Vol.4777, p.467-474,
http://dx.doi.org/10.1007/978-3-540-75512-8_15.

[18] A. Sasak-Okoń, M. Brzuszek, Speculative execution plan for multiple
query execution systems, Annales UMCS Informatica, 2010, Vol 10(2),
p.41-50,

[19] A. Sasak-Okoń, M.Brzuszek, The example of speculative execution
for multiple query execution systems, Metody Informatyki Stosowanej,
2011, Vol.3(28), p.157-166, ISSN 1898-5297.

[20] A. Sasak-Okoń, M. Brzuszek, Graph modeling as a support technique
for speculative computations in multiple query execution systems, Data
Analysis Selected Problems, 2013, p.55-68, ISBN 978-83-7518-602-4.

[21] TPC benchmarks, http://www.tpc.org/tpch/default.asp, 2015.
[22] G. Koutrika, A. Simitsis, Y. Ioannidis, “Conversational Databases: Ex-

plaining Structured Queries to Users”, 2009, Technical Report Stanford
InfoLab.

[23] G. Koutrika, A. Simitsis, Y. Ioannidis, “Explaining Structured Queries in
Natural Language.”, ICDE Conference Proceedings, Long Beach, 2010,
p. 333-344, http://dx.doi.org/10.1109/ICDE.2010.5447824.

ANNA SASAK-OKO’N: SPECULATIVE QUERY EXECUTION IN RELATIONAL DATABASES 1387

