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Abstract—The correlation clustering is an NP-hard problem,
hence its solving methods do not scale well. The contraction
method and its improvement enable us to construct a divide and
conquer algorithm, which could help us to clustering bigger sets.
In this article we present the contraction method and compare
the effectiveness of this new new and our old methods.

I. INTRODUCTION

C
LUSTERING is an important tool of unsupervised learn-

ing. Its task is to group objects in such a way, that the

objects in one group (cluster) are similar, and the objects from

different groups are dissimilar. It generates an equivalence

relation: the objects being in the same cluster. The similarity

of objects are mostly determined by their distances, and the

clustering methods are based on distance.

Correlation clustering is an exception, it uses a tolerance

(reflexive and symmetric) relation. Moreover it assigns to each

partition (equivalence relation) a cost, i.e. number of pairs of

similar objects that are in different clusters plus number of

pairs of dissimilar objects that are in the same cluster. Our

task to find the partition with the minimal cost. Zahn proposed

this problem in 1965, but using a very different approach [1].

The main question is the following: which equivalence relation

is the closest to a given tolerance (reflexive and symmetric)

relation? Many years later Bansal at al. published a paper,

proving several of its properties, and gave a fast, but not

quite optimal algorithm to solve the problem [2]. Bansal have

shown, that this is an NP-hard problem.

The number of equivalence relations of n objects, i.e. the

number of partitions of a set containing n elements is given

by Bell numbers Bn, where B1 = 1, Bn =
∑n−1

i=1

(

n−1

k

)

Bk.

It can be easily checked that the Bell numbers grow expo-

nentially. Therefore if n > 15, in a general case we cannot

achieve the optimal partition by exhaustive search. Thus we

need to use some optimization methods, which do not give

optimal solutions, but help us achieve a near-optimal one.

If the correlation clustering is expressed as an optimization

problem, the traditional optimization methods (hill-climbing,

genetic algorithm, simulated annealing, etc.) could be used

in order to solve it. We have implemented and compared the

results in [3].

This kind of clustering has many applications: image seg-

mentation [4], identification of biologically relevant groups of

genes [5], examination of social coalitions [6], improvement

of recommendation systems [7] reduction of energy consump-

tion [8], modeling physical processes [9], (soft) classification

[10], [11], etc.

In a previous paper [12] we presented the contraction

method with many different interpretations, and later we

constructed an improvement for the contraction method [13].

In this paper we introduce a new method which is based on the

contraction method and its improvement, and this new method

is a divide and conquer algorithm. By the measurements the

new method is not much worse than the old one, therefore the

new method could help us to solve concrete problems with

thousands of objects.

The structure of the paper is the following:

In Section 2 we define correlation clustering mathematically

and shortly present the contraction method and its improve-

ment. Section 3 describes the divide and conquer algorithms.

Next, we show the results of the measurements, and in

Section 5 the recursive variant of the method. Later we present

the results according to Barabási-Albert random graphs. In

Section 7 we give our plans and discuss the technical details.

Finally we conclude the results.

II. CORRELATION CLUSTERING

In the paper we use the following notations: V denotes the

set of the objects, and T ⊂ V ×V the tolerance relation defined

on V . We handle a partition as a function p : V → {1, . . . , n}.
The objects x and y are in a common cluster, if p(x) = p(y).
We say that objects x and y are in conflict at given tolerance

relation and partition iff value of cpT (x, y) = 1 in (1).

cpT (x, y)←







1 if (x, y) ∈ T and p(x) 6= p(y)
1 if (x, y) /∈ T and p(x) = p(y)
0 otherwise

(1)

We are ready to define the cost function of relation T
according to partition p:

cT (p)←
1

2

∑

cpT (x, y) =
∑

x<y

cpT (x, y) (2)
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Fig. 1. Different variants of contraction method.

Our task is to determine the value of minp cT (p), and a

partition p for which cT (p) is minimal. Unfortunately this

exact value cannot be determined in practical cases, except

for some very special tolerance relations. Hence we can only

get approximative, near optimal solutions.

We can define the attraction between two objects: if they

are similar then the attraction between them is 1; if they are

dissimilar then the attraction between them is −1 (they repulse

each other); otherwise—which can occur at a partial tolerance

relation—the attraction is 0.

a(x, y)←







1, if (x, y) ∈ T
−1, if (x, y) /∈ T
0, otherwise

(3)

We can generalize (3) for object i and for clusters g and h:

a(x, g) =
∑

y∈g

a(x, y) and a(g, h) =
∑

y∈h

a(y, g).

We leave it to the reader to check, that if these sums are

positive and we join these element and clusters—by getting

a partition p′ containing the clusters g ∪ {x} or g ∪ h—then

cT (p) ≥ cT (p
′). This means that by joining attractive clusters,

the cost decreases.

The contraction method starts with a partition where each

cluster is a singleton. Next it selects clusters g and h for which

a(g, h) is maximal (and positive), and joins these clusters.

It continues until there are no attractive clusters left. This

contraction is presented on part a of Fig. 1 as a diagonally

painted rectangle.

At dense Erdős-Rényi random graphs (ER in the following)

each decision could have a vast impact, at the pure contraction

method we cannot correct previous decisions—we just join,

and not slit—, therefore we need something else in order

to make a decision. This is the place, where the attraction

between a node and a cluster is taken into consideration: we

take every combination of nodes and clusters. If we find that a

node is attracted much harder by any other cluster than by its

clusters, then we put that node into the other cluster. Moreover

if some node is repulsed by all the clusters, we construct an

extra cluster for this node and we move it into this new cluster.

This is the improvement of the contraction, that corrects the

faults of the contraction. This correction step on part b of Fig. 1

denoted as a vertically painted rectangle. This correction step

follows the contraction step. Here we apply both steps for the

whole V i.e. for all objects together.

We discussed the properties of the contraction and this

improvement in [13].

III. DIVIDE AND CONQUER ALGORITHMS

The divide-and-conquer strategy solves a problem by:

• breaking it into sub-problems that are themselves smaller

instances of the same type of problem—divide

• recursively solving these sub-problems—conquer

• appropriately combining their answers—combine

One may think that only the second step (conquer) could

be hard, in general each step needs some work: remember the

splitting of the array at quick-sort for the divide step, and the

merging of the ordered sequences for the combine step of the

merge sort.

As practice has shown, we can amend the outcome of the

contraction with its improvement, so we treat the contraction

and its improvement as a unit. This is the reason why part c and

d of Fig. 1 are built from units (of contraction and correction)

of part b.
At a correlation clustering problem we have a set V of

n objects, so the division is simple: split the whole set into

two subsets of n/2 objects (or three subsets of n/3 objects,

and so on).

The subsets are similar to the original sets, so at the

conquer step we only need to apply the unit for each subset

independently, as first half of part c of Fig. 1 presents.

The outcome of correlation clustering is a partition, so

the outcome of the correlation clustering of the subsets are

independent partitions as Fig. 2 shows. At the combine step

of the algorithm we need to check whether the clusters of the

partitions of the subsets could be parts of a cluster, which is

member of the partition of the whole set. Fortunately we have

a tool to answer this question, the contraction does exactly

this: checks whether two cluster could be joined. Hence we

need to apply the unit of contraction and correction for the

whole set V, as the second half of part c of Fig. 1 presents.

Based on the algorithm of the contraction (contract)

and its improvement (correct) we can easily implement in

Python this divide and conquer algorithm, as Alg. 1 shows.

Here uf is the UnionFind data structure that handles the data

of the partition. self.size stores the number of objects

in V , and no_parts denotes the number of subsets. The

contraction and its improvement were implemented in such a

way, that they get the subsets of the objects with their (lower

and upper) bounds. Whilst they only use one data structure

to store attraction between clusters and objects, they handle

these data independently for different subsets of objects.
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Fig. 2. Outcome of partitioning the subsets

Algorithm 1 Corrected contraction

1def contract_in_pieces(self, uf, no_parts):

2sub_size = math.ceil(self.size/no_parts)

3for lower in range(0, self.size, sub_size):

4upper = min(lower + sub_size, self.size)

5self.contract(uf, lower, upper)

6self.correct(uf, lower, upper)

7self.contract(uf, 0, self.size)

8self.correct(uf, 0, self.size)

In the last two lines of Alg. 1, we combine the clusters of

the subsets by applying the contraction to the whole set of

objects. (We note that Python starts indexing with 0, and at

defining intervals, the upper limit is exclusive.)

The implemented methods and the testing environment is

available at https://github.com/aszalosl/DC-CC.

IV. EFFECTIVENESS OF THE NEW METHOD

At the first measurements we use traditional tolerance rela-

tions, i.e. the signed graph of the problem is total. The structure

of the relation—or the structure of the graph—determines

the cost cT (p), e.g. despite that two graphs have the same

number of negative and positive edges, one graph belongs to

an equivalence relation—so its cost is 0—, while the cost of

the other graph is a large number. It is extremely unlikely that

we will obtain an equivalence relation by randomly generating

a tolerance relation, and by our former experiments related to

total graphs the deviation of the costs is small.

Although the number of positive and negative edges does

not precisely describe the graph (and hence the relation), it

helps us to understand the processes. We will use the rate

calculated by the number of positive edges and the number

of all edges, and denote this ratio by q. On Fig. 3 we present

rates of different cT (p)’s as a function of q (of T ), where

the p is the partition that the algorithm generates from T . We

used 100 random relations with the same q, and we display

the mean here. The base is the contraction method without

any improvement/correction, this belongs to the level 1.0. The

solid line denotes the contraction with its improvement. As

the solid line does not exceed the level 1.0, it really is an

improvement.
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Fig. 3. Comparison of the original, the improved and the divide and conquer
method with 10 subsets. (Less is better.)
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Fig. 4. Results of different steps of the piecewise contraction.

The dashed line denotes the outcome of the divide and

conquer algorithm when we split the original problem into ten

sub-problems. As it is slightly above the solid line, it almost

reaches the level of the improved algorithm.

Fig. 4 goes into details. The solid line below shows the

result of the corrected contraction, where we applied both

process for the whole set V . On the other hand at the fist

stage of the piecewise contraction we need to execute the

contraction (in parallel) for the subsets of V . As the graph

of the problem is a total graph, i.e. everything is connected,

the attraction of the objects in different subsets suffers from

cost function, so its dashed line is at the top. The piecewise

correction (second stage) is an improvement, so its dotted

line is below the previous line. The clusters of the partitions

of the subsets could be joined at the next stage, which a

total contraction—we apply it for the whole set V —and with

this we reach the level 1.0 somewhere. And the last stage—

the total correction—get below this level, and approaches the

improved contraction.

A huge sample could smooth the lines, but we do not believe

that using big samples gives clearly answer which parameter is

the best for Fig. 5. Here we compare the results of dividing the

original set into different number of subsets. The lines intersect

each-other several times on the graph, therefore we cannot

announce the absolute winner, maybe the biggest parameter

gives the best (smallest) result.
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Fig. 5. Comparison of the divide and conquer method with different number
of subsets.
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Fig. 6. Comparison of the divide and conquer method with different number
of subsets.

Does the improved or the divide and conquer method give

better result? We created Fig. 6, to show the rate of their result

in each case. As the lines are mostly above the level 1.0, the

divide and conquer method gives a bit worse result, than the

improved algorithm. This is a reasonable result: if we have

less nodes, we only know half of the information and hence

our decisions are less sound and we make more mistake. We

tested 100 complete graphs each with 200 nodes and divided

them into 10-element sub-graphs, and when we compared the

result, strangely the divide and compare was better with one

percent than the improved contraction alone.

If we allow partial tolerance relations, the diversity in-

creases. Fig. 7 uses the same number of objects, but the graph

of the relation is an ER graph with different ps. As there are

less edges left, they could create a more complex structure

than in a total graph, so the variance is bigger than before,

and this increases as the parameter p decreases. However, the

situation itself is similar, so the improved method is slightly

better than the divide and compare one.

V. RECURSIVE ALGORITHM

If we want to cluster 106 objects, it does not help us to

cluster ten set of objects with 105 members in each, although

previous experiments suggest that less subsets are better. Most

of the divide and conquer algorithm uses recursion, let us apply

it for this problem! Alg. 2 receives an UnionFind structure

Algorithm 2 Recursive contraction

1def rec_c(self, uf, l, lower, upper):

2if lower + l < upper:

3mid = (lower + upper)//2

4self.rec_c(uf, l, lower, mid)

5self.rec_c(uf, l, mid, upper)

6self.contract(uf, lower, upper)

7self.correct(uf, lower, upper)

to store the clustering, the maximal length l of a primitive

cluster—that will not be divided further—, and the bounds of

the subset. If the size of the cluster is bigger then l, we divide

it into half, and recursively call both parts. Next, we apply the

contraction, and later the correction for the whole subset.

Last part of Fig. 1 shows, that we apply the contraction and

corrections for quarter sets, next on the half sets, and finally

the whole set. The parameter l enables us to try several values,

as Fig. 8 shows. It may be hard to read from the picture, but we

believe that smaller values give smaller cost, hence are better.

We have calculated the sum of the rates for a big sample

and this sum is less for smaller ls, so we get closer to the

result of the improved contraction from above. Taking a look

at the last part of Fig. 1, we can say, that is contains numerous

corrections. Can we omit all of them but the last? (We need to

delete Line 7 from Alg. 2, and put it into the main program.)

Yes, we can, but the result is poor as Fig. 8 shows.

The difference between piecewise and recursive contraction

is small, hence further research is needed to decide which one

could help us to cluster large sets.

VI. SPARSE RANDOM GRAPHS

Until now we examined ER graphs. In nature, this kind

of graph is not common, so we take a look at other types

of graphs. The other well-known random graph type is the

Barabási-Albert (BA in the following). At generating this

type of graphs we use preference attachment. Here each new

node is connected to existing nodes with a probability that

is proportional to the number of links that the existing nodes

already have. This means, that the oldest nodes construct a

relatively dense graph, and the young nodes connect them
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Fig. 7. Contacting Erdős-Rényi random graphs with different probabilities.
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Fig. 8. Different lengths at recursive contraction and at a variant.
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Fig. 9. Different number of subsets at clustering BA graphs.

weakly. By slicing the set of objects into subsets based on

their (serial) numbers, we put the oldest nodes into the same

subset. Applying our methods to these kind of subsets we get

very similar results as before. To discover the real tendencies,

we mixed up the numbers of the objects, and used the simplest

slicing.

Our previous research had shown that the clustering of ER

type and BA type random graphs gives different results and

different tendencies [13]. Therefore we repeated our previous

tests for these graphs, too. As sparse graphs have only a few

edges, here we used 500 objects and 3/2 type BA graphs.

Fig. 9 shows that strange finding, that the cost for five subset

is minimal, meaning that for two or ten subsets the cost is

higher. We have used different samples in this tests, hence we

need test the same graphs to get more reliable results. Fig. 10

shows that smaller primitive subsets give better result, but we

tested this on different samples too. The variance is big at BA

graphs, so it is better to use the same graphs here.

Some tendencies are the same as at ER types, but the rate of

the improved contraction and piecewise/recursive contraction

is the opposite. At ER graphs the improved contraction is

slightly better, but at BA graphs the the latter methods produce

significantly better results.

VII. TECHNICAL DETAILS

We have not yet mentioned the speed of the methods. Of

course, the parameter q influences the speed. If q is low, then
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Fig. 10. Different primitive sizes at clustering BA graphs.

TABLE I
RUNNING TIME OF DIVIDE AND CONQUER CLUSTERINGS.

size number of parts max size of primitive cluster

2 5 10 20 10 20 25 50

ER graphs

50 0.82 0.74 0.72 0.73 0.74 0.76 0.81 0.96

100 0.69 0.59 0.56 0.55 0.56 0.57 0.61 0.69

200 0.52 0.39 0.35 0.33 0.34 0.35 0.37 0.41

BA graphs

500 0.92 0.91 1.08 1.20 0.78 0.77 0.77 0.76

1000 0.91 0.90 1.07 1.21 0.74 0.73 0.73 0.73

2000 0.89 0.89 1.06 1.21 0.71 0.70 0.70 0.70

there is little chance of contraction, so at the combine step of

the algorithm we have almost the same number of clusters as

at the beginning. This means, that we do the same task twice.

If q is high, then most of the objects are contracted into few

clusters, and contracting them does not take much time. At

the clustering of the subsets we need to cope with smaller

complexity, therefore we hope that at high q-s the divide and

conquer algorithm could run faster than originally.

We did not perform very detailed analysis for each value

of q, but we calculated the mean of the running time with

different parameters. Even this shows the tendencies, and

determines the future research directions.

Table I shows the rates of running times of the different

divide and conquer algorithms. The base is the running time

of the improved contraction method, and if the number is less

than 1.0, then the divide and conquer algorithm is faster.

At the two different kinds of random graphs the algorithms

behave differently. At ER graphs as we divide the original

set into more and more parts, the running time decreases. At

BA graphs more and more parts require extra overhead, and

eventually its running time becomes higher than the original

method’s.

If we use a recursive method, the calculations speed up at

ER graphs with smaller sets. At two hundred nodes, we can

reduce the running time to its third. We hope, that at bigger

sets we can save even more time. At BA graphs we can reduce
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the running time too. Unfortunately, it does not speed up as

much as the ER graphs. Here the more level of recursion does

not help, moreover it has some overhead, so the running time

is longer than at smaller level of recursions.

Do not forget, that BA graphs have O(n) edges, while ER

graphs have O(n2) edges, and this property holds for its sub-

graphs. To work with k · c ·
(

n
k

)2

instead of c · n2 is better,

while there is no real difference k · c ·
(

n
k

)

and c · n.

The former property holds for ER graphs with probability

p 6= 1.0, hence the rate running time of divide and conquer

clusterings is very close to the numbers in the table.

For UnionFind data structures there is an excellent imple-

mentation: disjoint-set forests. Unfortunately this implementa-

tion does not contain the replace operator, which is necessary

to correct the errors of the contractions. There are algorithms

which enable the deletion [14], but this is a logical deletion

and not a physical one, which would be needed to replace the

old value with a new one.

Our implementation currently uses an array assigning the

identifier of a cluster to each object, and an associative array

assigning the cluster to an identifier. In this case, the operation

union have linear complexity according to size of the smaller

cluster, and the other operations have constant complexity.

Our implementation caches values a(x, g) and a(h, g) for

every valid x, g and h. As these values change at contraction

and at correction; we need to update the stored values. This

requires many small tricks, but is much faster than the version

calculating these values again and again.

VIII. CONCLUSION AND FURTHER WORK

Based on our contraction method and its improvement we

constructed a divide and conquer algorithm. Our hypothesis

was that it gives poor results, because it uses less information,

than the original method, but in some cases runs faster than

the original algorithm. Surprisingly, the new method generates

result close the improved variant of the former method at ER

graphs, and gives better result for BA graphs. The former data

structures and its methods are not usable for us, so we applied

less sophisticated algorithms. The similar results and a faster

calculation suggests, that this could be a fruitful direction.

We need a more detailed comparison of methods, to discover

the limits of this algorithm; and extra work to implement the

parallel version, which uses the advantages of the divide and

conquer method.
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