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Abstract—The design of embedded vision systems carries a
difficult challenge regarding the access times of memories holding
image data for some particular cases of image treatments. This
paper studies the optimization challenge reflecting the efficient
operation of adhoc memory systems proposed by electronic de-
signers to alleviate this problem. New algorithms are proposed for
producing solutions to this 3-objective problem, and numerical
experiments are conducted on real-world data for validating their
efficiency.

I. INTRODUCTION

The design of embedded vision systems carries many chal-

lenges, one of which is the efficient access to the image

memory. An architectural solution was proposed by Mancini

and al. [1] in the form of a software tool that creates

an ad-hoc memory hierarchy for non-linear image accesses.

But operating this kind of systems is itself an optimization

challenge, involving 3 objectives reflecting 3 main electronic

design parameters. To the best of our knowledge, this problem

has not been studied before in the optimization literature.

The remaining of this paper is organized as follows. Af-

ter describing the Memory Management Optimization design

software, we explain the related optimization problematic set

by the efficient operation of the circuits produced by this tool,

and give a formal multi-objective mathematical model for this

problem, as well as several sub-problems of interest. We then

review the state of the art. After giving lower bounds for

the 3-objective problem, we analyze the complexity of some

of the mono-objective sub-problems. The description of new

approaches, including a simple heuristic and two algorithms,

is then given. Numerical experiments follow, which are con-

ducted on real-world data in order to validate their efficiency,

and a conclusion and perspectives section closes the paper.

II. EMBEDDED VISION SYSTEMS CONTEXT:

ARCHITECTURAL SOLUTION AND OPTIMIZATION

PROBLEMATIC

A. Memory Management Optimization Tool

Among modern-day electronic devices, embedded vision

systems such as picture and video cameras represent a specific

design challenge with respect to memory management. Image

sizes are measured in 100’s of kbs or even Mbs, while the

access times must be short enough to allow the quick handling

of the data. For example, a live video feed may have 30 frames

per second, meaning that the handling of one image (frame)

must take less than 1/30 s. But it is a well-known fact in

electronic memory design that access times grow with the

size of the memory to be accessed. Due to this fact, it is

not possible to reach the performance needed with the simple

use of memories. Something has to be added to improve the

access times.

For digital image treatments (also called kernels) that have

linear access patterns to the memory addresses, usual caches

as used for CPUs will solve this problem. But for non-linear

access patterns, the problem remains a big hurdle for the easy

and efficient design of kernel circuit designs. An illustration

of a non-linear kernel is given in Fig. 1.
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Fig. 1. Example of a non-linear kernel

To address this problematic, Mancini and al. [1] have

designed a software generator of memory hierarchies tailored

to one particular non-linear kernel. Their solution, called

Memory Management Optimization (MMOpt), takes as input

a non-linear kernel for which the memory hierarchy is to

be produced, such as the one shown in Fig. 1; it analyzes

its access patterns; it then designs a run-time behavior for

the whole resulting block Tile Processing Unit (TPU); and

it finally outputs the design of the TPU, together with the
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information needed to orchestrate its operational behavior.

We give some details about the architecture of the TPU, as

shown in Fig. 2. It is made of (a) a Prefetching Unit (PU)

that loads data from external memory to local buffers, and (b)

a Processing Engine (PE), that computes output data using

prefetched input ones.
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Fig. 2. Architecture template of the TPU

MMOpt computes and encodes into the TPU a schedule

of prefetches and a schedule of computations. Hence memory

accesses in the final system are deterministic (i.e. independent

of pixel values), and this is a requirement of the input kernel

for the whole MMOpt scheme to work out.

B. Optimization for MMOpt

When designing electronic circuits, some of the important

design criteria are the area of the circuit produced, since it is

directly related to production costs; the energy consumption,

which may be limited, and which conditions the battery life

for battery-powered devices; and the performance, which is

usually a design parameter reflecting reactivity, and fluidity in

the case of moving images.

TPUs produced by MMOpt embed schedules for the

prefetches of input tiles and computations of output tiles (see

Fig. 3).
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Fig. 3. Prefetches and computations schedules

The architecture of the TPU and those schedules will

impact those three design parameters in the following way:

the number of buffers of the TPU will account for most of

its area; the number of prefetches reflects the main part of

the energy consumption; and the performance is related to the

completion time of the whole prefetches-computation schedule

for the computation of one image.

Since MMOpt is a fully automatic electronic design soft-

ware, computing good schedules is both a necessity and an

opportunity for the circuit designers to deliver, with the help

of MMOpt, low-cost, low-energy and efficient TPUs.

III. THE 3-OBJECTIVE PROCESS SCHEDULING AND DATA

PREFETCHING PROBLEM

As you may know, the Integer Linear Programming for-

mulation is used in the operations research as a modeling

approach for the optimization problems. In this study, we have

chosen to formulate our optimization issue by an off-line, 3-

objective model with clearly delineated inputs and outputs,

which we now present. This multi-objective mathematical

formulation is a very flexible modeling approach that allows

a preciseness for dealing with many specific sub-problems.

A. Problem Statement and Assumptions

The main multi-objective optimization problem considered

in this paper is called 3-objective Process Scheduling and Data

Prefetching Problem (3-PSDPP). It involves the definition of

the number of buffers of the TPU, the scheduling of output

tiles computations, and the scheduling of input tiles prefetches,

while respecting a requirement constraint between prefetches

and computations.

The main assumptions that apply to the 3-PSDPP are the

following:

1) Input tile sizes are identical and each input tile fits

exactly into one buffer.

2) There is no distinction between buffers, i.e. any input

tile may be prefetched into any buffer.

3) All input (respectively output) tiles and the subset of

input tiles required to compute each output tile are

known in advance.

4) Only one input (output) tile can be prefetched (com-

puted) at a time.

5) The prefetch operations and the computation steps may

be carried out simultaneously.

6) Input (output) tile prefetch (respectively computation)

times are constant and identical.

B. Formulation for 3-PSDPP

The 3-PSDPP problem consists of finding an appropriate

computation sequence in which output tile will be computed,

and an associated prefetch sequence in which input tile will

be prefetched from the external memory to the buffers, that

simultaneously minimizes the number of prefetches, the num-

ber of buffers, and the completion time. We now describe

the input data of our problem 3-PSDPP, the expected output,

the constraints, and the 3 formal objectives reflecting the 3

electronic design parameters (Mathematical Formulation given

in Table I).

1) Inputs: a 3-PSDPP instance is represented by a 5-tuple

(X , Y , (Ry)y∈Y , α, β) where X is the set of input tiles to be

prefeteched, and Y is the set of output tiles to be computed.

Each output tile y requires its own set of input tiles, denoted
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TABLE I
MATHEMATICAL FORMULATION FOR 3-PSDPP

Inputs X= {1, . . . , X},Y= {1, . . . , Y }, where X,Y ∈ N
∗

Ry ⊆ X , ∀ y ∈ Y

α, β ∈ N
∗

Outputs (N,Z,∆), where N,Z,∆ ∈ N
∗

(pi)i∈N , where pi = (di, bi, ti)

(cj)j∈M, where cj = (sj , uj)

Constraints (1) ∀ y ∈Y, ∃ j ∈M / sj = y

(2) ∀ j ∈M, ∀ x ∈X , x ∈ Rsj ⇒

(∃ a ∈ {1, . . . , uj − α}, ∃ i ∈ N/ti = a, di = x &

(∀a′ ∈ {a+ α, . . . , uj + β − 1}, ∀i′ ∈ {i+ 1, . . . , N},

ti′ = a′ ⇒ bi′ 6= bi))

(3) ∀ i ∈N\{1}, ti ≥ ti−1 + α

(4) ∀ j ∈M\{1}, uj ≥ uj−1 + β

Objectives min Z,min N,min ∆

by Ry . Also, the duration of a prefetch step α, and that of a

computation step β, have to be given as input.

Remark 1. The set of input tiles (Ry)y∈Y must be present in

the buffers during the whole computation step of the tile y.

Remark 2. Each input tile x already prefetched earlier may

be reused if it is still present in the buffer.

2) Outputs: a feasible solution to such an instance is

defined by ((pi)i∈N , (cj)j∈M, Z, N , ∆).

• Configuration of the prefetched input tiles:

we denote by (pi)i∈N the prefetch sequence, where pi =
(di, bi, ti) encodes that input tile di is prefetched in the

buffer bi at the time ti.
• Configuration of the computed output tiles:

we denote by (cj)j∈M the computation sequence, where

cj = (sj , uj) encodes that output tile sj is to be computed

at the time uj .

• The values for the three criteria (Z, N , ∆):

we denote by Z the number of buffers; N is the total

number of prefetched input tiles; and ∆ is the completion

time, meaning the total time it takes for the whole

operation of the TPU from the beginning of the first

prefetch to the end of the last computation of one full

image.

3) Constraints: the first constraint (1) on solutions is that

for each output tile y, there exists a computation step j in

which this output tile is computed. The second and main

constraint (2) ensures that all the input tiles Ry required

by y have to be prefetched from the external memory to

the internal storage area (buffers) before the start date uj of

its associated computation step, and will not be overwritten

until its end date. Input tiles already prefetched earlier can be

reused, provided they have not been overwritten. Constraints

(3) and (4) guarantee that different input (output) tiles cannot

be pre-fetched (computed) simultaneously.

4) Objectives: in the formulation above, three objectives

have to be minimized: the number of prefetches N reflects the

main part of the energy consumption; the number of buffers Z
of the TPU will account for most of its area, and is related to

cost; and the completion time ∆ accounts for the performance

of the TPU.

C. Sub-Problems of 3-PSDPP

From this multi-objective problem 3-PSDPP, we derive sev-

eral mono and bi-objective sub-problems. The mono-objective

sub-problems we consider are Minimum Buffers of 3-PSDPP

(MB-PSDPP), in which the number of buffers is to be min-

imized; Minimum Prefetches of 3-PSDPP (MP-PSDPP) in

which the number of prefetches is to be minimized; and

Minimum Completion Time of 3-PSDPP (MCT-PSDPP), in

which the completion time is to be minimized.
For the remaining sub-problems to be presented, the number

of buffers Z will be fixed as input data. Hence, we consider the

Prefetching and Scheduling Problem (PSP), where the number

of buffers is fixed as input, and the number of prefetches N
is to be minimized. In addition, the variant of PSP, where the

computation sequence is given as part of the input, is called

the Data Prefetching Problem (DPP).
We will also consider the bi-objective sub-problem of 3-

PSDPP, 2-PSDPP, where the number of buffers Z is fixed,

and both N and ∆ are to be minimized.

D. Related Work

In the study by Mancini and al. [2], two algorithms for

optimizing the running of the TPU produced by the MMOpt

tool are proposed.
The first algorithm is M1, for which both the number of

prefetches N and the completion time ∆ are minimized. The

second one, called M2, aims at minimizing both the number

of prefetches N and the number of buffers Z.
The algorithm M1 proceeds in two steps which are, re-

spectively, Computations and Prefetches. Furthermore, M2

comprises three steps, the first two of which are those of M1.

The third step is Delay Computations.
For both algorithms M1 and M2, the authors [2] add a

Destinations step for determining the sequence of destination

buffers.
These different steps are outlined in Fig. 4.
1) Computations: this step encodes the order in which a

batch of output tiles has to be successively computed, one at

a time. The traffic to the external memory is then minimized

by optimizing the obtained scheduling.
To construct the computation sequence, the authors [2] solve

an instance of the Asymmetric Traveling Salesman Problem

(ATSP) to find a Hamiltonian path in the complete directed

graph
−→
G whose vertices are the set of output tiles, and whose

arcs are weighted by ϕ(k, l), where (k, l) is a pair of output

tiles, in which the output tile k will be computed before

the output tile l. The function ϕ(k, l) defines the number of

additional input tiles to be prefetched for computing the output

tile l, when all input tiles shared between k and l are already

prefetched.
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Fig. 4. Flowchart for algorithms M1 and M2

2) Prefetches: in this step, the authors [2] determine the

schedule of prefetches associated to the computation sequence

given by step 1. This schedule encodes which input tile should

be prefetched from the external memory to the buffers at

each moment. In fact, in parallel to each computation step,

they prefetch the additional input tiles needed for the next

computation.

3) Delay Computations: in this step, in order to reduce

buffer usage, the authors [2] simply delay some computations

by inserting fake computations when necessary. New trade-

offs between the embedded memory area and the computing

time can be then reached.

4) Destinations: this step simply consists in deciding in

which buffer to place each prefetched input tile.

To the best of our knowledge, the 3-PSDPP problem has

not been studied before in the operations research literature.

We now relate some sub-problems of the 3-PSDPP problem

to similar problems in the literature. Thus, we focus here on

the uniform Tool Switching Problem (ToSP) arising in the

flexible manufacturing context. The ToSP consists of finding

an appropriate job sequence in which jobs will be executed,

and an associated sequence of tool switches that minimizes the

number of tool loading/unloading operations in the tool mag-

azine of a single tool-switching machine. The general ToSP

was first considered by Tang and Denardo [3]. They showed

that the ToSP can be solved in polynomial time for a fixed job

sequence, Tooling Problem (TP), using the Keep Tools Needed

Soonest (KTNS) algorithm. On the other hand, when the job

sequence is to be determined, Crama and al. showed that the

ToSP is already NP-Hard for any fixed tool magazine capacity

larger than or equal to 2 [4]. Different optimization techniques,

including exact and heuristics methods, have been applied to

its resolution (see Bard [5]; Privault and Finke [6]; Laporte

and al. [7]; Konak and al. [8]; Amaya and al. [9]; Catanzaro

and al. [10]).

IV. MODELS ANALYSIS

For validating the efficiency of the proposed approaches, we

develop three lower bounds lbN , lbZ , and lb∆ for the differ-

ent optimization criteria (N,Z,∆). We then give complexity

results for some of the mono-objective sub-problems of 3-

PSDPP problem described in Section III-C.

A. Lower Bounds

Proposition 1. X − |Ω| is a lower bound on the number of

prefetches for the 3-PSDPP, where Ω denotes the set of input

tiles which are not required by any output tile.

Proof: For any solution to some given instance of 3-

PSDPP, all input tiles that are required at least once for the

computation of an output tile have to be prefetched at least

once to some buffer. Hence the total number of prefetches

cannot be less than X − |Ω|.

Proposition 2. max
y∈Y
|Ry| is a lower bound on the number of

buffers for the 3-PSDPP.

Proof: Fix an instance of 3-PSDPP, and a feasible solution

for that instance. When an output tile is computed, all the

required input tiles have to be present in the buffers. Hence

max
y∈Y
|Ry| is a lower bound for the number of buffers in the

solution.

Proposition 3. lb1 = α ∗ X ′ + β and lb2 = α + β ∗ Y are

lower bounds on the completion time ∆ for the 3-PSDPP.

Proof: Fix an instance of 3-PSDPP, and a feasible solution

for that instance. Since all input tiles have to be loaded before

the last computation starts, the completion time is at least α ∗
X ′ (for the prefetches) plus β (for the computation of the last

output tile).

Likewise, all output tiles have to be computed, and no

computation can start before a first input tile has been

prefetched. Hence the completion time is lower bounded by

β ∗ Y (computation time for all output tiles) plus α (prefetch

time for the first prefetch).

Thus, the completion time ∆ is lower bounded by the

maximum lb1 and lb2 (lb∆ = max{lb1, lb2}).

B. Complexity Analysis

To prove that MB-PSDPP can be solved in polynomial time,

we give an algorithm for which the number of buffers Z equals

its lower bound (Zmin = lbZ). In this algorithm, we first fix the

number of buffers Z to max
y∈Y
|Ry|. Then, for each output tile,

we prefetch all its required input tiles into the Z buffers before
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the corresponding computation step starts. The idea here is that

a prefetch step and a computation step are not carried out in

parallel.

To prove also that MP-PSDPP is solvable in polynomial

time, we give another algorithm for which the number of

prefetches N equals its lower bound (Nmin = lbN ). In this

method, we first prefetch successively all the input tiles in

X ′, where X ′ = X\Ω and Ω denotes the set of the input

tiles which are not required by any output tile. Then, when

the prefetch steps are finished, all output tiles are successively

computed.

For the MCT-PSDPP sub-problem, we have not yet been

able to determine its complexity.

We now examine the two sub-problems of 3-PSDPP where

N is to be minimized, and Z is fixed as input, namely PSP

and DPP. We then prove the equivalence between PSP and

the tool switching problem ToSP. In the description of the

PSP problem, both input and output tiles (X , Y) are regarded

as ToSP data (tools, jobs). The incidence matrix Tools×Jobs

can then be regarded as the requirements of input tiles needed

to compute all the output tiles (Ry)y∈Y . The fixed number of

buffers Z is the analogue of the capacity of the tool magazine.

In addition, finding a computation sequence for minimizing

the total number of prefetches corresponds to finding a job

sequence for minimizing the total number of tools loadings.

Thus, PSP is NP-Complete. When the computation sequence

is given as input data, the same polynomial reduction works

to prove the equivalence of DPP and Tooling Problem (TP).

Hence, DPP is polynomially solvable.

This equivalence allows us to adapt the KTNS algorithm,

as described by Tang and Denardo for solving the TP [3],

to give an optimal solution for DPP. We call this adaptation

KTNS Adapted to DPP (KAD). On the other hand, in the case

of PSP, we developed an algorithm, named KTNS Adapted to

PSP (KAP), to solve it.

We will also consider the bi-objective problem 2-PSDPP

where the number of buffers Z is fixed, and both N and ∆ are

to be minimized. For solving the 2-PSDPP sub-problem, we

developed a new solution approach called Shifted Prefetches

for bi-PSDPP (SPbP).

To introduce both KAP and SPbP algorithms, respectively,

for PSP and 2-PSDPP sub-problems of 3-PSDPP, we now

present the specific adaptation KAD that it is an intermediate

step in both KAP and SPbP algorithms.

V. SOLUTION METHODS

A. Constructive Heuristic

We propose now a constructive heuristic called H1 for

solving the 3-PSDPP, in which the number of buffers Z equals

its number of required input tiles X − |Ω| and both N and ∆
are to be minimized. In this method, the number of prefetches

is optimum and we try to get the best possible completion

time.

This algorithm proceeds in three phases. For each input tile

x, we calculate its number of occurrences Oc(x) in (Ry)y∈Y .

Then, the input tiles are sequenced in their decreasing order of

Oc(x), ∀x ∈ X . Finally, for each computation is determined

when it can be scheduled at the earliest. The corresponding

date is the end of the loading of the latest prefeteched tile

among its required input tiles. Computations are scheduled

greedily in this order, while making sure to respect these "at

earliest" dates.

B. KTNS Adapted to DPP: KAD

We present an adaptation of the KTNS algorithm for

solving the mono-objective sub-problem DPP (described in

Section III-C). The KAD adaptation will be the second step

of both KAP and SPbP algorithms presented in the following

subsections.

We first restate the KTNS policy established by Tang and

Denardo [3]. In our case, we can state the KTNS policy in

this way:

1) At any instant, no input tile is prefetched unless it is

required by the next output tile.

2) If an input tile must be prefetched, the input tiles that

are kept (not removed) are those needed the soonest.

The pseudo-code of the KAD algorithm can be summarized

as follows:

Algorithm 1 KAD

Input: X , Y , (Ry)y∈Y , (sj)j∈M, Z, α, β
Output: (pi)i∈N , N , ∆

1: M ← Incidence_Matrix (X , Y , (Ry)y∈Y )

2: P ← Permute (M , (sj)j∈M)

3: P ′ ← Flip_Blocks (P , Z)

4: N, (di)i∈N ← Prefetches (P ′)

5: (bi)i∈N ← Destinations ((di)i∈N , P , Z)

6: (ti)i∈N ← Prefetches_StartDate ((di)i∈N , α, β)

7: (uj)j∈M ← Computations_StartDate ((sj)j∈M, (ti)i∈N ,

α, β)

8: ∆ ← Completion_Time ((uj)j∈M, β)

We now give some explanations about the pseudo-code.

Given the computation sequence sj , a number of buffers Z,

and an X × Y input tile-output tile matrix M , where Mxy is

1 if output tile y requires x (x ∈ (Ry)y∈Y ) and 0 otherwise,

we first determine the new incidence matrix P by permuting

the columns of M according to the (sj)j∈M.

In the second step, we determine the set of 0-blocks of P ,

as shown in Fig. 5. A 0-block is defined as a maximal subset

of consecutive zeroes in a row of P . Intuitively, a 0-block is a

maximal time interval which input tile i is not needed, but it

is needed before and after this interval. Assume now that the

0-blocks of P have been ordered in increasing order of the

index of their last column in P , the routine Flip_Blocks (P ,

Z) flips to 1 as many 0-blocks of P as possible, as long as

each column j(j = 1, . . . , Y ) of P contains no more than Z
ones (Z = 2 in this example), as shown in Fig. 6.

The resulting matrix is denoted by P ′. Then, the routine

Prefetches(P ′) determines the total number of prefetches N ,

by counting all the blocks of 1 in P ′. A 1-block can be defined
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Fig. 6. KTNS-Final Matrix

as a maximal subset of consecutive ones in a row of P ′, for

which an input tile i is not needed before and after this interval.

To construct the prefetch sequence (di)i∈N , we affect,

for each output tile (column j in matrix P ′), the set of

associated input tiles (index of 1-blocks starting in column j)

to be prefetched before the corresponding computation step.

We determine then the associated sequence of destination

buffers (di)i∈N , by affecting for each prefetched input tile

a free buffer from the Z buffers. After that, we construct

the associated schedules of prefetches-computations, in which

the input tiles are prefetched one after the other. The same

applies for computing the output tiles sequence. In the result-

ing prefetches-computations schedules, a prefetch step and a

computation step are not carried out in parallel. Indeed, each

computation step begins on the date where all its required input

tiles have been prefetched. The routine Prefetches_StartDate()

determines the start dates of the prefetches schedules. Sim-

ilarly, the routine Computations_StartDate() determines the

start dates of the computations schedules. The routine Com-

pletion_Time() computes then the completion time ∆.

C. Algorithm KAP for PSP

We have developed the KAP algorithm for solving the PSP

sub-problem of 3-PSDPP, in which the number of buffers Z
is fixed (Z ≥ max

y∈Y
|Ry|) and the number of prefetches N is

to be minimized. In contrast to DPP, the order in which the

computations have to be carried out is not given as input, and

has to be determined.

The KAP algorithm proceeds in two steps as follows:

1) Step1-Find a Computation Sequence (lines 1–3 of

pseudo-code): in this step, we determine the computation

sequence by solving the same instance of an ATSP as step 1

of both algorithms M1 and M2 (see Section III-D) [2].

2) Step2-KAD Algorithm (line 4 of pseudo-code): in second

step, we resolve the DPP (described in Section V-B), by the

KAD algorithm in order to determine the schedules of both

the prefetches and computations with an optimal number of

prefetches N .

The pseudo-code of the KAP algorithm can be summarized

as follows:

D. Algorithm SPbP for 2-PSDPP

We have developed also the SPbP algorithm for solving the

2-PSDPP sub-problem of 3-PSDPP, in which the number of

buffers Z is fixed (Z ≥ max
y∈Y
|Ry|) and both the number of

prefetches N and the completion time ∆ are to be simultane-

ously minimized.

The SPbP algorithm proceeds in three steps as follows:

Algorithm 2 KAP

Input: X , Y , (Ry)y∈Y , Z, α, β
Output: (pi)i∈N , (cj)j∈M, N , ∆

1: Let
−→
G= (Y,A) be a complete directed graph on Y

2: Let ϕ: A → N
−→
kl 7→ |Rl\Rk|

3: (sj)j∈M ← Short_Hamiltonian_Cycle (
−→
G , ϕ)

4: N , (di)i∈N , (bi)i∈N , (ti)i∈N , (uj)j∈M, ∆ ← KAD (X ,

Y , (Ry)y∈Y , (sj)j∈M, Z, α, β)

1) Step1-Find a Computation Sequence (line 1 of pseudo-

code): this step is the first one of KAP algorithm described

in Section V-C.

2) Step2-KAD Algorithm (lines 2 of pseudo-code): this

step is the second one of the KAP algorithm described in

Section V-C

We give now a detailed description of the third step “Shift-

ing Prefetches”.

3) Step3-“Shifting Prefetches” (lines 3–9 of pseudo-code):

In the resulting schedules of prefetches-computations, we ap-

ply the idea of “Shifting Prefetches”, in which the completion

time ∆ is to be minimized. The originality of this step is to

allow an overlap between the prefetch and computation steps.

In this step, we shift in the prefetches schedule those that can

be carried out in parallel with the previous computation step,

by checking that no required input tiles of the output tile in

this step were overwritten until its end date.

The pseudo-code of the SPbP algorithm can be summarized

as follows:

Algorithm 3 SPbP

Input: X , Y , (Ry)y∈Y , α, β, Z
Output: (pi)i∈N , (cj)j∈M, N , ∆

1: (sj)j∈M ← Computation_Sequence(X , Y , (Ry)y∈Y )

2: N , (di)i∈N , (bi)i∈N , (ti)i∈N , (uj)j∈M, ∆ ← KAD (X ,

Y , (Ry)y∈Y , (sj)j∈M, α, β, Z)

3: for j = 2 To M do

4: Prefetch[j] ← {i ∈ N/P ′[j][di]− P ′[j − 1][di] = 1}
5: Buffer[j] ← {bi/i ∈ Prefetch[j]}
6: Advanced_Prefetch[j] ←

{l/l ∈ Prefetch[j]&Buffer[j][l] /∈ bi(Rsj−1
)}

7: Not_Advanced_Prefetch[j] ←
Prefetch[j]\Advanced_Prefetch[j]

8: end for

9: (ti)i∈N , (uj)j∈M, ∆ ←
Schedule_Prefetches_Computations

((sj)j∈M,Advanced_Prefetch[],Not_Advanced_Prefetch[],

α, β)

E. Solutions for 3-PSDPP

Though our 3-PSDPP is a multi-objective optimization

problem, we have developed two approaches. The first one
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is the KAP algorithm for solving the mono-objective sub-

problem PSP, where the number of buffers Z is fixed as input,

and the number of prefetches N is to be minimized. The

second one is the SPbP algorithm for solving the 2-PSDPP

problem, in which the number of buffers Z is fixed, and both

N and ∆ are to be minimized.

The different steps of both both KAP and SPbP algorithms

are outlined in Fig. 7. As shown in this figure, the KAP

algorithm represents the two first steps of the SPbP algorithm.

Start

Inputs: X ,Y , (Ry)y∈Y , Z, α, β

Step1: Find a Computation Sequence

(sj)j∈M

Step2: KTNS Adapted to DPP (KAD)

N , (di)i∈N , (bi)i∈N , (ti)i∈N , (uj)j∈M, ∆

Step3: Shifting Prefetches

(di)i∈N , (bi)i∈N , (ti)i∈N , (uj)j∈M, ∆

End

KAP

SPbP

Fig. 7. Flowchart of KAP and SPbP algorithms

Therefore, we can use both KAP and SPbP as two methods

for producing solutions to the main multi-objective optimiza-

tion problem 3-PSDPP. By varying the number of buffers

Z, both KAP and SPbP algorithms give a set of different

solutions, in order to let the circuit designer pick his favorite

compromise solution. It is an asset of these two methods that

the circuit designer may choose his solution.

F. Example

In order to illustrate the process of both KAP and SPbP

algorithms for solving two sub-problems of 3-PSDPP, where

z = 4 buffers, let us consider the input data given in Fig. 8 for

the case where x = 5 input tiles, y = 3 output tiles, α = 2,

and β = 3 time units.

We first determine the computation sequence sj =
Y2, Y1, Y3, by finding a short Hamiltonian cycle in the graph
−→
G (see Fig. 9).

By running the KAP algorithm on our example, Fig. 10

gives the corresponding prefetches and computations sched-

ules together with values of the outputs.

M =













Y1 Y2 Y3

X1 0 1 1
X2 1 0 1
X3 1 1 0
X4 1 1 1
X5 1 0 0













Fig. 8. X × Y Matrix
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bi
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(ti,uj)
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Fig. 10. KAP Schedules

Finally, we apply the “Shifting Prefetches” for minimizing

the completion time ∆. The Fig. 11 shows that the completion

time ∆ is reduced by 2 units of time.

Y2

X1

1 12 17
Time

3 5 7 10 15

X3 X4

Z1 Z2 Z3

X2 X5

Z4 Z1

Y1

X1

Z2

Y3

20

di

bi

sj

(ti,uj)

{
{

{

TotalPPTimeP

Δ
ShiftedPPrefetch

Fig. 11. SPbP Schedules

VI. EXPERIMENTS AND RESULTS

In order to illustrate the practicability and efficiency of both

KAP and SPbP algorithms, and the heuristic H1, we use a set

of 5 benchmarks from real-life non-linear image processing

kernels already used by Mancini and al. [1].

A. Data Sets

Table II shows the characteristics of the test instances,

together with the values for X (number of input tiles) and

Y (number of output tiles to be computed).

As summarized in Table II, the benchmarks are variations

of four kernels (fisheye, polar, fd resize, and fd haar) for which

the input data structure (multi-resolution (an)isotropic mipmap

input data) is modified. In fact, the first three kernels represent

geometric non-linear transformations [11], [12]. The fourth

kernel creates a pyramidal multi-resolution image [13]. The

last one represents a kernel of a face detection application

based on haar features [13]. The number of the input image
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tiles varies between 350 and 7000 input tiles, and the number

of the output tiles varies between 150 and 1200 tiles.

TABLE II
PARAMETERS VALUES OF DATA SETS

No Kernel Input data type X Y

1 Fisheye mipmap isotropic 352 158

2 Fisheye mipmap anisotropic 704 158

3 Polar mipmap anisotropic 4225 112

4 Fd Resize mipmap isotropic 1280 1186

5 Fd Haar pyramidal integral image 7040 428

Table III shows for each kernel the values of different

lower bounds (lbZ , lbN , lb1, lb2, lb∆), which are developed in

Section IV-A. These lower bounds allow us to evaluate the

performances of both proposed approaches KAP and SPbP.

TABLE III
LOWER BOUNDS FOR N , Z , AND ∆

Kernel No lbZ lbN lb1 lb2 lb∆

1 13 224 452 477 477

2 21 360 724 477 724

3 20 244 492 339 492

4 13 429 862 3561 3561

5 96 2272 4548 1287 4548

B. Numerical Results

This section presents an experimental analysis of the per-

formance of both KAP and SPbP algorithms, respectively

the heuristic H1. The algorithms just described were coded

in Python, except the ATSP part which was re-encoded as

a TSP, and run through Concorde’s Chained Lin-Kernighan

implementation [14]. Tests were run on a computer powered

by an Intel Core i5 processor with 4 GB of RAM. All our

tests were carried out for the case where α = 2 and β = 3
time units.

Table IV summarizes the numerical results for both KAP

and SPbP algorithms, where the number of buffers is fixed

to Z1, respectively to Z2, and those of the algorithms M1,

and M2 on different data sets described in Table II. For the 5

kernels (given in line 1), the running time of both KAP and

SPbP algorithms is in the order of a few minutes. The third

line gives the number of prefetches N , the number of buffers

Z, and the completion time ∆ for the algorithms M1, and M2

(line 2). For both cases Z1, and Z2 (line 3), the N and ∆
achieved by the KAP algorithm are then given in line 5. The

sixth line (Gain 1) shows the gains as measured relatively to

the lower bounds (lbN and lb∆) of KAP algorithm, for both

N and ∆ relatively to those achieved by algorithms M1, and

M2. Similarly, both N and ∆ achieved by the SPbP algorithm

are then given in line 7. The eighth line (Gain 2) shows the

gains relative to the lower bounds (lbN and lb∆) of SPbP

algorithm, for both N and ∆ relatively to those achieved by

algorithms M1, and M2. The three last lines give for each

of the algorithms M1, M2, KAP, and SPbP, the ratio of the

achieved completion time ∆ to the lower bound lb∆ (given

in Table III). The column Average provides the average gains

(%) for all the kernels in the case of Z1, respectively, of Z2.
As illustrated in Table IV, the fixed Z1 is larger than its lbZ ,

for which the algorithm M1 reaches the maximum number of

buffers and the completion time is minimized. Whereas, Z2

gives the minimum number of buffers (Z2 equals its lower

bound lbZ).
By running the KAP algorithm, the traffic to the external

memory is reduced with an average reduction of 57.5%

(Z1), respectively, of 36.8% (Z2). In contrast, the completion

time is increased, with an average increase of 14.9% (Z1),

respectively, of 22%(Z2). This is due to the absence of overlap

between the prefetches and computations in the schedules

produced by the KAP algorithm.
In addition, due to the reuse of the KAP algorithm as a

subroutine of the SPbP algorithm, the traffic to the external

memory is reduced with the same average reduction of 57.5%

(Z1), respectively, of 36.8% (Z2). In contrast to KAP, mini-

mizing ∆ by SPbP leads to a 37.1% (Z1), respectively, to a

25% (Z2) decrease in average of the completion time.
In the same way, a comparison between the completion time

∆ achieved by each of the algorithms M1, M2, KAP, and

SPbP and the lower bound lb∆, is considered. A comparison

against the lower bound provides a measure of deviation from

optimality. It is used as a performance indicator, and calculated

by taking the ratio of ∆ to lb∆. As shown in Table IV, for both

cases Z1, and Z2, the completion time ∆ of SPbP algorithm is

in average more closer to the value of lb∆ than the different

values given by each of the algorithms M1, M2, and KAP.

It is at most twice the value of lb∆. This is explained by

inserting “Fake Computation” sometimes to stop processing

or prefetching in order to optimize the use of resources. This

means also that the SPbP algorithm gives a better completion

time ∆ than the other methods.
In summary, these numerical experiments show that the

schedules produced by both KAP and SPbP algorithms, for

a given number of buffers Z, have the optimal number

of prefetches N . In contrast to KAP, SPbP gives the best

completion time ∆. Hence, these results are numerical evi-

dence validating the efficiency of our proposed approaches as

compared to the one currently in use in the MMOpt tool.
In the same way, Table V shows the completion time ∆

of the heuristic method H1 for all the non-linear kernels

given in Table II. Thus, a comparison between the completion

time ∆ obtained by method H1 and the lower bound lb∆, is

considered. It is calculated by taking the ratio of ∆ to lb∆.

TABLE V
COMPARISON BETWEEN ∆ OF H1 AND lb∆

Kernel No 1 2 3 4 5

∆ (H1) 547 736 551 3658 4551

∆ (H1) / lb∆ 1.14 1.01 1.11 1.02 1.00

As shown in Table V, the completion time ∆ of H1 is
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TABLE IV
NUMERICAL RESULTS OF M1 , M2 , KAP, AND SPBP

Kernel No 1 2 3 4 5 Average (Z1) % Average (Z2) %

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

MMOpt

Z 20 13 29 21 28 20 18 13 139 96

N 395 395 640 640 478 478 1710 1710 3640 3640

∆ 907 976 1341 1457 1021 1081 5075 5129 7899 8070

Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2

KAP (Fixed Z)
N 298 322 457 517 353 405 1283 1458 2560 2997

∆ 1071 1119 1389 1509 1043 1147 6125 6475 6405 7279

Gain 1
N 56.7 42.6 65.3 43.9 53.4 31.1 33.3 19.6 78.9 47.0 57.5 36.8

∆ -38.1 -28.6 -7.7 -7.0 -4.1 -11.2 -69.3 -85.8 44.5 22.4 -14.9 -22.0

SPbP (Fixed Z)
N 298 322 457 517 353 405 1283 1458 2560 2997

∆ 795 871 1113 1226 851 947 4629 4916 5849 6789

Gain 2
N 56.7 42.6 65.3 43.9 53.4 31.1 33.3 19.6 78.9 47.0 57.5 36.8

∆ 26.0 21.0 36.9 31.5 32.1 22.7 29.4 13.5 61.1 36.3 37.1 25.0

∆ (MMOpt) / lb∆ 1.90 2.04 1.85 2.01 2.07 2.19 1.42 1.44 1.73 1.77 1.79 1.89

∆ (KAP) / lb∆ 2.24 2.34 1.91 2.08 2.11 2.33 1.72 1.81 1.40 1.60 1.87 2.03

∆ (SPbP) / lb∆ 1.66 1.82 1.53 1.69 1.72 1.92 1.29 1.38 1.28 1.49 1.49 1.66

very closer to the value of lb∆. This means that the lb∆ is a

good lower bound on the completion time ∆ for the 3-PSDPP

problem.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the multi-objective optimization

problem 3-PSDPP, that arises in the context of optimizing the

memory hierarchy of non-linear kernels in order to enhance

some electronic stakes (energy consumption, real time, and

cost) in the MMOpt tool. We described some of its mono-

and bi-objective variants, proved some lower bounds, and

analyzed the complexity of some of them. We then presented

a constructive heuristic to solve the 3-PSDPP problem, the

KAP algorithm to solve the PSP sub-problem, and the SPbP

algorithm to solve the 2-PSDPP sub-problem. The results on

the same real-world data set as used by Mancini and al. [1]

show a very significant improvement and reduce the amount of

transferred data up to 30% and a reduction of the computing

time up to 15%.

An interesting area for further research may be the improve-

ment of the proposed methods, and the development of other

approaches based on constructive heuristics and exact methods

that would provide good solutions for other 3-PSDPP sub-

problems. It would also seem interesting to use exact methods

such as ILP for solving the NP-Hard variant of the PSP sub-

problem. Additional research is also required to determine the

complexity of the mono-objective sub-problem MCT-PSDPP,

in which the completion time ∆ is to be minimized.
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