
 

 

 

 

Abstract—Reliability is an important characteristic of any 

system. Healthcare systems are typical examples of such 

systems. In reliability engineering, such systems are considered 

as complex, inhomogeneous, and uncertain, and require special 

mathematical representations. The structure function is a 

suitable model representing real systems. Methods of system 

reliability evaluation based on the structure function are well 

established but deterministic. This restricts its use for 

uncertain or incomplete data. A structure function can be 

created only for system in which correlations of all components 

are indicated and all component states are known. In this 

paper, a new method for structure function construction is 

proposed. Incomplete data is analysed using Fuzzy Decision 

Trees (FDTs), where input and output attributes are 

interpreted as component states and values of the structure 

function, respectively. This method is applied to reliability 

analysis of healthcare system. For illustration, we considered 

the system laparoscopic surgery that has 4 components and 36 

state vectors. In addition we evaluate proposed method by 3 

benchmark’s systems with 243, 108, and 512 state vectors, 

respectively. Two of these benchmarks have 5 components and 

one has 4 components. Uncertainty is simulated by randomly 

deleting between 5% and 90% of all state vectors before 

constructing the structure function. With 50% of deleted 

stages, the error rate is below 0.2% for all three systems. We 

conclude that FDT-based reliability analysis is applicable for 

incomplete data in medical systems, too. 

I. INTRODUCTION 

HE investigation in reliability engineering of healthcare 

system has started as analysis of medical devices and 

equipment [1]. Until recently, reliability quantification of 

equipment and devices has been a principal tendency in 

medicine [2, 3, 4]. Independently, the human factor in 

medicine has been investigated. 

A special area in reliability engineering investigating the 

influence of human factor is named Human Reliability 

Analysis (HRA). HRA aims at identifying the potential 

failure of the system resulting from human errors, analyzing 

causes and identifying appropriate countermeasures to 

prevent and reduce the linked risks as much as possible. 

Failures in healthcare are called Medical Errors, if the 
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patient’s condition worsens or if patients develop additional 

illnesses. As documented in [5], the number of deaths due to 

these causes is 225,000 annually, with in-hospital medical 

errors causing 44,000 to 98,000 deaths, and 3,000,000 

injuries annually. Of course, such situation must be changed.  

A first step of improvement is to investigate causes and 

specifics of medical error. A human error in a healthcare 

system is considered as independent problem of reliability 

analysis [5, 6, 7, 8]. Authors of papers [7, 8, 9] have 

indicated methods that are most useful for medical error 

analysis. In these papers and other investigations, authors 

provide the adaptation of well-known and popular HRA-

methods for the medical domain. The background of HRA 

methods is discussed in [9]. 

A healthcare system includes components of different 

types, such as technical components (equipment/devises) 

and the human factor. Therefore, this system is 

inhomogenous in the view of reliability engineering [3, 4, 7], 

and the construction of mathematical representation 

including all types of component become challenging [3, 7, 

10]. The simplest decision is obtained for system of 

stationary states, where the time dependence of system 

behavior can be ignored. One of possible representation for 

this condition is a structure function. This is a deterministic 

model and all possible component states and performance 

levels must be indicated and reflected in the structure 

function. However, complete information of healthcare 

systems cannot be obtained, since the observation of all 

situations is impossible: some of them agree with hazard of 

patient’s health. For example, author in [3] consider 

reliability and safety of pacemaker application that is 

interpreted as system with uncertainty. Furthermore, parts of 

the information are deducted from expert’s experiences. This 

information is ambiguous and unequal, It can be considered 

with just some reliability or confidence. Therefore, the 

structure function of healthcare systems must be constructed 

based on uncertain data. 

In this paper, a novel method for constructing the 

structure function is proposed. We take into account the 

uncertainties of initial data and suggest a method that is 

based on the Fuzzy Decision Tree (FDT). FDTs are widely 

used in data mining for analysis of uncertain data and 
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decision making in ambiguities [11, 12]. FDTs can be used 

naturally to analyze fuzzy data. Therefore, the initial data 

used to construct the structure function can be fuzzy. To 

transform a real system’s performance level and its 

component states into an exact model, such as the structure 

function, fuzziness of bounds of performance levels/states 

are considered. In addition, FDTs allow to take into account 

uncertainties caused by incompletely specified data. This is 

still possible if it is expensive to obtain all data about the 

real system’s behavior, if there is only sparse data, or if data 

s acquired incompletely due to poor documentation.  

As a rule, if the exact value of the actual data about the 

system behavior cannot be determined, we need to rely on 

more data to give additional information necessary to correct 

the theoretical model used [13]. An FDT allows 

reconstructing these data with different levels of the 

confidence [14]. The use of FDTs for the construction of the 

structure function assumes the induction of a tree that is 

based on the data (fuzzy and/or crisp). The values of the 

structure function are then defined by the FDT for all 

combinations of the component states. 

This paper is structured as follows. Section II discusses 

the concept of structure function. Principal steps of the 

proposed method are considered in Section III. The detail 

description of all steps is given in Section IV. The results of 

method evaluation are presented in Section V, and the 

discussion and conclusion are given in Section VI. 

II. THE STRUCTURE FUNCTION IN HEALTHCARE ANALYTICS 

A. Structure Function 

The concept of structure function is introduced in 

reliability engineering in order to mathematically describe 

the real system that is studied. In this case, the system is 

represented as a mapping that assigns a system state to every 

possible profile of component states. Therefore, the system 

performance level is defined from the states of all its 

components, and all possible component states as well as all 

performance levels must be indicated and reflected in the 

structure function. 

The structure function allows to represent the system’s 

reliability behavior for two typical mathematical models, i.e. 

the Binary-State System (BSS) and the Multi-State System 

(MSS). BSS permits only two states to investigate the 

system and its components: perfect functioning and 

complete failure. However in practice, many systems can 

exhibit different performance levels between these two 

extremes of full function and fatal failure [15, 16]. MSS is a 

mathematical model that is used to describe a system with 

several (more than two) levels of performance [15, 17, 18].  

The concept of the structure function is used to represent 

BSS and MSS, and associates the space of component states 

and system performance levels: 
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where (x) is the system state (performance level) from 

failure ((x) = 0) to perfect functioning ((x) = M -1); 

x = (x1,…, xn) is a vector of system component’s states (state 

vector). The state (x) = 0 represents the total failure of the 

component while state (x) = mi -1 corresponds to perfect 

functioning of the i-th component. 

Therefore, (1) defines the MSS structure function of n 

components (subsystems). The state of each component can 

be denoted by a random variable, xi, and every component of 

the MSS is characterized by probabilities of its states: 

  .1,,0},{Pr
,
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As it is shown in [10], reliability analysis of healthcare 

systems can be provided if the system is represented by a 

structure function (1). Then, the typical measures of 

reliability, e.g., the system availability (probabilities of the 

system performance levels), can be calculated by the 

structure function [18, 10]: 

 Aj = Pr {(x) = j}, j = 0, …, M-1. (3) 

For example, consider a simple system to indicate medical 

errors of two components: a doctor (x1) and diagnostic 

device (x2). Suppose three levels in the doctor work: 0 is 

interpreted as fatal error, 1 is incorrect work (without fatal 

result) and 2 is perfect work. The devices can have two 

states only: 0 is failure and 1 is proper function. The system 

quantification has three levels: 0 is incorrect diagnosis with 

fatal consequence for the patient, 1 is incorrect diagnosis 

without fatal consequence for the patient, and 2 is correct 

diagnostics. This system (the medical error identification) is 

represented by the structure function in Table I. The 

probability of every performance level (availability) of this 

system is calculated according to (3): 

 A0 = Pr{(x) = 0} = p1,0p2,0,  

 A1 = Pr{(x) = 1} = p1,0p2,1 + p1,1p2,0,  

 A2 = Pr{(x) = 2} = p1,1p2,1 + p1,2p2,0 + p1,2p2,1  

 

TABLE I. 

THE STRUCTURE FUNCTION OF THE MEDICAL ERROR IDENTIFICATION 

The system components 
(x) 

x1 x2 

0 0 0 

0 1 1 

1 0 1 

1 1 2 

2 0 2 

2 1 2 

 

There are a lot of methods to estimate different aspects of 

the system’s reliability based on the structure function [3, 

10, 15, 17, 18]. Therefore, the structure function allows for 

investigating the system’s reliability. In some applications – 

such as the medical domain – the construction of the 

structure function is a complex problem, because the 

structure function (1) usually is assumed to be exact and 

ambiguities are not taken into account. Since data about real 
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systems is uncertain, the structure function may not be 

realistic, which is – as a rule – typical for healthcare systems 

[7]. 

B. The Structure Function for Healthcare Systems  

From the point of view of reliability analysis, estimating 

preventable medical errors in healthcare system is the 

principal goal.  

During the past decade, healthcare delivery has seen the 

introduction of ever more sophisticated and complex 

equipment for preventable medical errors. Furthermore, the 

human factor still is an important component of such 

systems. The persistence of medical errors according to [7] 

suggests that there is either an absence of reliability 

engineering analysis or a gap in the reliability analysis 

currently being performed. The decision of this problem can 

be implemented by changing the process design of 

healthcare system and/or performing the reliability analysis 

of healthcare system’s exploitation. It supposes the 

adaptation and application of reliability analysis methods for 

healthcare system.  

The first step in reliability estimation of any system is to 

determine a mathematical model (representation). Such 

mathematical model of a healthcare system is: 

• complex, the system cannot be represented by a typical 

structure (series, parallel, k-out-of-n etc.) only; 

• inhomogeneous, it implies different types of the system 

components (hardware, software, human factor); 

• uncertain, it is caused by human factor influence. 

In case of the structure function, complexity and 

inhomogeneity of healthcare systems can be realized in a 

mathematical representation without special algorithms [15, 

19]. In the construction of the structure function for 

healthcare system, the uncertainty of the initial data needs 

adaptation and the reasons of this uncertainty must be 

considered. According to (1), the structure function is 

defined if all of possible components and system states are 

indicated. As a rule, it is impractical to wait until all the 

component states are indicated. The first factor then is 

incomplete specification of data, because some values of the 

system component’s states or performance levels cannot be 

obtained. In substitution, extra data on the healthcare system 

can be obtained through expert analysis. The second factor 

of uncertainty of initial data is the ambiguity and vagueness 

of collected data values. This type of ambiguity can be 

caused by an expert’s subjective evaluation etc. For 

example, two experts can set different values of system 

performance level for equal situation [20, 21]. Therefore, 

uncertainty of initial data must be considered when 

constructing the structure function. 

Uncertainties and ambiguities of a real system have been 

dealt with in reliability analysis using of the likelihood 

concept [13, 19]. However, uncertainties that are caused 

solely in evaluation by an expert’s experience and 
judgement are not random in nature. This uncertainty can't 

be indicated in a quantitative form by probability theory.  

Fuzzy logic, however, makes it possible to define the 

structure function in a more flexible form than the 

probabilistic approach. Consequently the structure function 

of a healthcare system must be constructed based on fuzzy 

data and incomplete samples. It is a typical problem in data 

mining. Therefore, we propose the use of the Fuzzy Decision 

Tree (FDT), which has been used widely in data mining, for 

analysis of uncertain data, and decision making with 

ambiguities. Here, collected data for structure function 

construction can be defined and characterized by likelihood 

(likelihood) or confidence if there is little data about the real 

system’s behavior. An FDT allows to reconstruct these data 

with different levels of likelihood (confidence) [12, 14]. 

Applying FDT, we propose a new method for the 

construction of the structure function to mathematically 

represent healthcare system.  

FDTs imply a tree based on the data about the system, 

which can be fuzzy and/or crisp, and the data can be 

specified incompletely. The values of the structure function 

are then defined for all combinations of component states by 

the FDT: component states are interpreted as FDT attributes 

and the structure function value agrees with one of the M 

values (classes) for the system performance level.  

III. A NOVEL METHOD FOR STRUCTURE FUNCTION 

CONSTRUCTION BY FDT 

The structure function is a construct of mathematical 

representations that can be defined by a system structure 

analysis or that can be based on expert data [13, 22]. The 

structure function for system that includes a human factor is 

funded based on the evaluation by an expert’s experience 
and judgment. Any healthcare system is a typical example of 

such a system.  

The construction of a structure function representing 

expert’s data requires special analysis and transformation of 

the initial system’s data [7, 23], because expert’s data is 

uncertain as a rule. This uncertainty can be caused by a lot of 

factors, but we have considered two of them. The first factor 

is incompletely specified data, because some values of 

system states or performance levels cannot be obtained. For 

example, it can be expensive or it might need unacceptable 

long time to get the data. The second factor is ambiguity and 

vagueness of collected data values. This type of ambiguity 

can be caused, for instance, by inaccuracies or errors of 

measurement, or subjectivity of expert’s evaluations. 

Therefore, the construction of the structure function must 

appreciate two aspects. The first is a mapping assigning the 

system performance level to each possible profile of 

component states (for example, see Table I). The second is 

addressed by interpreting it as classification problem for 

uncertain data, which is typical for data mining. One of the 

possible options is applying decision trees or FDT [31-34]. 

Our approach is based on FDTs [24, 25] and includes the 

following steps (Fig.1): 

• Collection of data in the repository according to 

requests of FDT induction; 
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• Representation of the system model in the form of an 

FDT that classifies component states according to the system 

performance levels; 

• Construction of the structure function as decision table 

that is created by the inducted FDT. 

 

 

Fig.  1 Principal steps in the structure function construction based on 

FDT application 

 

Therefore, the structure function is constructed as decision 

table that classifies the system performance level to each 

possible profile of components states. The decision table is 

formed based on a FDT that provides the mapping for all 

possible component states (input data) in M performance 

levels. FDT is inducted by uncertain data that is presented in 

form of specified repository. 

IV. PRINCIPAL STEPS OF THE METHOD 

A. The Repository for Data Collection  

Collection of data in the form of a repository is provided 

by the monitoring or expert evaluation of values of the 

system’s component states and the system’s performance 

levels (Fig.1). Data for a repository is collected by 

monitoring if it is possible (for example, for some devises or 

equipment). It is expert evaluation dominantly in case of the 

system with analysis of human factor that is important 

component of any healthcare system. Therefore data for the 

construction of the repository for the analysis of healthcare 

system collects the expert experience. The experts propose 

an estimation of every situation (state vector) and resulting 

system state (system performance level) with some 

possibilities (likelihoods). The transformation of expert 

knowledge into quantification data is implemented based 

general rules that used for the analysis of experts’ 
knowledge. Some of such methods are presented and 

discussed in papers [20, 21]. Need to note that initial data 

structuration and the repository preparation is important step 

and can be considered as separate problem for investigation 

and development. 

The column number is n+1 (for indication of n 

components and the system’s performance level). All of the 

n columns are separated into mi sub-columns, and the 

column for the system’s performance level has M sub-

columns. The sub-column is assigned with one of the values 

for component states or performance levels. Every row of 

the table represents one monitoring situation or evaluation. 

The table cell includes number (from 0 to 1) that interpreted 

as the likelihood of this value. Note that the sum of these 

possibilities for each value equals 1. Such data can be 

obtained from experts’ evaluations or possibility of  fuzzy 

clustering [26, 27]. These possibilities correspond to a 

membership function of fuzzy data [28]. This demand for 

initial data representation is caused by the method of FDT 

induction. Therefore, values of the i-th component state and 

the performance levels are defined by possibilities. These 

possibilities indicate ambiguity of collected data values for 

the analysis. Having indicated and considered the 

uncertainty of the monitoring data, the resulting accuracy of 

data analysis is increased. 

For example, consider a simple laparoscopic surgery 

procedure [7]. It is typical healthcare system with human 

component. Let us indicate 4 components (n = 4) of this 

system: device (a laparoscopic robotic surgery machine 

[29]), two doctors (anesthesiologist and surgeon) and a 

nurse. Let us interpret this system as Multi-State System 

MSS and introduce the numbers of states for every 

component and number of performance levels of the system. 

Let this system has three performance levels (M = 3):  

0 – non-operational (fatal medical error),  

1 – partially operational (some imperfection),  

2 – fully operational (surgery without any complication).  

The device has two states (m1 = 2):  

0 – failure, and  

1 –functioning.  

The work of anesthesiologist is indicated by two states 

(m2 = 2):  

0 – non-operational (medical error),  

1 – fully operational (without any complication).  

Repository (data collection) for the FDT induction.  

Result of measurement, expert evaluation or monitoring 

Components and their possible values  
System state 

x1 x2 
. . . .  

xn 

0 1 2 0 1 0 1 2 3 0 1 2 

0.1 0.5 0.4 0.6 0.4 . . . 0.3 0.1 0.1 0.5 0.0 0.0 1.0 

0.2 0.1 0.7 0.1 0.9 . . . 0.7 0.0 0.1 0.2 0.3 0.7 0.0 

. . . . . . . . . . . . . . . 

0.9 0.1 0.0 0.2 0.8 . . . 0.4 0.5 0.1 0.0 0.1 0.4 0.5 

0.3 0.3 0.4 0.0 1.0 . . . 0.4 0.1 0.2 0.3 0.1 0.4 0.5 

 

 

The construction of the structure function (x) 

x1 x2 . . . xn (x) 

0 0 . . . 0 0 

0 0  1 0 

0 0 . . . 2 1 

. . . . . . . . . . . . . . . 

2 1 . . . 2 2 

2 1 . . . 3 2 

FDT induction 

Selection of all possible cases 

The representation of the result in FDT form  

2 1 1 2 

1 

0 1 

x1 

x2 xn 
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The work of surgeon and the nurse can be modelled both 

by 3 levels (m3 = m4 = 3), i.e.:  

0 – (the fatal error),  

1 – (sufficient), and  

2 – (perfect or the work without any complication). 

The structure function of the system for analysis this 

simplified version of a laparoscopic surgery is composed of 

36 situations (state vectors). The monitoring and expert 

analysis of this system permits to obtain some samples that 

represent the system behavior. In Table II, 15 samples are 

shown. In this table, 15 of 36 possible state vectors are 

indicated only. However, this information is uncertain 

because the data from real monitoring is incomplete and 

values are ambiguous. The monitoring does not allow 

obtaining information about all possible samples (situations) 

for fatal medical errors, because it would imply patient’s 

health. So, the expert (or experts) adds some information 

about the system behavior, which can be uncertain, too. For 

example, an expert can indicate for the sample under the 

consideration the system performance level with likelihood 

only: as operational ((x) = 2) with the likelihood of 0.0, 

partly operational ((x) = 1) with likelihood 0.1 and non-

operational ((x) = 0) with the likelihood of 0.9. 

Table II illustrates the correlation of monitoring data and 

the structure function for this system. The monitoring data 

can be transformed into the structure function (1) for the 

system based on the following rule: only the value with the 

highest likelihood is considered. For example, the variable x1 

in Table II has value 0 with the likelihood of 0.6 and value 1 

with the likelihood of 0.4. The resultant value is defined as 0 

in this case, but some of the state vectors are absent in the 

repository. Traditional mathematical approaches for system 

reliability analysis are based on the structure function, which 

cannot be used in this case. Therefore, the construction of a 

structure function (1) based on incomplete data requires a 

special transformation and the development of new methods. 

B. Representation of system model in the form of an FDT 

A decision tree (and FDT in particular) can be considered 

as an alternative form of the structure function. The structure 

function maps state vectors to each equivalence class of the 

system’s performance levels. At the same time, a decision 

tree is a formalism for expressing mappings of input 

attributes (component’s states) and output attribute/attributes 

(system performance level/s), consisting of an analysis of 

attribute nodes, which are linked to two or more sub-trees 

and leaves or decision nodes that are labeled with a class (in 

our case it is the system performance level) [14]. The 

outcome of the analysis is based on attribute values of a 

sample, where each possible outcome is associated with one 

of the sub-trees. A sample is classified by the starting at the 

root node of the tree. If this node is not a leaf, the outcome 

for the instance is determined and the process continues 

using the appropriate sub-tree. If a leaf is encountered, its 

label directs to the predicted class of sample. The system’s 

component states are interpreted as values of the input 

attributes. The system’s performance levels are considered 

as an instance that is classified into M classes.  

FDT is one of the possible types of decision trees that 

permit to operate with fuzzy data (attributes) and methods of 

fuzzy logic. The construction of a FDT-based structure 

function assumes ambiguous data and that the analysis of 

such data can be implemented based on the methods of 

fuzzy logic [11, 30, 31]. The ambiguity of data values may 

be present in the attributes (system components states) and 

the exact class of the instance (system performance level). 

There are different methods to induct a FDT [11, 24, 25, 

31]. The principal goal of all methods is to select expanded 

attributes and determine the leaf node. The FDT induction is 

implemented based on some initial data that is interpreted as 

a training test. Every training sample includes n attributes 

A1, ..., An and an output attribute B. The construction of the 

structure function supposes its correlation with the FDT 

(Table III): the system performance level is the output 

TABLE II. 

THE COLLECTED DATA FOR ANALYSIS OF LAPAROSCOPIC SURGERY SUCCESSFUL 

No x1 x2 x3 x4 (x) 

0 1 0 1 0 1 2 0 1 2 0 1 2 

1 0.6 0.4 0.9  0.1 0.1 0.9 0.0 0.2 0.6 0.2 0.9  0.1 0.0 

2 0.7 0.3 1.0 0.0 0.0 0.9 0.1 0.1 0.8 0.1 0.8 0.1 0.1 

3 0.5  0.5 0.9 0.1 0.8 0.2 0.0 0.8 0.1 0.1 0.9 0.1 0.0 

4 1.0 0.0 0.1 0.9 1.0 0.0 0.0 0.1 0.9 0.0 0.8 0.2 0.0 

5 0.9 0.1 0.0 1.0 0.1 0.2 0.0 0.1 0.9 0.0 1.0 0.0 0.0 

6 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 

7 1.0 0.0 0.0 1.0 0.0 0.1 0.9 0.0 0.3 0.7 0.1 0.8 0.1 

8 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.6 0.1 0.9 0.0 

9 0.1 0.9 0.1 0.9 0.1 0.1 0.8 1.0 0.0 0.0 0.1 0.8 0.1 

10 0.3 0.7 0.9 0.1 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.1 0.0 

11 0.2 0.8 0.0 1.0 0.9 0.1 0.0 0.0 1.0 0.0 1.0 0.0 0.0 

12 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.8 0.2 0.0 0.0 1.0 0.0 

13 0.1 0.9 0.2 0.9 0.1 0.8 0.1 0.0 0.6 0.4 0.0 0.0 1.0 

14 0.2 0.8 0.0 1.0 0.0 0.1 0.9 1.0 0.0 0.0 0.1 0.8 0.1 

15 0.3 0.7 0.0 1.0 0.0 0.1 0.9 0.1 0.8 0.1 0.0 0.1 0.9 
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attribute and the component’s states (state vectors) are input 

attributes. Each input attribute (component state) Ai (1  i  

n) is measured by a group of discrete values from 0 to mi-1 

that agree with the values of the i-th component states: 

{Ai,0,…,Ai,j,…,Ai,mi-1
}. The FDT assumes that the input set 

A1, ..., An is classified as one of the output value attributes 

B. The output attribute value Bw agrees with one of the 

system’s performance levels and is defined by M values 

ranging from 0 to M -1 (w = 0,…, M -1). 

For example, set input attributes {A1, A2, A3, A4} and 

output attribute B for the success of laparoscopic surgery are 

indicated in Table IV according to FDT terminology. Each 

attribute is defined as: A1={A1,0, A1,1}, A2={A2,0, A2,1}, 

A3={A3,0, A3,1, A3,2}, A4={A4,0, A4,1, A4,2}  and B = {B0, B1, 

B2}.  

TABLE III. 

CORRELATION OF THE TERMINOLOGIES OF FDT AND RELIABILITY 

ANALYSIS 

FDT System reliability 

Number of input attributes: n Number of system components: n 

Attribute Ai (i = 1, …, n) System component xi (i = 1, …, n) 

Attribute Ai values:  

                 {Ai,0,…,Ai,j,…,Ai,mi-1
} 

The i-th system component state:  

                                        {0, …, mi-1} 

Output attribute B System performance level (x) 

Values of output attribute B:  

                          {B0, …, BM-1} 

Values of the system’s performance 

levels: 

                                        { 0, …, M-1} 

Decision table  Structure function 

 

A fuzzy set A with respect to an universe U is 

characterized by a membership function μA : U  [0,1], 

assign a A-membership degree, μA(u), to each element u in 

U. μA(u) gives us an estimation of u belonging to A. The 

cardinality measure of the fuzzy set A is defined by M(A) = 

uU μA(u), which is the measure of the size of A. 

For uU, μA(u) = 1 means that u is definitely a member of 

A and μA(u) = 0 means that u is definitely not a member of 

A, while 0 < μA(u) < 1 means that u is partially a member of 

A. If either μA(u) = 0 or μA(u) = 1 for all u  U, A is a crisp 

set. The set of input attributes A is crisp for which μA(u) = 0 

or μA(u) = 1. The values of input and output attributes are 

defined by the membership function. They are obtained from 

the monitoring data (Table II) according to the correlation 

shown in Table IV. Indicated attributes values are used as a 

training test to construct the FDT. 

In this paper, we adopt the FDT induction principle to 

construct the structure function based on cumulative 

information estimates [24, 25]. The cumulative information 

estimates allow defining the criterion of expanded attribute 

selection to induct FDT with different properties. These 

estimates are calculated by measures of entropy and 

information. Entropy and information have been introduced 

to the information theory as a probabilistic approach. The 

application of these measures assumes that the sum of 

possibilities of all values of every attribute equals 1 [26, 27, 

28]. Note that the likelihood of attribute's value in terms of 

FDT induction is measured as confidence degree or degree 

of truth in this value. 

TABLE IV. 

ATTRIBUTES VALUES OF SYSTEM FOR LAPAROSCOPIC SURGERY 

PROCEDURE  

Structure function Attribute Attribute 

values 

Description of attribute 

values 

The first component 

state, x1 

A1  A1,0 Device failure 

 A1,1 Devise working 

The second 

component state, x2 

A2 A2,0 Error of anesthesiologist 

 A2,1 
Anesthesiologist work 

without complication 

The third 

component state, x3 

A3 A3,0 
Error of surgeon 

 A3,1 Sufficient work of 

surgeon 

 A3,2 Perfect work of surgeon 

The forth 

component state, x4 

A4 A4,0 Error of nurse 

 A4,1 Sufficient work of nurse 

 A4,2 Perfect work of nurse 

System 

performance level 

(x) 

B B0 Fatal medical error 

 B1 Some imperfection 

 B2 Surgery without any 

complication 

 

Figure 2 depicts the FDT for the laparoscopic surgery 

example. This FDT has 4 levels and includes all input 

attributes. This implies that all input attributes are 

considered to be significant for this system. The attribute A3 

is most significant as it agrees with the surgeon's work. 

Therefore, A3 is associated with the FDT root (top node). 

This attribute can have the values A3,0, A3,1, and A3,2, which 

are associated with branches of the FDT. Each branch agrees 

with a block of the output attribute values, and the 

confidences of every value of the output attributes are 

indicated. This block is a leaf if one output attribute has a 

sufficient level of confidence. In the other case, the FDT 

provides the analysis of the next input attribute. In this 

example, the value A3,1 and A3,2 of the attribute A3 supposes 

the analysis of the attribute A1 and A2, respectively. The 

sufficient value of the output attribute is defined by the user 

between 0 to 1. For instance in the laparoscopic surgery 

example, this sufficiency of the FDT has been set to 0.750 

(Fig. 2). 

The FDT can be transformed into classification (decision) 

rules. A new sample e may be classified into different 

classes with different confidence. Let the FDT have R leaves 

L = {l1, ..., lr, ..., lR}, then each leaf lrL corresponds to one (r-

th) classification rule. The condition part of the classification 

rule is a group of conditions that is represented in the form: 

“attribute is attribute’s value”. Such conditions are 
interconnected with an AND operator. The attributes are 

associated with the nodes in the path from the root to the leaf lr.  
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Fig.  2 The FDT for the construction of structure function to analyze laparoscopic surgery successful 

 

The attribute’s values are associated with the respective 
outgoing branches of the nodes in the path. Conclusions of 

the r-th rule are the values of class attribute B with their 

truthfulness vector F
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The classification rules for the laparoscopic surgery 

example are shown in Fig.3. 

C. Construction of the structure function based on the 

FDT 

As it was shown in Section III, the structure function 

agrees with the decision table. The decision table can be 

constructed based on the FDT or classification (decision) 

rules or a [25]. A decision table indicates all possible values 

of input attributes and agrees with the structure function. 

Therefore, cal the decision table is calculated for all possible 

values of the component’s states and considered as the 
structure function (1). 

For the laparoscopic example, assume that the state vector 

is x = (0 1 1 0). According to the FDT (Fig. 2), the system 

output attribute for all possible vector states can have the 

value 0, 1, and 2 with the confidence of 0.387, 0.460, and 

0.153, respectively. However, these confidences are under 

the given threshold of 0.750. Therefore, the analysis of the 

state vectors is implemented based on the FDT. It starts with 

the attribute A3 (Fig. 2). The value of this component state is 

x3 = 1 and the branch for the attribute value A3,1 is 
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considered. The output attribute can have the value 0, 1, and 

2 with the confidence of 0.396, 0.417, and 0.187, 

respectively. Again, all these confidences are below the 

threshold 0.750. Therefore, a decision about the value of the 

system’s performance level is impossible and the analysis 
continues with the attribute A1. The estimation of this 

attribute is implemented using a branch with attribute value 

A1,0 because the specified state vector includes x1 = 0. The 

branch of this value has the leaf-node. Therefore, the value 

of the output attribute is defined as the value with the 

maximal confidence, which is 0.756 for the value 0. 

Considering this, the system performance level for the 

specified state vector is (x) = 0. Therefore the fatal medical 

error is possible with confidence 0.756 if the level of the 

surgeon’s work is sufficient and there is a malfunction of the 
laparoscopic robotic surgery machine. The analysis of other 

state vectors is similar and allows to obtain all possible 

values of the system performance level in the form of the 

structure function. 

 

r=1 : IF A3 is A3,0                         THEN B with F1 = [0.819; 0.147; 0.034]; 

r=2 : IF A3 is A3,1 and A1 is A1,0  THEN B with F2 = [0.756; 0.137; 0.107]; 

r=3 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,0 and A4 is A4,0   

                                                     THEN B with F3 = [0.843; 0.136; 0.021]; 

r=4 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,0 and A4 is A4,1   

                                                     THEN B with F4 = [0.376; 0.526; 0.098]; 

r=5 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,0 and A4 is A4,2   

                                                     THEN B with F5 = [0.229; 0.663; 0.108]; 

r=6 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,1 and A4 is A4,0   

                                                     THEN B with F6 = [0.035; 0.940; 0.025]; 

r=7 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,1 and A4 is A4,1   

                                                     THEN B with F7 = [0.168; 0.268; 0.564]; 

r=8 : IF A3 is A3,1 and A1 is A1,1 and A2 is A2,1 and A4 is A4,2   

                                                     THEN B with F8 = [0.030; 0.006; 0.964]; 

r =9 : IF A3 is A3,2 and A2 is A2,0 THEN B with F9 = [0.080; 0.885; 0.035]; 

r=10: IF A3 is A3,2 and A2 is A2,1 and A1 is A1,0   

                                                    THEN B with F10 = [0.047; 0.804; 0.149]; 

r=11: IF A3 is A3,2 and A2 is A2,1 and A1 is A1,1 and A4 is A4,0  

                                                   THEN B with F11 = [0.096; 0.769; 0.135]; 

r=12: IF A3 is A3,2 and A2 is A2,1 and A1 is A1,1 and A4 is A4,1  

                                                   THEN B with F12 = [0.000; 0.147; 0.853]; 

r=13: IF A3 is A3,2 and A2 is A2,1 and A1 is A1,1 and A4 is A4,2  

                                                    THEN B with F12 = [0.000; 0.326; 0.674]; 

Fig.  3 The classification rules for the construction of structure function 

for the analysis of successful laparoscopic surgery  

 

It is important to note that this method of the structure 

function constructing based on FDTs permits to compute 

(restore) data missing from the monitoring. Therefore, 

probabilities of system performance can be calculated 

according to typical methods used in reliability engineering, 

i.e., based on the structure function. For example, the system 

availability (1) can be calculated for the system that is 

presented the laparoscopic surgery success based on the 

indicated values of the component state probabilities (Table 

V). The availability of this system according to (3) and data 

in Table V is calculated based on the structure function 

constructed through the FDT(Fig. 2): 

 A0 = 0.098,    A1 = 0.214,    A2 = 0.688 (4) 

 

TABLE V. 

PROBABILITIES OF THE COMPONENTS STATES 

System component description Component’s states probabilities 

pi,2 pi,1 pi,0 

The laparoscopic robotic surgery 

machine functioning, x1 
 0.98 0.02 

The anesthesiologist’s work, x2  0.94 0.06 

The surgeon’s work, x3 0.64 0.27 0.09 

The nurse’s work, x4 0.47 0.35 0.18 

 

The values of the availabilities in (4) imply that 

laparoscopic surgery can be with:  

a) fatal medical error with probability 0.098,  

b) sufficient result (some complications) with 

probabilities 0.214 and  

c) perfect result 0.688 (without any complications). 

Other measures can be computed by the structure function 

too. For example, importance measures for this system are 

defined according to the algorithms considered in [10, 30]. 

V.  RESULTS 

Our method has been investigated depending on the level 

specify of the initial data. We considered 3 benchmarks for 

the method evaluation [13, 15]: 

• The system 1 has 3 performance levels, consist of 5 

component and its structure function has 243 state vectors; 

• The system 2 has 5 performance levels, consist of 

4component and its structure function has 108 state vectors; 

• The system 3 has 4 performance levels, consist of 5 

component and its structure function has 521 state vectors; 

 The structure functions are known and defined for these 

systems. We have used this data to examine efficiency and 

accuracy of proposed method for the construction of the 

“new” structure function based on incompletely specified 

data. The incompleteness is modeled by random deleting of 

some state vectors and assigned performance level value. 

The range of deleted states is changed from 5% to 90%. The 

“new” structure function is constructed based these 
incompletely specified data and compare with initial 

structure function. 

The constructed structure functions include individual or 

small groups of misclassified state vectors. Therefore, we 

have estimated this misclassification by an error rate. The 

constructed structure functions and initial completely and 

exact specified functions are compared and the error rate is 

calculated as the ratio of wrong values of the structure 

function to the dimension of unspecified part of the function. 

The experiments have been iterated 1000 times for every 

system. The error rate for every system and for different 

level of unspecified component states vector is shown in 

Fig.4. The error rate is depended on unspecified part of the 

initial data (state vectors) according results presented in 
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Fig.4. This error increases essentially, if the unspecified part 

is most than 80% for all investigated systems. We obtained 

an insignificant growth of the error rate if the unspecified 

part is less than 10%. Therefore according to this 

investigation we can declare recommended specify of initial 

data between 10% and 80%. This result is typical for FDT 

application [11, 12]. The specification of data less than 10% 

isn’t sufficient for the correct construction of correlations 
between input and output attribute. And higher level of data 

specification (more 80%) restricts variations of FDT 

induction and causes misclassification values. 

 

 

Fig.  4 The error rate for the construction of the structure function for 

three systems 

 

VI. DISCUSSION  

The main contribution of this paper is that we have 

developed novel and original method for the construction of 

the structure function based on incompletely specified and 

ambiguous data. It directly supports MSS reliability 

estimation and can cope with uncertain data for the analysis 

of system reliability/availability. This is typical problem for 

reliability analysis of healthcare systems, where the data 

cannot be obtained for all possible situations. 

The analysis of the error rate for the proposed method for 

the construction of the structure function based on FDT 

shows that this method has good efficiency. This method is 

acceptable for the incompletely data and the incompleteness 

of initial data can be indicated from 10% to 85%. The 

constructed structure function by the proposed method has 

less error rate than maximal error rate in interval of the 

incompleteness. 

But error rate is not caused by range of incompleteness of 

initial data only. There are some factors that can influence to 

error rate. First of all it is specific properties of structure 

function. One of very important properties is monotony of 

structure function that is typical for coherent system [17, 

30]. The structure function of the system 1 is monotonic and 

the error rate of this function is minimal. The structure 

function of the system 2 is monotonic too. Other property of 

structure function is “uniformity” that mean similar number 
of state vectors for all system performance levels. For 

example, the system 2 has maximal number of state vectors 

for one of performance level (46 of 108). Therefore range of 

incompleteness has small influence to error rate. Numbers of 

state vectors for every performance levels of the system 3 

are similar. Therefore error rate increases for boundary range 

of incompleteness. 

Beside the structure function properties, the system 

dimension (number of state vectors) influences to the error 

rate. This influence will be investigated in the future. Now, 

we can suppose that error rate decreases opposite to 

increasing of system dimension. The construction of the 

structure function of 50 state vectors is possible based on 20-

30 state vectors (40-60% of defined state vectors). The 

structure function construction based on 5-10 state vectors 

(10-20%) is possible too. But level of accuracy depends on 

the quality of this set of state vectors. It will be essential to 

continue the verification and validation of our proposed 

method with data sets of different properties and sizes  

Very important advantage of proposed method for 

constructing of the mathematical model of investigated 

system is possibility to ignore step of qualitative analysis 

that is typical in reliability analysis based on uncertain data. 

Methods for qualitative analysis (Failure mode and Effect 

Analysis (FMEA), Failure Mode Effects and Criticality 

Analysis (FMECA), Hazard Operability Study (HAZOP) 

etc.) are very good investigated in reliability engineering, 

but most of them include empirical evaluation of 

investigated system [8, 9, 13].Conclusion 

Our comprehensive experiments have shown that 

reliability estimation of healthcare systems is possible with 

uncertain or incomplete data if the structure function is 

estimated using fuzzy decision trees. This opens a wide 

range of clinical applications for saver healthcare. 
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