

Managing Big Clones to Ease Evolution: Linux Kernel Example

Kuldeep Kumar
Department of Computer Science and

Information Systems,

BITS-Pilani, Pilani Campus, India

kuldeep.kumar@pilani.bits-pilani.ac.in

Stan Jarzabek
Faculty of Computer Science

Bialystok University of Technology,

Poland

s.jarzabek@pb.edu.pl

Daniel Dan
Info-Software Systems

ST Electronics Pte. Ltd.,

Singapore

ddan8807@gmail.com

Abstract—Successful software is often enhanced and adapted

to the needs of new users. During evolution, a software system

grows in size, becomes more complex, and costly to maintain.

In this paper, we point to big clones—large granular duplicated

program structures such as files or directories—as one of many

reasons why this happens. Using the Linux kernel as an

example, we show that big clones arise in the Linux kernel

despite careful architecture design and a systematic approach

for managing variability. We propose a solution to avoid these

big clones by representing them as generalized templates in

ART (Adaptive Reuse Technique). ART templates are

constructed on top of the Linux code, without conflicts with the

state-of-art techniques and tools used to manage the Linux

kernel. Benefits include simplification of the Linux kernel due

to non-redundancy, easier comprehension, and traceability of

the change impact during evolution. The proposed technique is

general and the Linux example discussed in this paper also

illustrates general phenomena.

I. INTRODUCTION

HANGES in user features, design decisions, and

platforms arise naturally during software evolution.

Sometimes, these changes are contained at the architectural

level [1]. But, most often the impact of changes spreads

widely throughout the code. It has been reported that after

years of evolution software systems grow in size, their

structure decays, and become more and more difficult to

maintain [2]. Evolution may lead to cloning [3]. New system

versions are generally built by cloning (copy-paste-modify

practice) code from the earlier versions. However, less

cloning happens in advanced Software Product Line (SPL)

solutions [4] where reuse and evolution are aided by

systematic variability management rather than by cloning.

There is a large body of research on reasons why clones

arise—both within and across system versions—and whether

clones are good or bad [5][6][7]. These studies show that

designers may intentionally create certain clones to fulfill

some design goals (e.g., for performance, readability, or yet

other reasons) [5]. Other clones may result from careless

design and can be refactored [6][8], and yet others may not

play any useful role, but cannot be eliminated using

conventional design techniques [7]. Nevertheless, cloning is a

reality and there is need to deal with it [9]. No matter if

clones are good or bad, it is beneficial to know where clones

are in programs. It is particularly true for big clones such as

duplicated files or directories. Big clones happen even if

software evolution is systematically managed with variability

management techniques [10]. In the paper, we use the Linux

kernel to illustrate why this happens, and how we can

manage big clones.

The Linux kernel is among the largest well documented

evolving systems systematically managed with variability

techniques [11]. In that sense, a family of the Linux-kernel

versions forms an SPL whose reusable core assets include a

carefully designed architecture, systematically identified and

documented configuration options (SPL features), a code

base managed with the C preprocessor (cpp) as a main

variability technique, Kconfig, and other tools and

techniques. The reason why we find big clones in the Linux

kernel—and, we believe, in many other evolving systems—is

that commonly used variability management techniques fail

to avoid them in a convenient way.

Using generics (or C++ templates), we can non-

redundantly represent similar classes differing in type

parameters [12]. Big clones found in industrial systems need

not be classes, but files or directories–program structures of

any kind and size that differ in arbitrary ways, not just in type

parameters. In this paper, we use Adaptive Reuse Technique

(ART: https://sourceforge.net/projects/vclang/) to represent

big clones as generalized templates. Like generics or C++

templates, ART templates can be instantiated in variant

forms. Unlike other templates, ART templates can be built for

groups of similar program structures of any kind (e.g., files or

directories) that differ in variety of ways typically found in

real systems. ART is an enhanced, lightweight and XML-free

version of XVCL [13].

We briefly introduce variability management in the Linux

kernel in Section II. In Section III, we discuss examples of

big clones in Linux kernel version 3.10. Section IV describes

how ART blends into Linux kernel development and use

cycles. Sections V and VI describe explain how we manage

big clones with ART. We evaluate the benefits and trade-offs

of the proposed solution in Section VII. Related work and

conclusions end the paper.

II. VARIABILITY MANAGEMENT IN THE LINUX KERNEL

Despite technological advancements in programming

technologies, preprocessors are still indispensable.

Preprocessing solves some niche problems better than other

techniques do. One such problem area is variability

management in software evolution and reuse. To some extent

C

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1727–1736

DOI: 10.15439/2016F173

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1727

we can manage variability at the level of software

architecture [1]. But from architecture variability leaks to the

code, and here that preprocessors along with configuration

files and other similar techniques [14] become handy.

The Linux kernel developers applied clean architectural

design, cpp, build tools, shell scripts, and other tools to

facilitate adaptation of the Linux kernel to the specifics of

target computers. Close to eleven thousand configuration

options control the adaptation process. These options

correspond to cpp parameters that navigate execution of cpp

directives (such as #ifdef’s) that select code relevant to the

target computer of user’s choice. The high-level

configuration tool Kconfig maps these configuration options

to the chains of relevant cpp directives embedded in the

Linux code. Having selected required options, Kconfig

automatically triggers execution of cpp directives and selects

compilation units via the make utility to build a custom Linux

kernel for a specific computer. Users do not have to

understand the details of the adaptation mechanism. While

the complexities of cpp instrumentation are hidden from the

users, developers who maintain and extend the Linux kernel

must understand code instrumented with cpp.

III. MOTIVATING EXAMPLE: BIG CLONES IN THE LINUX

In the Linux kernel, the Journaling Block Device (JBD)

provides an interface for the file system journaling. There are

two directories namely /jbd and /jbd2 implementing this

functionality, with /jbd2 being an evolutionary branch of /jbd.

/jbd2 compatibly extends /jbd with new features such as

support for 64-bit computers, check-summing of journal

transactions, and asynchronous transaction commit block

write.

Each directory consists of six files shown in Fig. 1. Much

similarity in functionality and code (Table I) among files

corresponding by names suggests that /jbd2 files were created

by copying and modifying /jbd files. Fig. 2 sketches code

snippets highlighting the code similarities and differences

between the two checkpoint.c files.

checkpoint.c

jbd jbd2
fs

Linux kernel 3.10

recovery.c

journal.c
commit.c transaction.c

revoke.c checkpoint.c
recovery.c

journal.c
commit.c transaction.c

revoke.c

Fig. 1. Motivating example: cloned directories /jbd and /jbd2

51: static inline void __buffer_unlink(struct journal_head *jh)
52: {
53: transaction_t *transaction = jh->b_cp_transaction;
54:
55: __buffer_unlink_first(jh);
56: if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61: }

51: static inline void __buffer_unlink(struct journal_head *jh)
52: {
53: transaction_t *transaction = jh->b_cp_transaction;
54:
55: __buffer_unlink_first(jh);
56: if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61: }

Identical Code Fragments : ~554 LOC

128: while (__log_space_left(journal) < nblocks) {
129: if (journal->j_flags & JFS_ABORT)
130: return;
131: spin_unlock(&journal->j_state_lock);
132: mutex_lock(&journal->j_checkpoint_mutex);

124: while (__jbd2_log_space_left(journal) < nblocks) {
125: if (journal->j_flags & JBD2_ABORT)
126: return;
127: write_unlock(&journal->j_state_lock);
128: mutex_lock(&journal->j_checkpoint_mutex);

Code Fragments with Parametric Changes: ~47 LOC

333: set_buffer_jwrite(bh);
334: bhs[*batch_count] = bh;
335: __buffer_relink_io(jh);
336: jbd_unlock_bh_state(bh);
337: (*batch_count)++;
338: if (*batch_count == NR_BATCH) {
339: spin_unlock(&journal->j_list_lock);
340: __flush_batch(journal, bhs, batch_count);

311: journal->j_chkpt_bhs[*batch_count] = bh;

312: __buffer_relink_io(jh);
313: transaction->t_chp_stats.cs_written++;
314: (*batch_count)++;
315: if (*batch_count == JBD2_NR_BATCH) {
316: spin_unlock(&journal->j_list_lock);
317: __flush_batch(journal, batch_count);

Code Modification: ~12 LOC

306: spin_unlock(&journal->j_list_lock);
276: transaction->t_chp_stats.cs_forced_to_close++;
277: spin_unlock(&journal->j_list_lock);
278: if (unlikely(journal->j_flags & JBD2_UNMOUNT))
279: /* The journal thread is dead; so starting and
281: * waiting for a commit to finish will cause
282: * us to wait for a _very_ long time.*/
284: printk(KERN_ERR "JBD2: %s: “
285: "Waiting for Godot: block %llu\n“,
286: journal->j_devname,
287: (unsigned long long) bh->b_blocknr);

520: journal_update_sb_log_tail(journal, first_tid, blocknr,
521: WRITE_FLUSH_FUA);
522: spin_lock(&journal->j_state_lock);
523: /* OK, update the superblock to recover the freed space.
524: * Physical blocks come first: have we wrapped beyond the end of
525: * the log? */
526: freed = blocknr - journal->j_tail;

460: __jbd2_update_log_tail(journal, first_tid, blocknr);

Code Deletion: ~95 LOC

Code Insertion: ~29 LOC

Fig. 2. Motivating example: code snippets of cloned file /jbd/checkpoint.c (left) and /jbd2/checkpoint.c (right)

1728 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE I. SIMILARITY AMONG FILES IN DIRECTORIES /JBD2 AND /JBD

The directories /jbd and /jbd2 exemplify the situations that

can benefit from ART as they cannot be effectively handled

by other techniques. The reasons why we find such situations

in the Linux kernel are functional similarities among different

subsystems, extensions to the existing functionalities,

adaptation of the existing subsystem code for the new one

(incremental development), evolutionary development, and

decentralized development [15][16][17].

IV. ART FOR THE LINUX KERNEL

In this section, we show how ART blends with the Linux-

kernel development and uses cycles (Fig. 3). A Linux

Developer, a member of an open-source community evolves

the Linux kernel, e.g., by adding new devices into it. The

Linux SysAdmin adapts the kernel for her computer using

tools such as Kconfig.

Configure

Linux
cpp

Linux Developer

Linux SysAdmin
Linux kernel

for a target

computer

Kconfig

Original Linux

kernel in cpp

Linux kernel in

cpp wrapped with

ART templates

Create ART

templates of

the kernel

ART

Processor

Find big clones

Clone

Detector

Evolve Linux

Fig. 3. An overview of Adaptive Reuse Technique (ART)

Big clones can be identified in the Linux kernel with aid of

a suitable clone detector (we used Clone Miner [18]). The

Linux Developer builds ART templates for big clones on top

of the Linux code managed by cpp. From that point onwards,

big clones are maintained via ART templates. ART templates

do not affect the work of the Linux SysAdmin.

The ART Processor converts ART templates back to the

original Linux code. The ART Processor instantiates

templates in the same way as the C Preprocessor expand cpp

directives. For example, for a template representing a group

of similar files, the ART Processor generates code for these

files based on specifications of deltas—differences between

the template and each of these files. The generated Linux

code is in the original form, and can be processed as normal

by Kconfig, cpp, or make tool.

ART-template view of the Linux kernel and the original

Linux kernel can be used together in two independent cycles

of maintaining and using the kernel.

V. TYPES OF CLONES THAT WE HANDLE WITH ART

We categorized big clones in the Linux kernel based on

their granularity.

A. Similar Directories

In the example of Section III, /jbd and /jbd2 play the same

role, with /jbd2 being an evolutionary branch of /jbd

addressing a new computer architecture and its capabilities.

Each of the two directories contains six files, with much

similarity between files corresponding by names. We found

five other cases in Linux kernel following the pattern of /jbd

and /jbd2, with the number of files in these directories

varying between 19 and 46. In some cases, a directory

contained one or more files that do not have similar

counterparts in the cloned directory.

B. Similar Files

We found many cases of similar files within the same

directory, as well as across directories. A common reason for

replicating a file in the same directory is to make a certain

existing functionality available for yet other computer

architecture, device, or tool. An example is drivers for

different brands of touchscreen devices—in directory

/drivers/input/touchscreen, 10 files share the same structure

and much code. Two directories having almost similar

purpose (vide our motivating example) may contain similar

files. Sometimes, the same or similar file may be required in

two or more directories, even if these directories have not

enough code similarity. For example, functionality for

handling extended user attributes is needed in directories

/fs/ext2, /fs/ext3 and /fs/ext4, therefore file “xattr_user.c” that

defines this functionality appears in all three directories.

C. Duplicated Code Fragments

At times, creating templates for duplicated code fragments

can be useful too, provided these fragments are long enough,

play some specific role (e.g., represent some meaningful

function), or recur in many places in programs. For example,

code fragments in Fig. 4 implement a device specific queue

handling procedure for different wireless network adapters.

An instance of this code fragment occurs once in each of the

files “rt2400pci.c”, “rt2500pci.c”, “rc2800pci.c” and

“rt61pci.c”, and twice in each of the files “rt2500usb.c”,

“rc2800usb.c” and “rt73usb.c”.

VI. CONSTRUCTION AND PROCESSING OF ART TEMPLATES

In this section, we explain how we represented big clones

as ART templates. We start with a brief overview of how

ART works, followed by the explanation of how we build

ART templates, illustrated with the Linux kernel example.

File Name

Total LOC

in corres-

ponding

jbd/jbd2

files

Identical

LOC

LOC with

parametric

differences

Modified

LOC

Inserted

LOC

Deleted

LOC

checkpoint.c 782/705 554 47 12 29 95

commit.c 1002/1192 523 93 35 364 218

journal.c 2122/2146 1266 287 29 690 229

recovery.c 594/862 420 52 12 234 0

revoke.c 740/769 544 94 3 25 0

transaction.c 2229/2348 1346 130 56 516 399

KULDEEP KUMAR ET AL.: MANAGING BIG CLONES TO EASE EVOLUTION: LINUX KERNEL EXAMPLE 1729

static void rt73usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
break;

default:
break;

}
}

static void rt2800usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, ®);
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
break;

default:
break;

}
}

rt73usb.c rc2800usb.c

Fig. 4. Sample code fragments from rt73usb.c and rc2800usb.c (differences highlighted)

A. An Overview of ART

For each group of clones, we distill common code into

ART templates and mark the locations where clones differ

one from another with ART commands (italicized for clarity

in the description below). Fig. 5 outlines the overall solution,

which consists of an ART-template hierarchy in which

templates at the lower-level serve as building blocks for the

higher-level templates. The ART templates are linked

together by #adapt commands. The top-most template, called

the specification file (SPC), specifies how to adapt other

templates lower in the hierarchy to accommodate required

variations. The ART Processor checks the templates for their

conformance to the ART grammar definitions. It then

traverses the template hierarchy in the depth-first order,

starting with the SPC and performs adaptations by executing

the ART commands embedded in the SPC and other ART

templates. During traversal, each ART template adapts other

templates from its sub-hierarchy. At the end, the ART

Processor produces the required cloned instances.

ART

Processor

SPC

ART-template hierarchy Clone instances

input output

#adapt
Key:

ART template

Fig. 5. An overview of the ART-template solution

Fig. 6 depicts steps in template processing. The ART

Processor starts by reading the SPC (step-1). It fetches the

ART commands step-by-step in the order in which they

appear in the SPC (step-2). Whenever it hits an #adapt

command (step-3), the processing will switch immediately to

the adapted template (step-4) and switch back when the

adapted template finishes its processing. Within a template,

each ART command is processed one after another, in the

same way as in the SPC. For the other commands, the

Processor executes the ART command and builds the output

(step-4') incrementally. Once the Processor reaches the end of

the SPC (step-5), it generates the required source code files

(step-6); if not, the ART Processor fetches the next ART

command from the SPC (step-6').

ART

Processor

Input : Template views of the Program

Other ART

Templates

Process the

Command
is not adapt

Builds output

incrementally

Complete

Processing

end of SPC file

Output: Native Code

SPC

else
2

1

3

5

4

4'

6

6'

reads

Fetch the

Command

is adapt

Fig. 6. Traversal mechanism of the ART Processor

B. ART-template Construction Mechanism

Despite a large fraction of the code common to all the

clone instances (i.e., identical code fragments in the

corresponding clone instances), as shown in Fig. 2, the three

main types of differences among corresponding clone

instances are parametric differences (code with parametric

changes), alternatives (code modifications), and extras (code

insertions and deletions).

The first task during the ART-template construction

process is to identify these similarities and differences among

corresponding clone instances. Once the corresponding

similarities and differences are identified, ART templates

record exact locations of these variation points at which the

clone instances differ. ART commands can be used

systematically to mark these variation points. Identical code

fragments can be used directly as-it-is in the corresponding

ART templates. ART variables treat parametric differences.

The ART command #select allows choosing one among pre-

defined alternatives (options), and #insert into #break

mechanism handles additions and deletions of extra code.

C. Example: Template Construction for JBD

Fig. 7 shows the structure of ART solution for the JBD

files. Each pair of similar files (e.g., checkpoint.c in /jbd and

/jbd2) is represented by a template (e.g., checkpoint.art). The

associated template checkpoint.spc specifies the differences

between the two source files as deltas from checkpoint.art.

The top-most template jbdX.spc navigates the process of

instantiating the templates to form the Linux source files in

their original form (i.e., instrumented with cpp).

1730 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Commands to

handle differences

between two

versions of

checkpoint.c

checkpoint.spc
Commands to

handle differences

between two

versions of

recovery.c

recovery.spc

Commands to

handle similarities

between two

versions of

checkpoint.c

checkpoint.art

Commands to

handle similarities

between two

versions of

recovery.c

recovery.art

ART commands to navigate the process of

instantiation of templates forming Linux source files

in their original form. It also handles the parametric

differences between clone-instances of a clone-class

jbdX.spc

Commands to

handle differences

between two

versions of

revoke.c

revoke.spc

Commands to

handle similarities

between two

versions of

revoke.c

revoke.art

Commands to

handle differences

between two

versions of

transaction.c

transaction.spc

Commands to

handle similarities

between two

versions of

transaction.c

transaction.art

Fig. 7. Constructing ART templates: JBD example

Fig. 8 shows the details of ART templates. In jbdX.spc,

ART variables are declared using #set commands (lines 1–6).

Variable “dirName” is assigned two values, “jbd” and “jbd2”

(line 2) that control the #while loop (line 7). The loop

executes twice, with the value of “dirName = jbd” in the first

iteration, and the value of “dirName = jbd2” in the second

one. The Variable “fileName” is set to six values, each

representing a file name (line 3).

The ART variable “action” helps represent lines:
spin_unlock(&journal->j_state_lock); //in jbd/checkpoint.c

write_unlock(&journal->j_state_lock); //in jbd2/checkpoint.c

in a single line in checkpoint.art (line 4):
?@action?_unlock(&journal->j_state_lock);

The two values of “action” are defined by:
#set action = “spin”, “write” // line 4 in jbdX.spc

The generation loop defined in line 7:
#while dirName, action,…, tagByte

is controlled by a list of variables that cater for all parametric

differences between the two checkpoint.c files. The command

#output (line 9) instructs the ART Processor to create a

directory and to place any further output into this directory (if

the output file or directory is not specified, the ART

Processor emits the code to an automatically generated

default file named “defaultOutput”). Expression

“?@fileName?” is used to fetch the value of an ART variable

filename (line 9).

Similar to cpp’s #include directive, an #adapt command

(line 10 in jbdX.spc) instructs the ART Processor to include

the designated template to the output. In addition, the #adapt

command also tells the Processor to customize the designated

template and assemble the customized result into the output.

For example, given two ART templates t and t', the statement

“#adapt t” in template t' suspends processing of the current

template (i.e., t'), and transfers processing to the template t.

The ART Processor applies all the customizations specified

under template t. Commands below #adapt in template t'

indicate customizations to be applied after the template t is

processed.

Variation points at which the two corresponding files (e.g.,

checkpoint.c) in /jbd and in /jbd2 directories differ are

marked using ART commands—references to the ART

variables, #select, #break, and possibly other commands.

ART variables control selection of the code in case of

alternative differences. This is illustrated as “#select

dirName” in the template checkpoint.spc (line 4). #option

(line 5 and 10 in checkpoint.spc) controls the variable values.

File checkpoint.c in one directory contains some extra

lines as compared to checkpoint.c in another directory. These

extra lines are specified using #insert commands in various

“#select dirName” options. “#insert process_buffer” (line 11

in checkpoint.spc) propagates the code to “#break

process_buffer” in checkpoint.art (line 12). #insert-before

and #insert-after (line 6–9 in checkpoint.spc) add their code

before or after the code contained in the matching #break

(line 7 in checkpoint.art). While #select instruments a

template with known variations, #break allows for extensions

to a template in unexpected ways in the specific context of

adaptation, without affecting others. These provisions for

unexpected evolutionary changes give ART templates

flexibility and stability.

1 #break copyright % insert code from line

12 in jbdX.spc

2 …

3 …

4 ?@action?_unlock(&journal->j_state_lock);

5 …

6 …

7 #break: wait_cp_io % insert code from

checkpoint.spc

8 % default source code

9 #endbreak

10 …

11 …

12 #break: process_buffer % insert code from

checkpoint.spc

13 % default source code

14 #endbreak
15 …

checkpoint.art

1 #adapt "checkpoint.art" % call to the

template checkpoint.art

2 …

3 …

4 #select dirName

5 #option jbd

6 #insert-before wait_cp_io

7 % code before wait_cp_io beakpoint

8 #insert-after wait_cp_io

9 % code after wait_cp_io beakpoint

10 #option jbd2

11 #insert process_buffer

12 …

13 …

14 …

15 #endadapt

checkpoint.spc

1 % ART variable declarations

2 #set dirName = "jbd", "jbd2"

3 #set fileName = "checkpoint", "commit", "journal", "recovery", "revoke", "transaction"

4 #set action = "spin", "write"

5 …

6 #set tagByte="sizeof(journal_block_tag_t)","tag_bytes"

7 #while dirName, action,…, tagByte

8 #while fileName

9 #output ?@dirName?"/"?@fileName?".c"

10 #adapt ?@fileName?".spc"

11 #insert copyright

12 % content to be inserted on call to "copyright" breakpoint

jbdX.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting differences between two

different versions of transaction.c

transaction.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting similarities between two

versions of transaction.c

transaction.art

<adapts>

<adapts>

Fig. 8. Code snippet of ART templates for the JBD example

The ART Processor generates Linux code traversing the

template hierarchy and emitting the code for the six files in

the /jbd and /jbd2 directories from their respective templates.

After that, the Linux code can be configured with Kconfig,

and processed with cpp in the usual way. Template views

expose the fact that the two directories and corresponding

files in them are similar to each other, and also explicate

every detail of similarities and differences among them. This

information is implicit in the Linux code. Explicating it using

KULDEEP KUMAR ET AL.: MANAGING BIG CLONES TO EASE EVOLUTION: LINUX KERNEL EXAMPLE 1731

ART can be useful in further evolution of the JBD file system

(Section VII).

D. Other Similarity Patterns at the Directory Level

Other cases of similar directories may not follow such a

regular similarity pattern as in /jbd and /jbd2. For example, in

the directories /drivers/infiniband/hw/qib and

/drivers/infiniband/hw/ipath, in addition to similar files,

/drivers/infiniband/hw/qib contains some extra files that do

not have a counterpart in /drivers/infiniband/hw/ipath. Still,

there is enough similarity in the concept and code between

/drivers/infiniband/hw/ipath and /drivers/infiniband/hw/qib to

build an ART-template solution for these two directories. The

scheme used for building ART templates for /jbd and /jbd2 is

also applicable in these situations, as templates manage pairs

of similar files only and the remaining other files remain

intact in the directories.

E. Constructing Templates for Similar Files

In this case, we deal with the similar files found in the

same directory and the similar files in different directories,

bearing in mind that directories as a whole are not considered

good candidates for representing them as templates. For each

such situation, we can create ART templates for similar files

if we think that exposition of similarities and differences

among these files can aid developers in reuse, program

understanding, maintenance, and evolution of the Linux

kernel. The solution follows the similar scheme as shown in

Fig. 7 and Fig. 8.

VII. EVALUATION

ART and its predecessor XVCL have been applied in

industrial projects as a variability technique to manage reuse

in product lines of web portals, and command and control

systems [19][20]. In these projects, the productivity impact of

applying the technique was measured and evaluated. An

industry partner also participated in the Linux study

described in this paper. In this section, we evaluate our ART

solution for Linux, complementing it with lessons learned

from other industrial projects with ART.

A. Reusing Templates within a Version of the Linux kernel

In a large system such as the Linux kernel, it is common to

find clones within subsystems or modules, as well as across

subsystems or modules. Each clone group can be managed by

ART templates as long as such a non-redundant

representation is deemed useful. Therefore, ART solution

takes form of template hierarchies (Fig. 9) that explicates the

location of clones and the exact nature of similarities and

differences among replicated program structures. This

knowledge is generally useful in understanding program

design.

The example in Fig. 9 shows how ART templates reveal

implicit couplings among bigger structures that contain

repetitions. The same functionality defined in the templates

commonConnectDisconnect.art and serioDriverStructure.art

is needed in /touchscreen/common.art and

/joystick/common.art. Templates for these two directories

explicitly show the fact that this functionality is needed in

both “touchscreen” and “joystick” drivers. If such implicit

dependency among program modules is not documented, it

may be overlooked during program evolution that may lead

to errors.

//SPC for touchscreen drivers
…

…

#adapt "touchscreen/common.art"

touchscreen/start.spc

ART template for disconnect and

connect method common to both

touchscreen AND joystick drivers

commonConnectDisconnect.art

ART template for serio driver

structure common to both

touchscreen AND joystick drivers

serioDriverStructure.art

Templates for touchscreen drivers only Templates for joystick drivers only

//Template common for all touchscreen

drivers only

...

#adapt "commonConnectDisconnect.art”

…

#adapt "serioDriverStructure.art"

…

touchscreen/common.art

<adapts>

//SPC for joystick drivers
…

…

#adapt “joystick/common.art"

joystick/start.spc

//Template common for all joystick drivers

only

...

#adapt "commonConnectDisconnect.art”

…

#adapt "serioDriverStructure.art"

…

joystick/common.art
<adapts>

Reused templates among joystick and touchscreen drivers

Code Snippet illustrating reuse of ART template (CommonConnectDisconnect.art and

serioDriverStructure.art) by both touchscreen and joystick drivers

<adapts>

Fig. 9. Template reuse

B. Reusing Templates across Versions of the Linux kernel

Template reuse interconnects ART-template solutions

developed for different groups of clones from the bottom, as

shown in Fig. 9. It is also useful to interconnect partial ART-

template solutions from the top, by introducing higher-level

umbrella templates that trigger ART processing of some or all

templates in the solutions.

Umbrella templates help developers manage multiple

versions of the Linux kernel from the common base. A case

study performed on 136 stable versions of the Linux kernel

shows clone coverage of approximately 67% [21]. The

coverage was found to be even higher between two

consecutive versions due to small changes in successive

releases of the kernel. Using umbrella templates, as shown in

Fig. 10, we represented the commonalities between two

versions, together with the version-specific code in different

templates.

C. Handling Evolutionary Changes

Evolution often brings forward changes to the

requirements and related code. For example, there might be a

need to add a new directory /jbd3, or add more files to the

JBD directories. ART has provisions to accommodate

evolutionary changes to the templates (e.g., adding jbd3),

without affecting existing code derived from the templates

(e.g., jbd and jbd2).

Assuming that the new directory /jbd3 also contains six

files that are similar to their counterparts in the /jbd and

/jbd2, we need to make the following changes to the

templates shown in Fig. 8:

 jbdX.spc:
 #set dirName = "jbd", "jbd2", "jbd3"

1732 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

// The file which adapts
kernel as per requirements
…
#adapt "kernel_3_9.spc“
#adapt "kernel_3_10.spc“
#adapt “kernel_3_11.spc”
…

//Template specific to kernel 3.10

#adapt "fs.spc“

#adapt …

#adapt "drivers.spc"

#adapt "jbdX.spc“

#adapt …

adapt ...

#adapt "touchscreen.spc“

#adapt …

#adapt "joystick.spc“

start.spc

kernel_3_10.spc

drivers.spcfs.spc

//Template specific to kernel 3.11

#adapt "fs.spc“

#adapt …

#adapt "drivers.spc"

kernel_3_11.spc

ART templates specific to particular Linux

versions

ART templates

for the code

common to all

versions of the

Linux Kernel

ART templates

for the code

specific to

Linux Kernel-

3.9 only

ART templates

for the code

specific to

Linux Kernel-

3.10 only

ART templates

for the code

specific to

Linux Kernel-

3.11 only

ART templates

for the code

common to

some versions of

the Linux Kernel

ART templates shared among two or

more versions of the Linux kernel

Fig. 10. Umbrella templates for an overall ART solution

#set fileName = "checkpoint",…, "recovery"

 …

 #while dirName , action,…, tagByte

 #while filename

 #output ?@dirName?"/"?@fileName?".c"

 #adapt: ?@fileName?".spc”

 …

checkpoint.spc:
 #adapt: "checkpoint.art"

 #select dirName

 #option jbd3

 …

% Customization to other templates with regards to jbd3

checkpoint.art:
 % Customizations to checkpoint.art specific to jbd3
% Customizations to other templates considering jbd3

In case of new variation points between the template and

the file in /jbd3, we place new #break commands in the

template. These new #break commands will cater for the

differences specific to /jbd3, injected by #inserts in “#option

jbd3” without affecting /jbd or /jbd2.

D. Aid in Program Understanding and Maintenance

Ease of comprehending program relations that matter

during maintenance: ART templates enhance important

relationships among program elements that matter to

programmers trying to understand and modify the code.

Instead of dealing with each directory or file separately,

programmers can comprehend them in groups, and see the

commonalities and differences among members of each

group. It reduces ripple effects and the risk of update

anomalies. In this way, if one wants to change a file, it is easy

to check whether the changes also affect other files. For

example, as illustrated in Fig. 7, similarities and differences

are explicitly visible for jbd and jbd2 file systems. Such

relations are generally hidden in conventional programs.

Making them visible and easily tractable improves program

maintenance. It also makes impact of changes easy to

comprehend (as shown in Section VII.C).

Non-redundancy: ART templates eliminate redundant code

from the software systems. For example, in our Linux

experiment, ART templates reduced the size of code with

redundancies by 30-50%. As both code and comments are

important in software maintenance and program

understanding, the upside of the proposed technique is that it

is possible to manage both duplicated code and comments

using it. ART allows a clean separation of various sources of

changes that affect program during evolution. ART templates

reduce the number of points at which affected changes must

be made. Changes done to one template consistently

propagate to all the contexts in which that template is

adapted. Even if the changes are not uniform, adaptations can

be made at specific variation points using the ART

commands without directly modifying the code fragments.

The ART template hierarchy explicitly reflects the impact of

changes on the program structure. We can easily trace how

different features affect the code.

Enhancing program understanding and conceptual

integrity: According to Brooks [22], program understanding

and conceptual integrity are among the most important

considerations in system design. Big clones often embody

domain-specific abstractions or design concepts. By formally

capturing these abstractions and concepts, ART templates aid

in program understanding and enhance conceptual integrity

of the design.

Creating templates can be considered as refactoring at the

meta-level: In some cases, developers seek to improve certain

program qualities but due to some unavoidable reasons

cannot achieve this at the code level. In such cases, we can do

that at the level of meta-level templates. We benefit from

non-redundancy at the meta-level templates, while still

keeping repetitions in programs (as it is often desirable or

unavoidable [7][23]).

Formally representing multiple design views: Program

modules often belong to many logical groups that matter to

developers at different times. Each logical partitioning

reflects a certain aspect of program design that matters at a

given time in the development in a given context. For

example, for a given business function in business software,

the modules for user interface, business logic, and database

are usually implemented in different system partitions.

Logically these modules belong to each other and sometimes

we must know which modules implement a given business

function completely. But, only one logical partitioning can be

formally represented in a program physical structure. ART

provides means to overlay programs with a web of meta-

structures formally defining these logical partitions linked to

code and without conflicts with the code.

Other Benefits: ART makes it easy for the programmers to

do any program modifications and extensions at the template

level. So there is no need to modify the code, and templates

always remain in sync with the code as programs evolve.

KULDEEP KUMAR ET AL.: MANAGING BIG CLONES TO EASE EVOLUTION: LINUX KERNEL EXAMPLE 1733

In addition, with reference to the Linux kernel, aiding

Linux Developers without affecting Linux SysAdmins is one

cornerstone of the proposed solution. ART templates are non-

intrusive, i.e., they do not affect the way cpp is normally

used, but it improves understandability and maintainability of

the programs instrumented with cpp. Also, the Linux code

can be re-generated in the original form, and processed as

normal by Kconfig, cpp or make tools. It provides a two-way

view to understand and maintain the kernel—one with state-

of-art variability technique (i.e., cpp), and another using ART.

Like cpp, ART manipulates code in an unrestrictive way,

with no concern for the syntactic or semantic rules of the

underlying programming language. Freeing from language

constraints makes ART powerful to represent the groups of

similar structures of arbitrary kind differing in arbitrary ways

in generic forms.

E. Trade-offs and Threats to Validity of Results

The flexibility of manipulating the code in unrestricted

way comes at the price of not being able to quarantine the

correctness of the generated code. Unrestrictive program

manipulation decreases the type-safety of the program. Also,

the trade-off is between the benefits and cost of learning the

new technique. ART syntax is very simple and consists of

only few constructs (such as #adapt, #insert-break

mechanism, #while). Yet, building quality ART templates

require skilled experts, so that the benefits of ART outweigh

the burden of learning and adopting it.

The benefit of ART depends on the degree of redundancy

in a software system that cannot be fixed by simple

refactoring. The bigger the size of software systems, the

higher the likelihood of redundancies and evolutionary

changes, and hence more will be the benefits of using ART. It

follows that families of similar systems should be prime

candidates for ART template views, as there is much

similarity among components of such systems. Thus, the

proposed technique seems to have more direct relevance in

the SPL context, where we have the role of domain engineer

who is responsible for building reuse-based productivity

solutions that serve many systems in long run. ART templates

belong to that category of solutions.

VIII. RELATED WORK

We discuss related work on cloning in the Linux kernel

and techniques that help programmers achieve non-

redundancy, including XVCL (the predecessor of ART).

A. Cloning in the Linux Kernel

Cloning in the Linux kernel has been extensively studied

in the literature [15][16][17][21][24] mainly focusing on the

detection of small cloned code fragments. In the Linux

v2.4.0, Casazza et al. [17] reported cloning of 15.5% between

arch and drivers subsystems. They also reported 13.6%

cloning between arch and kernel subsystems. Other study

showed that file subsystem had 12% clone coverage in the

Linux v2.4.19 [16]. In the Linux v2.6.37.6, 8% code

similarity between drivers (/sound and /drivers directories)

has been reported [15]. An empirical study of cloning among

SCSI drivers is done by [24]. We found these cloning rates to

be lower than those reported in similar studies for web

applications [19] (60%-90%) or class libraries [7] (68%).

Compared to other studies, this paper aims at the detection

and analysis of big clones instead of small cloned code

fragments that are detected and analyzed by other studies.

B. Managing Redundancies in Software Systems

Simple-minded development often leads to cloning (copy-

paste-modify practice). As mentioned earlier, cloning may

also be done for good reasons [5]. Still, non-redundancy has

been always considered an important quality of well-

designed software. The Software Engineering principle of

generality encourages avoiding repetitions and building

parameterized software solutions that can be reused in many

contexts. Macros were an early attempt to make programs

adaptable to various contexts. Goguen popularized the ideas

of parameterized programming [25]. Among programming

language features, type parameterization [12] (called generics

in Ada, Eiffel, Java and C#, and templates in C++), higher-

order functions, and inheritance can help avoid repetitions in

certain situations. Design techniques such as iterators, design

patterns, table-driven design (e.g., in compiler-compilers),

and modularization with information hiding are supportive in

building generic programs. The Standard Template Library

(STL) is a premier example of engineering benefits gained by

generality [26]. Techniques have also been proposed to lift

sufficient code similarity from the code to the architectural

level [27][28].

ART uses templates and code generation to achieve non-

redundancy. ART templates can represent any groups of

clones (e.g., files or directories) with arbitrary differences

among them (as opposed to only type-parametric differences

in C++ templates or Java generics).

C. ART versus cpp + scripts and XVCL

One can also achieve non-redundancy by parameterizing

and wrapping the code with cpp, shell scripts, and make files.

An example of that can be found in the JDK buffer library

described in [7]. SUN developers used cpp, scripts, and make

files to build a non-redundant representation from which

actual buffer classes are derived. A quick inspection of the

code reveals that such representation may serve only its

author and cannot be considered as a viable method to

engineer programs.

Sample ART templates shown in the paper may also look

complex. At the first glance they do. But, the fact is that ART

is governed by only five important constructs (i.e., #adapt,

#output, #insert-break mechanism, #while, and #select) that

are neatly integrated to form a method that can be learned

easily. Experience with XVCL (the ART predecessor)

demonstrates that large code can be effectively managed

achieving non-redundancy in the program areas where it

matters [19]. Despite user-defined syntax, ART further

1734 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

improves the user experience by providing the following

improvements to XVCL:

Easy to learn: XVCL is a dialect of XML and uses XML

trees and a parser for processing. ART parts with XML

syntax and processing. It offers a cpp based flexible and more

readable user-defined syntax. Just because cpp is so widely

used, learning ART is not so tedious.

More generalized: Contrary to XVCL, developers can

easily blend ART with the programming technologies of their

choice. It is because the developer can define their own

syntax and hence can avoid conflicts with the base languages.

Expanding the customization options under #adapt

command: In XVCL, the only command that you can place

under adapt is insert. ART allows to use any command under

#adapt. We found using #set, #while and #select commands

under #adapt to be particularly very useful.

Robust structure instead of unreadable loops: In XVCL,

while loops using many multi-value variables can be quite

confusing. ART introduces a structure called set-loop which

gives the possibility to store and use more multi-value

variables together as one loop descriptor data structure.

More flexible: ART is more flexible than XVCL, as it

allows the adaptation of a file even though the file might not

contain any ART commands. Such adaptation would simply

copy the adapted file to the output stream.

D. Comparison with Other Techniques

Companies today often develop and maintain custom

versions of the same software system for different customers

using SPL [4]. The core idea is to manage the system family

as a whole from a base of core assets designed for ease of

adaptation in various reuse contexts.

In the SPL context, ART attempts to capture and

streamline the end-to-end process of adapting software from

the specifications of variant features (e.g., in Linux called

configuration options) to the architectural structures and the

code. ART templates can manipulate any textual file

independent of their contents. So, it can also manage

variability in documentation and test cases, keeping all

textual SPL core assets in sync with evolving code.

Techniques proposed in research to manage variability in

SPL are mostly based on the principle of separation of

concerns (SoC), introduced by Dijkstra in early 1980’s [29].

The goal of SoC is to deal with concerns one by one,

independently from other concerns. When applied at the level

of design and implementation, SoC attempts to compose

software from components implementing different concerns.

Concerns that nicely fit into conventional modules are easy to

deal with. The challenge is to tackle cross-cutting concerns

that are tightly coupled with the rest of a program, and cannot

be easily modularized in a conventional way. There have

been attempts to bring SoC down to the design and

implementation levels. Aspect-oriented programming (AOP)

[30], multi-dimensional SoC (MDSOC) from IBM [31],

feature-oriented programming (FOP) [32], and colored IDE

(CIDE) [33] are among the most widely published of such

techniques. Among these techniques, AOP has been widely

used. In AOP, various computational aspects are programmed

separately and weaved at specified join points into the base

program. AOP can separate a range of programming aspects

such as synchronization, persistence, security transaction

management, authentication/authorization, and others.

Separated aspects can be easily modified and added/deleted

to/from program modules. Because of that, a number of

authors proposed AOP as a variability technique in the SPL.

A study to test this hypothesis revealed difficulties in using

AspectJ to deal with features that have chaotic impact on the

base code [34]. While AOP deals with big chunks of

functionalities (i.e., aspects) reasonably, it lacks a mechanism

to handle variations at the lower levels of granularity. ART on

the other hand, can handle variations at any levels of

granularity. Walkingshaw et al. [35] provided a systematic

and broader perspective on variational data structures.

Properties related to program customizations are

encapsulated in these variability-aware data structures.

IX. CONCLUSIONS

A study of industrial systems has shown that around 50%

of small cloned code fragments tend to be contained in big

clones [36]. While big clones are certainly intentional, they

contribute to the increased program size and complexity.

Therefore, big clones create a useful window from which to

understand and manage clones at all levels of granularity.

In this paper, we presented a technique for managing big

clones with non-redundant templates built with ART. ART

templates manage big clones without conflicts with

programming languages and other techniques used for

managing variability. We demonstrated the technique with

examples from the Linux kernel that uses cpp (among other

techniques) to manage variability.

In various similarity groups, by unifying clones into non-

redundant templates, ART eliminated 30-50% of the code.

Non-redundant views revealed by ART templates improve

program understanding. Program relations that have to do

with the impact of changes are important in program

understanding, maintenance and evolution, but remain mostly

implicit in conventional programs. ART templates expose and

explicate some of these program relations. For example,

when maintaining duplicated code we often must know

where such duplicates are and how they are different, in order

to decide if and how each of them should be modified. ART

makes such information more visible and tractable, reducing

the risk of unexpected errors when changing programs.

ART blends without conflicts with the underlying

programming language and any other techniques used to

manage variability in a software system. Therefore, we can

use ART to handle big clones, while other techniques (e.g.,

cpp and Kconfig in the Linux kernel) deal with other aspects

of the overall variability management problem. Such

seamless integration is necessary to allow the developers to

painlessly inject ART templates into the projects in mature

stages of evolution when big clones start emerging. ART

syntax is user-defined to make such injection easy, without

KULDEEP KUMAR ET AL.: MANAGING BIG CLONES TO EASE EVOLUTION: LINUX KERNEL EXAMPLE 1735

affecting already existing software solutions and people who

work with them. In the Linux context, ART can be viewed as

an extension of cpp where ART commands syntactically

resemble cpp directives, and can be incrementally learned as

extensions that enhance reuse capabilities of cpp. The Linux

Developers work with ART templates of the program, while

the ART Processor generates the Linux code in its original

form for the Linux SysAdmins.

Any new technique brings some overhead, requires

learning and skillful application. ART is no different from

other techniques in this respect. ART templates are not

created for quick gains during development, but for long-

term gains during software evolution and reuse. ART aims to

benefit long-lived systems that undergo extensive

evolutionary changes, or need to be tailored to the needs of

multiple customers.

ACKNOWLEDGMENT

We are thankful to Ulf Pettersson, Technical Director, Info-

Software Systems, ST Electronics Pte. Ltd., Singapore for

applying ART in his projects and providing us with

invaluable feedback.

REFERENCES

[1] P. Clements and D. Muthig, (Editors) Proceedings Workshop on

Variability Management–Working with Variation mechanisms, in

SPLC, 2006, IESE-Report No 152.06/E Version 1.0, Germany,
October 15, 2006

[2] C. L. Goues, S. Forrest, and W. Weimer, "The case for software

evolution," in FoSER, 2010, pp. 205–210, http://dx.doi.org/10.1145/
1882362.1882406

[3] R. Koschke, "Identifying and removing software clones", in Software

Evolution, Springer Berlin Heidelberg, 2008, pp. 15–36,
http://dx.doi.org/10.1007/978-3-540-76440-3_2

[4] P. Clements and L. Northrop, Software product lines: practices and

patterns. Addition-Wesley, 2002
[5] C. Kapser and M. W. Godfrey, ""Cloning considered harmful"

considered harmful," in WCRE, 2006, pp. 19–28, http://dx.doi.org/

10.1007/s10664-008-9076-6
[6] G. P. Krishnan and N. Tsantalis, "Unification and refactoring of

clones," in CSMR-WCRE, 2014, pp. 104–113, http://dx.doi.org/

10.1109/CSMR-WCRE.2014.6747160
[7] S. Jarzabek and L. Shubiao, "Eliminating redundancies with a

"composition with adaptation" meta-programming technique," in

ESEC/FSE, 2003, pp. 237–246, http://dx.doi.org/10.1145/
949952.940104

[8] S. Schulze, S. Apel, and C. Kästner, "Code clones in feature-oriented

software product lines," in GPCE, 2010, pp. 103–112,
http://dx.doi.org/10.1145/1942788.1868310

[9] R. Koschke, "Frontiers of software clone management," in FoSM,

2008, pp. 119–128, http://dx.doi.org/10.1109/FOSM.2008.4659255
[10] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K.

Czarnecki, "An exploratory study of cloning in industrial software

product lines," in CSMR, 2013, pp. 25–34, http://dx.doi.org/10.1109/
CSMR.2013.13

[11] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A.Wąsowski,
"Evolution of the Linux kernel variability model," in SPLC, 2010, pp.
136–150, http://dx.doi.org/10.1007/978-3-642-15579-6_10

[12] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock, "A

comparative study of language support for generic programming," in
OOPSLA, 2003, pp. 115–134, http://dx.doi.org/10.1145/949305.

949317

[13] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang, "XVCL: XML-based
variant configuration language", in ICSE, 2003, pp. 810–811,

http://dx.doi.org/10.1109/ICSE.2003.1201298

[14] P. Ye, X. Peng, Y. Xue, and S. Jarzabek, "A case study of variation

mechanism in an industrial product line," in ICSR, 2009, pp. 126–136,
http://dx.doi.org/10.1007/978-3-642-04211-9_13

[15] A. Kadav and M. M. Swift, “Understanding modern device drivers,”

in ASPLOS, 2012, pp. 87–98, http://dx.doi.org/10.1145/2150976.
2150987

[16] C. Kapser and M. W. Godfrey, “Toward a taxonomy of clones in

source code: A case study,” in ELISA, 2003, pp. 67–78
[17] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di Penta,

“Identifying clones in the Linux kernel,” in SCAM, 2001, pp. 90–97,

http://dx.doi.org/10.1109/SCAM.2001.972670
[18] H. A. Basit and S. Jarzabek, "A data mining approach for detecting

higher-level clones in software," IEEE Trans. Softw. Eng., vol. 35, no.

4, pp. 497–514, 2009, http://dx.doi.org/10.1109/TSE.2009.16
[19] U. Pettersson and S. Jarzabek, "Industrial experience with building a

web portal product line using a lightweight, reactive approach," in

ESEC/FSE, 2005, pp. 326–335, http://dx.doi.org/10.1145/
1081706.1081758

[20] S. Jarzabek, U. Pettersson, and H. Zhang, "University-industry collab-

oration journey towards product lines," in ICSR, 2011, pp. 223–237,
http://dx.doi.org/10.1007/978-3-642-21347-2_17

[21] S. Livieri, Y. Higo, M. Matsushita, K. Inoue, "Analysis of the Linux

kernel evolution using code clone coverage," in MSR, 2007, pp. 22,
http://dx.doi.org/10.1109/MSR.2007.1

[22] F. P. Brooks, Jr., "No silver bullet essence and accidents of software

engineering," IEEE Computer, vol. 20, no. 4, pp. 10–19, 1987,
http://dx.doi.org/10.1109/MC.1987.1663532

[23] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An empirical study
of code clone genealogies," in ESEC/FSE, 2005, pp. 187–196,

http://dx.doi.org/10.1145/1081706.1081737

[24] W. Wei and M. W. Godfrey, "A study of cloning in the Linux SCSI
drivers," in SCAM, 2011, pp. 95–104, http://dx.doi.org/10.1109/

SCAM.2011.17

[25] J. A. Goguen, "Parameterized programming," IEEE Trans. Softw.
Eng., vol. SE-10, no. 5, pp. 528–543, 1984, http://dx.doi.org/10.1109/

TSE.1984.5010277

[26] D. R. Musser, G. J. Derge, and A. Saini, STL tutorial and reference
guide: C++ programming with the standard template library.

Addison-Wesley Professional, 2009

[27] T. Mende, R. Koschke, and F. Beckwermert, "An evaluation of code
similarity identification for the grow-and-prune model,” J. of Soft.

Maint. & Evol., vol. 21, no. 2, pp. 143–169, 2009, http://dx.doi.org/

10.1002/smr.402
[28] P. Frenzel, R. Koschke, A. P. J. Breu, and K. Angstmann, "Extending

the reflexion method for consolidating software variants into product

lines,” in WCRE, 2007, pp. 160–169, http://dx.doi.org/10.1109/
WCRE.2007.28

[29] E. W. Dijkstra, "On the role of scientific thought," in Selected Writings

on Computing: A Personal Perspective, ed: Springer, 1982, pp. 60–66,
http://dx.doi.org/10.1007/978-1-4612-5695-3_12

[30] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M.

Loingtier, and J. Irwin, "Aspect-oriented programming," in ECOOP,
1997, pp. 220–242, http://dx.doi.org/10.1007/BFb0053381

[31] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, "N degrees of

separation: multi-dimensional separation of concerns," in ICSE, 1999,
pp. 107–119, http://dx.doi.org/10.1145/302405.302457

[32] D. Batory, J. N. Sarvela, and A. Rauschmayer, "Scaling step-wise

refinement," IEEE Trans. Soft. Eng., vol.30, no. 6, pp. 355–371, 2004,
http://dx.doi.org/10.1109/TSE.2004.23

[33] C. Kästner, S. Apel, and M. Kuhlemann, "Granularity in software

product lines," in ICSE, 2008, pp. 311–320, http://dx.doi.org/10.1145/
1368088.1368131

[34] C. Kästner, S. Apel, and D. Batory, “A case study implementing

features using AspectJ,” in SPLC, 2007, pp. 223–232,
http://dx.doi.org/10.1109/SPLC.2007.5

[35] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden,

“Variational data structures: exploring tradeoffs in computing with
variability,” in ONWARD!, 2014, pp. 213–226, http://dx.doi.org/

10.1145/2661136.2661143

[36] H. A. Basit, U. Ali, S. Haque, and S. Jarzabek, "Things structural
clones tell that simple clones don't," in ICSM, 2012, pp. 275–284,

http://dx.doi.org/10.1109/ICSM.2012.6405283

1736 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

