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Abstract—In combinatorial optimization, the goal is to find the
optimal object from a finite set. Since such problems are hard
to be solved, usually some metaheuristics is applied. One of the
most successful techniques for a number of classes of problems
is Ant Colony Optimization (ACO). Some start strategies can be
applied, to the ACO algorithms, to improve their performance.
Here, the InterCriteria Analysis (ICrA) is applied to the ACO
algorithm. On the basis of the ICrA, we examine and analyse
the ACO performance according to the different start strategies.

I. INTRODUCTION

THE IDEA for the ACO arises fro the way that real ants

look for food. The ACO algorithm was proposed, by

Marco Dorigo, more than 20 years [6]. Later, several variants

and supplements were added, to improve its performance [6].

In [7], various ACO start strategies, which lead to finding

better solutions, were proposed.

The InterCriteria Analysis (ICrA) is aiming at going beyond

the nature of the criteria involved in a process of evaluation of

multiple objects against multiple criteria, and, thus to discover

some dependencies between the ICrA criteria themselves [2].

Initially, the ICrA has been applied in temporal, threshold and

trends analyses of an economic case-study of EU member

states’ competitiveness [4]. Further, the ICrA has been used

to discover dependencies between parameters in mathematical

models and performance criteria for metaheuristics such as

GAs and ACO [1], [9]. Here, the ICrA is applied for analysis

of an ACO algorithm, with various start strategies. The Multi-

ple Knapsack Problem (MKP) is used as a test problem. The

goal is to analyze the dependence between start strategies and

algorithm performance, and correlations between strategies.

II. ACO ALGORITHM WITH START STRATEGIES

Let us consider the ACO algorithm applied to the solution of

a problem represented by a graph. Here, the feasible solutions

are represented by path in that graph. The solution process

“compares the length” of available paths. In every iteration,

an ant starts from a random node and creates a solution. If the

last selected node is u, the ant selects the next node (v), to

be included in the path, by applying probabilistic rule called

transition probability.

puv = ταuvη
β
uv/





∑

(u,w)∈ES :w 6⊂X

(

ταuwη
β
uw

)



 , (1)

Here, α and β are transition probability parameters, τ ∈ (0, 1)
is a numerical information called pheromone, and η is an

heuristic information related to the problem. At the beginning,

the value of the pheromone across elements is the same. In

each iteration, we update the pheromone, on selected elements

of the graph, according to the value of the objective func-

tion (elements belonging to the better solutions receive more

pheromone than others). The random start is very important

for good performance of the ACO algorithm, but for some

classes of problems (e.g. subset problems), selection of the

starting node can be significant. For better managing the search

process we include semi-random start of the ants. Here, the

nodes are divided into several subsets. An estimation of how

good and how bad is to start from some subset is introduced

according the number of good and bad solutions that started

from this subset. Assume that Dj is the estimation of how

good it is to start from subset j, and Ej is the estimation how

bad it is to start from subset j [7].

Dj(i) = φ.Dj(i− 1) + (1− φ).Fj(i), (2)

Ej(i) = φ.Ej(i− 1) + (1− φ).Gj(i), (3)

where i ≥ 1 is the current process iteration and, for each

j (1 ≤ j ≤ N):

Fj(i) =







fj,A/nj if nj 6= 0

Fj(i− 1) otherwise

, (4)

Gj(i) =







gj,B/nj if nj 6= 0

Gj(i− 1) otherwise

, (5)

fj,A is the number of the solutions among the best A%, gj,B
is the number of the solutions among the worst B%, where

A+B ≤ 100, i ≥ 2 and
∑N

j=1 nj = n, where nj (1 ≤ j ≤ N)
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is the number of solutions obtained by ants starting from nodes

subset j, n is the number of ants. Here, initial values of the

weight coefficients are: Dj(1) = 1 and Ej(1) = 0. Parameter

φ, 0 ≤ φ ≤ 1, shows the weight of the information from the

previous iterations and from the last iteration. Several start

strategies and combinations between them are proposed. If

thresholds for good estimation D and for bad estimation E
are fixed, the proposed start strategies are as follows [7]:

1) If Ej(i)/Dj(i) > E then, for current iteration, the subset

j is forbidden. The starting node is randomly chosen from

{j |j is not forbidden};

2) If Ej(i)/Dj(i) > E then, for current simulation, the

subset j is forbidden. The starting node is randomly

chosen from {j |j is not forbidden};

3) If Ej(i)/Dj(i) > E then, for K1 consecutive iterations,

the subset j is forbidden. The starting node is randomly

chosen from {j |j is not forbidden};

4) Let r1 ∈ [ 12 , 1) and r2 ∈ [0, 1] to be random numbers.

If r2 > r1, a node from subset {j |Dj(i) > D}
is randomly chosen, otherwise a node from the not

forbidden subsets is randomly chosen. r1 is chosen and

fixed at the beginning.

5) Let r1 ∈ [ 12 , 1) and r2 ∈ [0, 1] to be random numbers.

If r2 > r1, a node from subset {j |Dj(i) > D}
is randomly chosen, otherwise a node from the not

forbidden subsets is randomly chosen. r1 is chosen at the

beginning and increase with r3 every iteration, r3 ∈ (0, 1)
is a parameter.

Here K1,K1 ∈ [0, number of iterations] is a parameter.

We can apply one of start strategies, or combine some of

them. Strategies 1, 2, and 3 can be combined with strategies 4

and 5. When an ant chooses a start node, first applied strategy

is one of 1, 2, or 3, after that, strategy 5 or 6 is used. Thus,

together with a completely random start, there are 12 strategies

that can be applied (see, also [7]).

III. MULTIPLE KNAPSACK PROBLEM

The start node selection is very important for the sub-

set problems, because only some nodes of the graph of

the problem belong to the solution. The Multiple Knapsack

Problem (MKP) is a representative of the class of subset

problems. It also arises as a sub-problem in a group of more

complex problems. Some of important applications that can

be formulated as a MKP are cargo loading problems, cutting

stock, bin-packing, budget control and financial management.

The MKP is also used in a fault tolerance problem [11].

Authors of [5] designed a public cryptography scheme whose

security is based on the difficulty of solving the MKP. In [8]

two-processor scheduling problems are proposed to be solved

as a MKP. Other applications include industrial management,

naval, aerospace, computational complexity theory, etc. The

MKP can be formulated as follows:

max
∑n

j=1 pjxj

subject to
∑n

j=1 rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(6)

xj =

{

1 iff the object j is chosen,

0 otherwise.

where m are the resources (the knapsacks), n are the objects,

pj is a profit of every object j, cj (knapsack capacity) is the re-

source budget, rij is the consumption of resource i by object j.

The goal is maximizing the sum of profits for a limited budget.

There are m constraints in this problem, so the MKP is also

called m-dimensional knapsack problem. Let

I = {1, . . . ,m}, J = {1, . . . , n},

with ci ≥ 0 for all i ∈ I . A well-stated MKP assumes that

pj > 0, rij ≤ ci ≤
∑n

j=1 rij for all i ∈ I, j ∈ J . Note that

the [rij ]m×n matrix and the [ci]m vector are both non-negative.

IV. INTERCRITERIA ANALYSIS

Let us be given an Index Matrix (IM, [3]) whose index

sets for rows consist of the names of the criteria and for

columns of objects. We will obtain an IM with index sets

consisting of names of the criteria both for rows and for

columns. Elements of this IM correspond to the degrees of

“agreement” and degrees of “disagreement” of the considered

criteria. The following two points are assumed [10]. (1) All

criteria provide an evaluation for all objects and all these

evaluations are available. (2) All the evaluations of a given

criteria can be compared among themselves. Further, by O, we

denote the set of all objects O1, O2, . . . , On being evaluated,

and by C(O) the set of values assigned by a given criteria C
to the objects. Let xi = C(Oi). Then the following set can be

defined:

C∗(O)
def
= {〈xi, xj〉|i 6= j& 〈xi, xj〉 ∈ C(O)× C(O)}.

In order to find the degrees of “agreement” of two criteria,

the vector of all internal comparisons of each criteria is

constructed. This vector fulfills exactly one of the follow-

ing three relations: R, R and R̃. For a fixed criterion C,

and any ordered pair 〈x, y〉 ∈ C∗(O) it is required that:

〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ R, 〈x, y〉 ∈ R̃ ⇔ 〈x, y〉 /∈ (R ∪ R),
R ∪R ∪ R̃ = C∗(O)

For a criterion C, let us define a preference matrix between

objects 1, 2, . . . , n so that Cij is 1 if i is better than j, −1
if i is worse than j, and 0 if i and j are equivalent or

incomparable over criterion C. We determine the degree of

“agreement” (µC,C′ ) between the two criteria as the proportion

of matching components. This can be done in several ways,

e.g. by counting the matches or by taking the complement of

the Hamming distance. The degree of “disagreement” (νC,C′ )

is the proportion of components of opposing signs in the two

vectors. The difference πC,C′ = 1−µC,C′−νC,C′ is considered

as a degree of “uncertainty”.

V. NUMERICAL RESULTS

We combined the ICrA with the ACO for

different start strategies applied to the MKP [7].

Ten test problems from the ”OR-Library” with

100 objects and 10 constraints (available from
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orlib) were used. The ACO algorithm is applied to various

number of nodes in node subsets. The node subsets consist

of the same number of nodes, namely 1, 2, 4, 5 and 10.

The average results over the 10 test problems and 30 runs of

every problem with every strategy was obtained. The ranking

is from 10 to 100. The ICrA objects (O1, O2, . . . , O20)

are the different conditions, namely nodes 1, 2, 4, 5 and

10, in four cases of φ, φ = [0 0.25 0.5 0.75]. The ICrA

criteria (C1, C2, . . . , C12) are 12 different start strategies for

the ACO. The ICrA resulted in two IM ,with the relations

between considered 12 criteria. The resulting IMs, for µC,C′

and νC,C′ , are shown in Table I and Table II.

TABLE I: Index matrix for µC,C′

C1 C2 C3 C4 C5 C6

C1 1.000 0.042 0.016 0.079 1.000 1.000
C2 0.042 1.000 0.642 0.742 0.042 0.042
C3 0.016 0.642 1.000 0.670 0.016 0.016
C4 0.079 0.742 0.670 1.000 0.079 0.079
C5 1.000 0.042 0.016 0.079 1.000 1.000
C6 1.000 0.042 0.016 0.079 1.000 1.000
C7 0.037 0.826 0.653 0.758 0.037 0.037
C8 0.037 0.826 0.653 0.758 0.037 0.037
C9 0.026 0.637 0.889 0.705 0.026 0.026
C10 0.026 0.621 0.884 0.700 0.026 0.026
C11 0.026 0.737 0.695 0.821 0.026 0.026
C12 0.026 0.737 0.695 0.821 0.026 0.026

C7 C8 C9 C10 C11 C12

C1 0.037 0.037 0.026 0.026 0.026 0.026
C2 0.826 0.826 0.637 0.621 0.737 0.737
C3 0.653 0.653 0.889 0.884 0.695 0.695
C4 0.758 0.758 0.705 0.700 0.821 0.821
C5 0.037 0.037 0.026 0.026 0.026 0.026
C6 0.037 0.037 0.026 0.026 0.026 0.026
C7 1.000 1.000 0.695 0.679 0.800 0.800
C8 1.000 1.000 0.695 0.679 0.800 0.800
C9 0.695 0.695 1.000 0.984 0.753 0.753
C10 0.679 0.679 0.984 1.000 0.747 0.747
C11 0.800 0.800 0.753 0.747 1.000 1.000
C12 0.800 0.800 0.753 0.747 1.000 1.000

For better understanding of the results, the values of the

µC,C′ , νC,C′ , πC,C′ of the criteria pairs, are sorted by the

value of the µC,C′ . The list is presented in Tables III and IV.

Table III shows the criteria pair with high degrees of “agree-

ment” (µC,C′ ) and low value for the degree of “disagreement”

( νC,C′ ). Table IV shows the criteria pair with high degree of

“uncertainty”. Regarding Tables III and IV we observe that

relations between criterion C1 and criteria C5 and C6 have

the highest value of µC,C′ (µC,C′ = 1), i.e. these criteria are

in strong positive consonance. Henceforth, the ACO algorithm

performs in a similar way with random start and start strategies

4 and 5. In strategies 4 and 5 there are no forbidden regions

(as in the random start). In these cases, only the probability

to choose the next element in the solution is different. Other

pairs that have the highest value of µC,C′ (µC,C′ = 1) are

C7 −C8 and C11 −C12. These strategies (Strategies 1-4, 1-5,

3-4 and 3-5) show also very similar performance.

TABLE II: Index matrix for νC,C′

C1 C2 C3 C4 C5 C6

C1 0.000 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.300 0.137 0.000 0.000
C3 0.000 0.300 0.000 0.237 0.000 0.000
C4 0.000 0.137 0.237 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0.000
C7 0.000 0.095 0.295 0.137 0.000 0.000
C8 0.000 0.095 0.295 0.137 0.000 0.000
C9 0.000 0.079 0.079 0.189 0.000 0.000
C10 0.000 0.084 0.084 0.195 0.000 0.000
C11 0.000 0.263 0.263 0.084 0.000 0.000
C12 0.000 0.263 0.263 0.084 0.000 0.000

C7 C8 C9 C10 C11 C12

C1 0.000 0.000 0.000 0.000 0.000 0.000
C2 0.095 0.095 0.295 0.311 0.195 0.195
C3 0.295 0.295 0.079 0.079 0.263 0.263
C4 0.137 0.137 0.189 0.195 0.084 0.084
C5 0.000 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.242 0.258 0.137 0.137
C8 0.000 0.000 0.242 0.258 0.137 0.137
C9 0.242 0.242 0.000 0.016 0.205 0.205
C10 0.258 0.258 0.016 0.000 0.211 0.211
C11 0.137 0.137 0.205 0.211 0.000 0.000
C12 0.137 0.137 0.205 0.211 0.000 0.000

The criteria pairs still in a consonance, are pairs of criteria

C2, C3, C4 and C7, C8, . . . , C12. They correspond to Strate-

gies 1, 2 and 3, combined with 4 and 5. In all this strategies

there are forbidden regions, therefore the ACO performs in

a similar way when we apply “any of them”. The criteria

pairs with value of µC,C′ = [0.75 − 0.25) are in dissonance,

i.e. there are no dependencies between these criteria (they

are independent). The ACO algorithm with random strategies

and the ACO algorithm with strategies with forbidden regions

perform in a very different way, thus we can not find relations

between them.

VI. CONCLUSION

In this paper, an ICrA is used with the ACO algorithm,

to establish the relations and dependencies between the ACO

performance and the start strategies. Twelve start strategies

are studied. Part of them disallow some regions of the search

space for one or more iterations. We can conclude that criteria

corresponding to the strategies without forbidden regions are

in positive consonance, as well as the criteria corresponding to

the strategies with forbidden regions. The criteria correspond-

ing to the strategies with forbidden regions are in dissonance

with criteria corresponding to the strategies without forbidden

regions.
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TABLE III: Criteria pairs-I

Criteria pairs µC,C′ νC,C′ πC,C′

C1 − C5 1.000 0.000 0.000

C1 − C6 1.000 0.000 0.000

C5 − C6 1.000 0.000 0.000

C7 − C8 1.000 0.000 0.000

C11 − C12 1.000 0.000 0.000

C9 − C10 0.984 0.016 0.000

C3 − C9 0.889 0.079 0.032

C3 − C10 0.889 0.079 0.032

C2 − C7 0.826 0.095 0.079

C2 − C8 0.826 0.095 0.079

C4 − C11 0.821 0.084 0.095

C4 − C12 0.821 0.084 0.095

C7 − C11 0.800 0.137 0.063

C7 − C12 0.800 0.137 0.063

C8 − C11 0.800 0.137 0.063

C8 − C12 0.800 0.137 0.063

C4 − C7 0.758 0.137 0.105

C4 − C8 0.758 0.137 0.105

C9 − C11 0.753 0.205 0.042

C9 − C12 0.753 0.205 0.042

C10 − C11 0.747 0.211 0.042

C10 − C12 0.747 0.211 0.042

C2 − C4 0.742 0.137 0.121

C2 − C11 0.737 0.195 0.068

C2 − C12 0.737 0.195 0.068

C4 − C9 0.705 0.189 0.105

C4 − C10 0.700 0.195 0.105

C3 − C11 0.695 0.263 0.042

C3 − C12 0.695 0.263 0.042

C7 − C9 0.695 0.242 0.063

C8 − C9 0.695 0.242 0.063

C8 − C10 0.679 0.258 0.063

C7 − C10 0.679 0.258 0.063

C3 − C4 0.670 0.237 0.084

C3 − C7 0.653 0.295 0.053

C3 − C8 0.653 0.295 0.053

C2 − C3 0.642 0.300 0.058

C2 − C9 0.637 0.295 0.068

C2 − C10 0.621 0.311 0.068
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