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Abstract—Successful software is often enhanced and adapted 

to the needs of new users. During evolution, a software system 

grows in size, becomes more complex, and costly to maintain. 

In this paper, we point to big clones—large granular duplicated 

program structures such as files or directories—as one of many 

reasons why this happens. Using the Linux kernel as an 

example, we show that big clones arise in the Linux kernel 

despite careful architecture design and a systematic approach 

for managing variability. We propose a solution to avoid these 

big clones by representing them as generalized templates in 

ART (Adaptive Reuse Technique). ART templates are 

constructed on top of the Linux code, without conflicts with the 

state-of-art techniques and tools used to manage the Linux 

kernel. Benefits include simplification of the Linux kernel due 

to non-redundancy, easier comprehension, and traceability of 

the change impact during evolution. The proposed technique is 

general and the Linux example discussed in this paper also 

illustrates general phenomena. 

I. INTRODUCTION 

HANGES in user features, design decisions, and 

platforms arise naturally during software evolution. 

Sometimes, these changes are contained at the architectural 

level [1]. But, most often the impact of changes spreads 

widely throughout the code. It has been reported that after 

years of evolution software systems grow in size, their 

structure decays, and become more and more difficult to 

maintain [2]. Evolution may lead to cloning [3]. New system 

versions are generally built by cloning (copy-paste-modify 

practice) code from the earlier versions. However, less 

cloning happens in advanced Software Product Line (SPL) 

solutions [4] where reuse and evolution are aided by 

systematic variability management rather than by cloning. 

There is a large body of research on reasons why clones 

arise—both within and across system versions—and whether 

clones are good or bad [5][6][7]. These studies show that 

designers may intentionally create certain clones to fulfill 

some design goals (e.g., for performance, readability, or yet 

other reasons) [5]. Other clones may result from careless 

design and can be refactored [6][8], and yet others may not 

play any useful role, but cannot be eliminated using 

conventional design techniques [7]. Nevertheless, cloning is a 

reality and there is need to deal with it [9]. No matter if 

clones are good or bad, it is beneficial to know where clones 

are in programs. It is particularly true for big clones such as 

duplicated files or directories. Big clones happen even if 

software evolution is systematically managed with variability 

management techniques [10]. In the paper, we use the Linux 

kernel to illustrate why this happens, and how we can 

manage big clones. 

The Linux kernel is among the largest well documented 

evolving systems systematically managed with variability 

techniques [11]. In that sense, a family of the Linux-kernel 

versions forms an SPL whose reusable core assets include a 

carefully designed architecture, systematically identified and 

documented configuration options (SPL features), a code 

base managed with the C preprocessor (cpp) as a main 

variability technique, Kconfig, and other tools and 

techniques. The reason why we find big clones in the Linux 

kernel—and, we believe, in many other evolving systems—is 

that commonly used variability management techniques fail 

to avoid them in a convenient way. 

Using generics (or C++ templates), we can non-

redundantly represent similar classes differing in type 

parameters [12]. Big clones found in industrial systems need 

not be classes, but files or directories–program structures of 

any kind and size that differ in arbitrary ways, not just in type 

parameters. In this paper, we use Adaptive Reuse Technique 

(ART: https://sourceforge.net/projects/vclang/) to represent 

big clones as generalized templates. Like generics or C++ 

templates, ART templates can be instantiated in variant 

forms. Unlike other templates, ART templates can be built for 

groups of similar program structures of any kind (e.g., files or 

directories) that differ in variety of ways typically found in 

real systems. ART is an enhanced, lightweight and XML-free 

version of XVCL [13]. 

We briefly introduce variability management in the Linux 

kernel in Section II. In Section III, we discuss examples of 

big clones in Linux kernel version 3.10. Section IV describes 

how ART blends into Linux kernel development and use 

cycles. Sections V and VI describe explain how we manage 

big clones with ART. We evaluate the benefits and trade-offs 

of the proposed solution in Section VII. Related work and 

conclusions end the paper. 

II. VARIABILITY MANAGEMENT IN THE LINUX KERNEL 

Despite technological advancements in programming 

technologies, preprocessors are still indispensable. 

Preprocessing solves some niche problems better than other 

techniques do. One such problem area is variability 

management in software evolution and reuse. To some extent 
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we can manage variability at the level of software 

architecture [1]. But from architecture variability leaks to the 

code, and here that preprocessors along with configuration 

files and other similar techniques [14] become handy. 

The Linux kernel developers applied clean architectural 

design, cpp, build tools, shell scripts, and other tools to 

facilitate adaptation of the Linux kernel to the specifics of 

target computers. Close to eleven thousand configuration 

options control the adaptation process. These options 

correspond to cpp parameters that navigate execution of cpp 

directives (such as #ifdef’s) that select code relevant to the 

target computer of user’s choice. The high-level 

configuration tool Kconfig maps these configuration options 

to the chains of relevant cpp directives embedded in the 

Linux code. Having selected required options, Kconfig 

automatically triggers execution of cpp directives and selects 

compilation units via the make utility to build a custom Linux 

kernel for a specific computer. Users do not have to 

understand the details of the adaptation mechanism. While 

the complexities of cpp instrumentation are hidden from the 

users, developers who maintain and extend the Linux kernel 

must understand code instrumented with cpp. 

III. MOTIVATING EXAMPLE: BIG CLONES IN THE LINUX 

In the Linux kernel, the Journaling Block Device (JBD) 

provides an interface for the file system journaling. There are 

two directories namely /jbd and /jbd2 implementing this 

functionality, with /jbd2 being an evolutionary branch of /jbd. 

/jbd2 compatibly extends /jbd with new features such as 

support for 64-bit computers, check-summing of journal 

transactions, and asynchronous transaction commit block 

write.  

Each directory consists of six files shown in Fig. 1. Much 

similarity in functionality and code (Table I) among files 

corresponding by names suggests that /jbd2 files were created 

by copying and modifying /jbd files. Fig. 2 sketches code 

snippets highlighting the code similarities and differences 

between the two checkpoint.c files. 

checkpoint.c

jbd jbd2
fs

Linux kernel 3.10

recovery.c

journal.c
commit.c transaction.c

revoke.c checkpoint.c
recovery.c

journal.c
commit.c transaction.c

revoke.c

 

Fig. 1. Motivating example: cloned directories /jbd and /jbd2  

51:    static inline void __buffer_unlink(struct journal_head *jh)
52:    {
53:    transaction_t *transaction = jh->b_cp_transaction;
54:    
55:    __buffer_unlink_first(jh);
56:    if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61:    }

51:    static inline void __buffer_unlink(struct journal_head *jh)
52:    {
53:    transaction_t *transaction = jh->b_cp_transaction;
54:    
55:    __buffer_unlink_first(jh);
56:    if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61:    }

Identical Code Fragments : ~554 LOC

128:    while (__log_space_left(journal) < nblocks) {
129: if (journal->j_flags & JFS_ABORT)
130: return;
131: spin_unlock(&journal->j_state_lock);
132: mutex_lock(&journal->j_checkpoint_mutex);

124:    while (__jbd2_log_space_left(journal) < nblocks) {
125: if (journal->j_flags & JBD2_ABORT)
126: return;
127: write_unlock(&journal->j_state_lock);
128: mutex_lock(&journal->j_checkpoint_mutex);

Code Fragments with Parametric Changes: ~47 LOC

333:    set_buffer_jwrite(bh);
334:    bhs[*batch_count] = bh;
335:    __buffer_relink_io(jh);
336:    jbd_unlock_bh_state(bh);
337:    (*batch_count)++;
338:    if (*batch_count == NR_BATCH) {
339:    spin_unlock(&journal->j_list_lock);
340: __flush_batch(journal, bhs, batch_count);

311:    journal->j_chkpt_bhs[*batch_count] = bh;

312:    __buffer_relink_io(jh);
313:    transaction->t_chp_stats.cs_written++;
314:    (*batch_count)++;
315:    if (*batch_count == JBD2_NR_BATCH) {
316: spin_unlock(&journal->j_list_lock);
317: __flush_batch(journal, batch_count);

Code Modification: ~12 LOC

306:  spin_unlock(&journal->j_list_lock);
276:    transaction->t_chp_stats.cs_forced_to_close++;
277:    spin_unlock(&journal->j_list_lock);
278:    if (unlikely(journal->j_flags & JBD2_UNMOUNT))
279:    /* The journal thread is dead; so starting and
281: * waiting for a commit to finish will cause
282: * us to wait for a _very_ long time.*/
284: printk(KERN_ERR "JBD2: %s: “
285:    "Waiting for Godot: block %llu\n“,
286: journal->j_devname,
287: (unsigned long long) bh->b_blocknr);

520:    journal_update_sb_log_tail(journal, first_tid, blocknr,
521:    WRITE_FLUSH_FUA);
522:    spin_lock(&journal->j_state_lock);
523:    /* OK, update the superblock to recover the freed space.
524:      * Physical blocks come first: have we wrapped beyond the end of
525:      * the log?  */
526:    freed = blocknr - journal->j_tail;

460:    __jbd2_update_log_tail(journal, first_tid, blocknr);

Code Deletion: ~95 LOC

Code Insertion: ~29 LOC

 

Fig. 2. Motivating example: code snippets of cloned file /jbd/checkpoint.c (left) and /jbd2/checkpoint.c (right)   
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TABLE I. SIMILARITY AMONG FILES IN DIRECTORIES /JBD2 AND /JBD 

The directories /jbd and /jbd2 exemplify the situations that 

can benefit from ART as they cannot be effectively handled 

by other techniques. The reasons why we find such situations 

in the Linux kernel are functional similarities among different 

subsystems, extensions to the existing functionalities, 

adaptation of the existing subsystem code for the new one 

(incremental development), evolutionary development, and 

decentralized development [15][16][17]. 

IV. ART FOR THE LINUX KERNEL 

In this section, we show how ART blends with the Linux-

kernel development and uses cycles (Fig. 3). A Linux 

Developer, a member of an open-source community evolves 

the Linux kernel, e.g., by adding new devices into it. The 

Linux SysAdmin adapts the kernel for her computer using 

tools such as Kconfig.  

Configure 

Linux
cpp

Linux Developer

Linux SysAdmin
Linux kernel

for a target 

computer

Kconfig

Original Linux 

kernel in cpp

Linux kernel in 

cpp wrapped with  

ART templates

Create ART 

templates of 

the kernel

ART 

Processor

Find big clones

Clone 

Detector

Evolve Linux

 

Fig. 3. An overview of Adaptive Reuse Technique (ART) 

Big clones can be identified in the Linux kernel with aid of 

a suitable clone detector (we used Clone Miner [18]). The 

Linux Developer builds ART templates for big clones on top 

of the Linux code managed by cpp. From that point onwards, 

big clones are maintained via ART templates. ART templates 

do not affect the work of the Linux SysAdmin. 

The ART Processor converts ART templates back to the 

original Linux code. The ART Processor instantiates 

templates in the same way as the C Preprocessor expand cpp 

directives. For example, for a template representing a group 

of similar files, the ART Processor generates code for these 

files based on specifications of deltas—differences between 

the template and each of these files. The generated Linux 

code is in the original form, and can be processed as normal 

by Kconfig, cpp, or make tool. 

ART-template view of the Linux kernel and the original 

Linux kernel can be used together in two independent cycles 

of maintaining and using the kernel. 

V. TYPES OF CLONES THAT WE HANDLE WITH ART 

We categorized big clones in the Linux kernel based on 

their granularity. 

A. Similar Directories 

In the example of Section III, /jbd and /jbd2 play the same 

role, with /jbd2 being an evolutionary branch of /jbd 

addressing a new computer architecture and its capabilities. 

Each of the two directories contains six files, with much 

similarity between files corresponding by names. We found 

five other cases in Linux kernel following the pattern of /jbd 

and /jbd2, with the number of files in these directories 

varying between 19 and 46. In some cases, a directory 

contained one or more files that do not have similar 

counterparts in the cloned directory. 

B. Similar Files 

We found many cases of similar files within the same 

directory, as well as across directories. A common reason for 

replicating a file in the same directory is to make a certain 

existing functionality available for yet other computer 

architecture, device, or tool. An example is drivers for 

different brands of touchscreen devices—in directory 

/drivers/input/touchscreen, 10 files share the same structure 

and much code. Two directories having almost similar 

purpose (vide our motivating example) may contain similar 

files. Sometimes, the same or similar file may be required in 

two or more directories, even if these directories have not 

enough code similarity. For example, functionality for 

handling extended user attributes is needed in directories 

/fs/ext2, /fs/ext3 and /fs/ext4, therefore file “xattr_user.c” that 

defines this functionality appears in all three directories. 

C. Duplicated Code Fragments 

At times, creating templates for duplicated code fragments 

can be useful too, provided these fragments are long enough, 

play some specific role (e.g., represent some meaningful 

function), or recur in many places in programs. For example, 

code fragments in Fig. 4 implement a device specific queue 

handling procedure for different wireless network adapters. 

An instance of this code fragment occurs once in each of the 

files “rt2400pci.c”, “rt2500pci.c”, “rc2800pci.c” and 

“rt61pci.c”, and twice in each of the files “rt2500usb.c”, 

“rc2800usb.c” and “rt73usb.c”. 

VI. CONSTRUCTION AND PROCESSING OF ART TEMPLATES 

In this section, we explain how we represented big clones 

as ART templates. We start with a brief overview of how 

ART works, followed by the explanation of how we build 

ART templates, illustrated with the Linux kernel example.   

File Name 

Total LOC 

in corres-

ponding 

jbd/jbd2 

files 

Identical 

LOC 

LOC with 

parametric 

differences 

Modified 

LOC 

Inserted 

LOC 

Deleted 

LOC 

checkpoint.c 782/705 554 47 12 29 95 

commit.c 1002/1192 523 93 35 364 218 

journal.c 2122/2146 1266 287 29 690 229 

recovery.c 594/862 420 52 12 234 0 

revoke.c 740/769 544 94 3 25 0 

transaction.c 2229/2348 1346 130 56 516 399 
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static void rt73usb_start_queue(struct data_queue *queue)  {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
break;

default:
break;

}
}

static void rt2800usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
break;

default:
break;

}
}

rt73usb.c rc2800usb.c

 

Fig. 4. Sample code fragments from rt73usb.c and rc2800usb.c (differences highlighted)   

A. An Overview of ART 

For each group of clones, we distill common code into 

ART templates and mark the locations where clones differ 

one from another with ART commands (italicized for clarity 

in the description below). Fig. 5 outlines the overall solution, 

which consists of an ART-template hierarchy in which 

templates at the lower-level serve as building blocks for the 

higher-level templates. The ART templates are linked 

together by #adapt commands. The top-most template, called 

the specification file (SPC), specifies how to adapt other 

templates lower in the hierarchy to accommodate required 

variations. The ART Processor checks the templates for their 

conformance to the ART grammar definitions. It then 

traverses the template hierarchy in the depth-first order, 

starting with the SPC and performs adaptations by executing 

the ART commands embedded in the SPC and other ART 

templates. During traversal, each ART template adapts other 

templates from its sub-hierarchy. At the end, the ART 

Processor produces the required cloned instances. 

ART 

Processor

SPC

ART-template hierarchy Clone instances

input output

#adapt
Key:

---------
---------

---------
---------

---------
ART template  

Fig. 5. An overview of the ART-template solution 

Fig. 6 depicts steps in template processing. The ART 

Processor starts by reading the SPC (step-1). It fetches the 

ART commands step-by-step in the order in which they 

appear in the SPC (step-2). Whenever it hits an #adapt 

command (step-3), the processing will switch immediately to 

the adapted template (step-4) and switch back when the 

adapted template finishes its processing. Within a template, 

each ART command is processed one after another, in the 

same way as in the SPC. For the other commands, the 

Processor executes the ART command and builds the output 

(step-4') incrementally. Once the Processor reaches the end of 

the SPC (step-5), it generates the required source code files 

(step-6); if not, the ART Processor fetches the next ART 

command from the SPC (step-6'). 

ART 

Processor

Input : Template views of the Program

Other ART  

Templates

Process the 

Command
is not adapt

Builds output 

incrementally

Complete 

Processing

end of SPC file

Output: Native Code

SPC

else 
2

1

3

5

4

4'

6

6'

reads

Fetch the 

Command

is adapt

---------
---------

---------

 

Fig. 6. Traversal mechanism of the ART Processor 

B. ART-template Construction Mechanism 

Despite a large fraction of the code common to all the 

clone instances (i.e., identical code fragments in the 

corresponding clone instances), as shown in Fig. 2, the three 

main types of differences among corresponding clone 

instances are parametric differences (code with parametric 

changes), alternatives (code modifications), and extras (code 

insertions and deletions).  

The first task during the ART-template construction 

process is to identify these similarities and differences among 

corresponding clone instances. Once the corresponding 

similarities and differences are identified, ART templates 

record exact locations of these variation points at which the 

clone instances differ. ART commands can be used 

systematically to mark these variation points. Identical code 

fragments can be used directly as-it-is in the corresponding 

ART templates. ART variables treat parametric differences. 

The ART command #select allows choosing one among pre-

defined alternatives (options), and #insert into #break 

mechanism handles additions and deletions of extra code. 

C. Example: Template Construction for JBD 

Fig. 7 shows the structure of ART solution for the JBD 

files. Each pair of similar files (e.g., checkpoint.c in /jbd and 

/jbd2) is represented by a template (e.g., checkpoint.art). The 

associated template checkpoint.spc specifies the differences 

between the two source files as deltas from checkpoint.art. 

The top-most template jbdX.spc navigates the process of 

instantiating the templates to form the Linux source files in 

their original form (i.e., instrumented with cpp).  
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handle differences 
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versions of 

checkpoint.c

checkpoint.spc
Commands to 

handle differences 

between two 

versions of 

recovery.c

recovery.spc

Commands  to 

handle similarities 

between two 

versions of 

checkpoint.c

checkpoint.art

Commands to 

handle similarities 

between two 

versions of 

recovery.c

recovery.art

ART commands to navigate the process of 

instantiation of templates forming Linux source files 

in their original form. It also handles the parametric 

differences between clone-instances of a clone-class

jbdX.spc

Commands  to 

handle differences 

between two 

versions of 

revoke.c

revoke.spc

Commands to 

handle similarities 

between two 

versions of 

revoke.c

revoke.art

Commands  to 

handle differences 

between two 

versions of 

transaction.c

transaction.spc

Commands to 

handle similarities 

between two 

versions of 

transaction.c

transaction.art

 

Fig. 7. Constructing ART templates: JBD example 

Fig. 8 shows the details of ART templates. In jbdX.spc, 

ART variables are declared using #set commands (lines 1–6). 

Variable “dirName” is assigned two values, “jbd” and “jbd2” 

(line 2) that control the #while loop (line 7). The loop 

executes twice, with the value of “dirName = jbd” in the first 

iteration, and the value of “dirName = jbd2” in the second 

one. The Variable “fileName” is set to six values, each 

representing a file name (line 3). 

The ART variable “action” helps represent lines: 
spin_unlock(&journal->j_state_lock); //in jbd/checkpoint.c 

write_unlock(&journal->j_state_lock); //in jbd2/checkpoint.c 

in a single line in checkpoint.art (line 4): 
?@action?_unlock(&journal->j_state_lock); 

The two values of “action” are defined by: 
#set action = “spin”, “write”   // line 4 in jbdX.spc  

The generation loop defined in line 7: 
#while dirName, action,…, tagByte 

is controlled by a list of variables that cater for all parametric 

differences between the two checkpoint.c files. The command 

#output (line 9) instructs the ART Processor to create a 

directory and to place any further output into this directory (if 

the output file or directory is not specified, the ART 

Processor emits the code to an automatically generated 

default file named “defaultOutput”). Expression 

“?@fileName?” is used to fetch the value of an ART variable 

filename (line 9). 

Similar to cpp’s #include directive, an #adapt command 

(line 10 in jbdX.spc) instructs the ART Processor to include 

the designated template to the output. In addition, the #adapt 

command also tells the Processor to customize the designated 

template and assemble the customized result into the output. 

For example, given two ART templates t and t', the statement 

“#adapt t” in template t' suspends processing of the current 

template (i.e., t'), and transfers processing to the template t. 

The ART Processor applies all the customizations specified 

under template t. Commands below #adapt in template t' 

indicate customizations to be applied after the template t is 

processed. 

Variation points at which the two corresponding files (e.g., 

checkpoint.c) in /jbd and in /jbd2 directories differ are 

marked using ART commands—references to the ART 

variables, #select, #break, and possibly other commands. 

ART variables control selection of the code in case of 

alternative differences. This is illustrated as “#select 

dirName” in the template checkpoint.spc (line 4). #option 

(line 5 and 10 in checkpoint.spc) controls the variable values. 

File checkpoint.c in one directory contains some extra 

lines as compared to checkpoint.c in another directory. These 

extra lines are specified using #insert commands in various 

“#select dirName” options. “#insert process_buffer” (line 11 

in checkpoint.spc) propagates the code to “#break 

process_buffer” in checkpoint.art (line 12). #insert-before 

and #insert-after (line 6–9 in checkpoint.spc) add their code 

before or after the code contained in the matching #break 

(line 7 in checkpoint.art). While #select instruments a 

template with known variations, #break allows for extensions 

to a template in unexpected ways in the specific context of 

adaptation, without affecting others. These provisions for 

unexpected evolutionary changes give ART templates 

flexibility and stability.  

1 #break copyright    % insert code from line 

12 in jbdX.spc

2 …

3 …

4 ?@action?_unlock(&journal->j_state_lock);

5 …

6 …

7 #break: wait_cp_io % insert code from  

checkpoint.spc

8 % default source code

9 #endbreak

10 …

11 …

12 #break: process_buffer % insert code from  

checkpoint.spc

13 % default source code

14 #endbreak
15 …

checkpoint.art

1 #adapt "checkpoint.art" % call to the 

template checkpoint.art

2 …

3 …

4 #select dirName

5 #option jbd

6 #insert-before wait_cp_io

7 % code before wait_cp_io beakpoint

8 #insert-after wait_cp_io

9 % code after wait_cp_io beakpoint

10 #option jbd2

11 #insert process_buffer

12 …

13 …

14 …

15 #endadapt

checkpoint.spc

1 % ART variable declarations

2 #set dirName = "jbd", "jbd2"

3 #set fileName = "checkpoint", "commit", "journal", "recovery", "revoke", "transaction"

4 #set action = "spin", "write"

5 …

6 #set tagByte="sizeof(journal_block_tag_t)","tag_bytes"

7 #while dirName, action,…, tagByte

8 #while fileName

9 #output ?@dirName?"/"?@fileName?".c"

10 #adapt ?@fileName?".spc"

11 #insert copyright

12 % content to be inserted on call to "copyright" breakpoint

jbdX.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting differences between two 

different versions of transaction.c

transaction.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting similarities between two 

versions of transaction.c

transaction.art

<adapts>

<adapts>

 

Fig. 8. Code snippet of ART templates for the JBD example 

The ART Processor generates Linux code traversing the 

template hierarchy and emitting the code for the six files in 

the /jbd and /jbd2 directories from their respective templates. 

After that, the Linux code can be configured with Kconfig, 

and processed with cpp in the usual way. Template views 

expose the fact that the two directories and corresponding 

files in them are similar to each other, and also explicate 

every detail of similarities and differences among them. This 

information is implicit in the Linux code. Explicating it using 
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ART can be useful in further evolution of the JBD file system 

(Section VII). 

D. Other Similarity Patterns at the Directory Level 

Other cases of similar directories may not follow such a 

regular similarity pattern as in /jbd and /jbd2. For example, in 

the directories /drivers/infiniband/hw/qib and 

/drivers/infiniband/hw/ipath, in addition to similar files, 

/drivers/infiniband/hw/qib contains some extra files that do 

not have a counterpart in /drivers/infiniband/hw/ipath. Still, 

there is enough similarity in the concept and code between 

/drivers/infiniband/hw/ipath and /drivers/infiniband/hw/qib to 

build an ART-template solution for these two directories. The 

scheme used for building ART templates for /jbd and /jbd2 is 

also applicable in these situations, as templates manage pairs 

of similar files only and the remaining other files remain 

intact in the directories. 

E. Constructing Templates for Similar Files 

In this case, we deal with the similar files found in the 

same directory and the similar files in different directories, 

bearing in mind that directories as a whole are not considered 

good candidates for representing them as templates. For each 

such situation, we can create ART templates for similar files 

if we think that exposition of similarities and differences 

among these files can aid developers in reuse, program 

understanding, maintenance, and evolution of the Linux 

kernel. The solution follows the similar scheme as shown in 

Fig. 7 and Fig. 8. 

VII. EVALUATION 

ART and its predecessor XVCL have been applied in 

industrial projects as a variability technique to manage reuse 

in product lines of web portals, and command and control 

systems [19][20]. In these projects, the productivity impact of 

applying the technique was measured and evaluated. An 

industry partner also participated in the Linux study 

described in this paper. In this section, we evaluate our ART 

solution for Linux, complementing it with lessons learned 

from other industrial projects with ART.  

A. Reusing Templates within a Version of the Linux kernel 

In a large system such as the Linux kernel, it is common to 

find clones within subsystems or modules, as well as across 

subsystems or modules. Each clone group can be managed by 

ART templates as long as such a non-redundant 

representation is deemed useful. Therefore, ART solution 

takes form of template hierarchies (Fig. 9) that explicates the 

location of clones and the exact nature of similarities and 

differences among replicated program structures. This 

knowledge is generally useful in understanding program 

design. 

The example in Fig. 9 shows how ART templates reveal 

implicit couplings among bigger structures that contain 

repetitions. The same functionality defined in the templates 

commonConnectDisconnect.art and serioDriverStructure.art 

is needed in /touchscreen/common.art and 

/joystick/common.art. Templates for these two directories 

explicitly show the fact that this functionality is needed in 

both “touchscreen” and “joystick” drivers. If such implicit 

dependency among program modules is not documented, it 

may be overlooked during program evolution that may lead 

to errors. 

//SPC for touchscreen drivers
…

…

#adapt "touchscreen/common.art"

touchscreen/start.spc

ART template for disconnect and 

connect method common to both 

touchscreen AND joystick drivers

commonConnectDisconnect.art

ART template for serio driver 

structure common to both 

touchscreen AND joystick drivers

serioDriverStructure.art

Templates for touchscreen drivers only Templates for joystick drivers only

//Template common for all touchscreen

drivers only

...

#adapt "commonConnectDisconnect.art”

…

#adapt "serioDriverStructure.art"

…

touchscreen/common.art

<adapts>

//SPC for joystick drivers
…

…

#adapt “joystick/common.art"

joystick/start.spc

//Template common for all joystick drivers 

only

...

#adapt "commonConnectDisconnect.art”

…

#adapt "serioDriverStructure.art"

…

joystick/common.art
<adapts>

Reused templates among joystick and touchscreen drivers

Code Snippet illustrating reuse of ART template (CommonConnectDisconnect.art and 

serioDriverStructure.art) by both touchscreen and joystick drivers

<adapts>

 

Fig. 9. Template reuse 

B. Reusing Templates across Versions of the Linux kernel 

Template reuse interconnects ART-template solutions 

developed for different groups of clones from the bottom, as 

shown in Fig. 9. It is also useful to interconnect partial ART-

template solutions from the top, by introducing higher-level 

umbrella templates that trigger ART processing of some or all 

templates in the solutions.  

Umbrella templates help developers manage multiple 

versions of the Linux kernel from the common base. A case 

study performed on 136 stable versions of the Linux kernel 

shows clone coverage of approximately 67% [21]. The 

coverage was found to be even higher between two 

consecutive versions due to small changes in successive 

releases of the kernel. Using umbrella templates, as shown in 

Fig. 10, we represented the commonalities between two 

versions, together with the version-specific code in different 

templates. 

C. Handling Evolutionary Changes 

Evolution often brings forward changes to the 

requirements and related code. For example, there might be a 

need to add a new directory /jbd3, or add more files to the 

JBD directories. ART has provisions to accommodate 

evolutionary changes to the templates (e.g., adding jbd3), 

without affecting existing code derived from the templates 

(e.g., jbd and jbd2).  

Assuming that the new directory /jbd3 also contains six 

files that are similar to their counterparts in the /jbd and 

/jbd2, we need to make the following changes to the 

templates shown in Fig. 8: 

 jbdX.spc:  
 #set dirName = "jbd", "jbd2", "jbd3"  
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// The file which adapts 
kernel  as per requirements
…
#adapt "kernel_3_9.spc“
#adapt "kernel_3_10.spc“
#adapt “kernel_3_11.spc”
…

//Template specific to kernel 3.10

#adapt "fs.spc“

#adapt …

#adapt "drivers.spc"

#adapt "jbdX.spc“

#adapt …

# adapt ...

#adapt "touchscreen.spc“ 

#adapt … 

#adapt "joystick.spc“

start.spc

kernel_3_10.spc

drivers.spcfs.spc

//Template specific to kernel 3.11

#adapt "fs.spc“

#adapt …

#adapt "drivers.spc"

kernel_3_11.spc

ART templates specific to particular Linux 

versions

ART templates 

for the code 

common to all

versions of the 

Linux Kernel

ART templates 

for the code 

specific to 

Linux Kernel-

3.9 only

ART templates 

for the code 

specific to 

Linux Kernel-

3.10 only

ART templates 

for the code 

specific to 

Linux Kernel-

3.11 only

ART templates 

for the code 

common to 

some versions of 

the Linux Kernel

ART templates shared among two or 

more  versions of the Linux kernel  

Fig. 10. Umbrella templates for an overall ART solution 

#set fileName = "checkpoint",…, "recovery" 

 … 

 #while dirName , action,…, tagByte  

 #while filename  

 #output ?@dirName?"/"?@fileName?".c"  

  #adapt: ?@fileName?".spc” 

  … 

checkpoint.spc:  
 #adapt: "checkpoint.art"  

 #select dirName  

 #option jbd3  

 … 

% Customization to other templates with regards to jbd3 

checkpoint.art:  
 % Customizations to checkpoint.art specific to jbd3 
% Customizations to other templates considering jbd3 

In case of new variation points between the template and 

the file in /jbd3, we place new #break commands in the 

template. These new #break commands will cater for the 

differences specific to /jbd3, injected by #inserts in “#option 

jbd3” without affecting /jbd or /jbd2. 

D. Aid in Program Understanding and Maintenance 

Ease of comprehending program relations that matter 

during maintenance: ART templates enhance important 

relationships among program elements that matter to 

programmers trying to understand and modify the code. 

Instead of dealing with each directory or file separately, 

programmers can comprehend them in groups, and see the 

commonalities and differences among members of each 

group. It reduces ripple effects and the risk of update 

anomalies. In this way, if one wants to change a file, it is easy 

to check whether the changes also affect other files. For 

example, as illustrated in Fig. 7, similarities and differences 

are explicitly visible for jbd and jbd2 file systems. Such 

relations are generally hidden in conventional programs. 

Making them visible and easily tractable improves program 

maintenance. It also makes impact of changes easy to 

comprehend (as shown in Section VII.C). 

Non-redundancy: ART templates eliminate redundant code 

from the software systems. For example, in our Linux 

experiment, ART templates reduced the size of code with 

redundancies by 30-50%. As both code and comments are 

important in software maintenance and program 

understanding, the upside of the proposed technique is that it 

is possible to manage both duplicated code and comments 

using it. ART allows a clean separation of various sources of 

changes that affect program during evolution. ART templates 

reduce the number of points at which affected changes must 

be made. Changes done to one template consistently 

propagate to all the contexts in which that template is 

adapted. Even if the changes are not uniform, adaptations can 

be made at specific variation points using the ART 

commands without directly modifying the code fragments. 

The ART template hierarchy explicitly reflects the impact of 

changes on the program structure. We can easily trace how 

different features affect the code. 

Enhancing program understanding and conceptual 

integrity: According to Brooks [22], program understanding 

and conceptual integrity are among the most important 

considerations in system design. Big clones often embody 

domain-specific abstractions or design concepts. By formally 

capturing these abstractions and concepts, ART templates aid 

in program understanding and enhance conceptual integrity 

of the design. 

Creating templates can be considered as refactoring at the 

meta-level: In some cases, developers seek to improve certain 

program qualities but due to some unavoidable reasons 

cannot achieve this at the code level. In such cases, we can do 

that at the level of meta-level templates. We benefit from 

non-redundancy at the meta-level templates, while still 

keeping repetitions in programs (as it is often desirable or 

unavoidable [7][23]). 

Formally representing multiple design views: Program 

modules often belong to many logical groups that matter to 

developers at different times. Each logical partitioning 

reflects a certain aspect of program design that matters at a 

given time in the development in a given context. For 

example, for a given business function in business software, 

the modules for user interface, business logic, and database 

are usually implemented in different system partitions. 

Logically these modules belong to each other and sometimes 

we must know which modules implement a given business 

function completely. But, only one logical partitioning can be 

formally represented in a program physical structure. ART 

provides means to overlay programs with a web of meta-

structures formally defining these logical partitions linked to 

code and without conflicts with the code. 

Other Benefits: ART makes it easy for the programmers to 

do any program modifications and extensions at the template 

level. So there is no need to modify the code, and templates 

always remain in sync with the code as programs evolve. 
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In addition, with reference to the Linux kernel, aiding 

Linux Developers without affecting Linux SysAdmins is one 

cornerstone of the proposed solution. ART templates are non-

intrusive, i.e., they do not affect the way cpp is normally 

used, but it improves understandability and maintainability of 

the programs instrumented with cpp. Also, the Linux code 

can be re-generated in the original form, and processed as 

normal by Kconfig, cpp or make tools. It provides a two-way 

view to understand and maintain the kernel—one with state-

of-art variability technique (i.e., cpp), and another using ART. 

Like cpp, ART manipulates code in an unrestrictive way, 

with no concern for the syntactic or semantic rules of the 

underlying programming language. Freeing from language 

constraints makes ART powerful to represent the groups of 

similar structures of arbitrary kind differing in arbitrary ways 

in generic forms. 

E. Trade-offs and Threats to Validity of Results 

The flexibility of manipulating the code in unrestricted 

way comes at the price of not being able to quarantine the 

correctness of the generated code. Unrestrictive program 

manipulation decreases the type-safety of the program. Also, 

the trade-off is between the benefits and cost of learning the 

new technique. ART syntax is very simple and consists of 

only few constructs (such as #adapt, #insert-break 

mechanism, #while). Yet, building quality ART templates 

require skilled experts, so that the benefits of ART outweigh 

the burden of learning and adopting it. 

The benefit of ART depends on the degree of redundancy 

in a software system that cannot be fixed by simple 

refactoring. The bigger the size of software systems, the 

higher the likelihood of redundancies and evolutionary 

changes, and hence more will be the benefits of using ART. It 

follows that families of similar systems should be prime 

candidates for ART template views, as there is much 

similarity among components of such systems. Thus, the 

proposed technique seems to have more direct relevance in 

the SPL context, where we have the role of domain engineer 

who is responsible for building reuse-based productivity 

solutions that serve many systems in long run. ART templates 

belong to that category of solutions. 

VIII. RELATED WORK 

We discuss related work on cloning in the Linux kernel 

and techniques that help programmers achieve non-

redundancy, including XVCL (the predecessor of ART). 

A. Cloning in the Linux Kernel 

Cloning in the Linux kernel has been extensively studied 

in the literature [15][16][17][21][24] mainly focusing on the 

detection of small cloned code fragments. In the Linux 

v2.4.0, Casazza et al. [17] reported cloning of 15.5% between 

arch and drivers subsystems. They also reported 13.6% 

cloning between arch and kernel subsystems. Other study 

showed that file subsystem had 12% clone coverage in the 

Linux v2.4.19 [16]. In the Linux v2.6.37.6, 8% code 

similarity between drivers (/sound and /drivers directories) 

has been reported [15]. An empirical study of cloning among 

SCSI drivers is done by [24]. We found these cloning rates to 

be lower than those reported in similar studies for web 

applications [19] (60%-90%) or class libraries [7] (68%). 

Compared to other studies, this paper aims at the detection 

and analysis of big clones instead of small cloned code 

fragments that are detected and analyzed by other studies.  

B. Managing Redundancies in Software Systems 

Simple-minded development often leads to cloning (copy-

paste-modify practice). As mentioned earlier, cloning may 

also be done for good reasons [5]. Still, non-redundancy has 

been always considered an important quality of well-

designed software. The Software Engineering principle of 

generality encourages avoiding repetitions and building 

parameterized software solutions that can be reused in many 

contexts. Macros were an early attempt to make programs 

adaptable to various contexts. Goguen popularized the ideas 

of parameterized programming [25]. Among programming 

language features, type parameterization [12] (called generics 

in Ada, Eiffel, Java and C#, and templates in C++), higher-

order functions, and inheritance can help avoid repetitions in 

certain situations. Design techniques such as iterators, design 

patterns, table-driven design (e.g., in compiler-compilers), 

and modularization with information hiding are supportive in 

building generic programs. The Standard Template Library 

(STL) is a premier example of engineering benefits gained by 

generality [26]. Techniques have also been proposed to lift 

sufficient code similarity from the code to the architectural 

level [27][28]. 

ART uses templates and code generation to achieve non-

redundancy. ART templates can represent any groups of 

clones (e.g., files or directories) with arbitrary differences 

among them (as opposed to only type-parametric differences 

in C++ templates or Java generics). 

C. ART versus cpp + scripts and XVCL 

One can also achieve non-redundancy by parameterizing 

and wrapping the code with cpp, shell scripts, and make files. 

An example of that can be found in the JDK buffer library 

described in [7]. SUN developers used cpp, scripts, and make 

files to build a non-redundant representation from which 

actual buffer classes are derived. A quick inspection of the 

code reveals that such representation may serve only its 

author and cannot be considered as a viable method to 

engineer programs. 

Sample ART templates shown in the paper may also look 

complex. At the first glance they do. But, the fact is that ART 

is governed by only five important constructs (i.e., #adapt, 

#output, #insert-break mechanism, #while, and #select) that 

are neatly integrated to form a method that can be learned 

easily. Experience with XVCL (the ART predecessor) 

demonstrates that large code can be effectively managed 

achieving non-redundancy in the program areas where it 

matters [19]. Despite user-defined syntax, ART further 
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improves the user experience by providing the following 

improvements to XVCL: 

Easy to learn: XVCL is a dialect of XML and uses XML 

trees and a parser for processing. ART parts with XML 

syntax and processing. It offers a cpp based flexible and more 

readable user-defined syntax. Just because cpp is so widely 

used, learning ART is not so tedious.  

More generalized: Contrary to XVCL, developers can 

easily blend ART with the programming technologies of their 

choice. It is because the developer can define their own 

syntax and hence can avoid conflicts with the base languages.  

Expanding the customization options under #adapt 

command: In XVCL, the only command that you can place 

under adapt is insert. ART allows to use any command under 

#adapt. We found using #set, #while and #select commands 

under #adapt to be particularly very useful. 

Robust structure instead of unreadable loops: In XVCL, 

while loops using many multi-value variables can be quite 

confusing. ART introduces a structure called set-loop which 

gives the possibility to store and use more multi-value 

variables together as one loop descriptor data structure. 

More flexible: ART is more flexible than XVCL, as it 

allows the adaptation of a file even though the file might not 

contain any ART commands. Such adaptation would simply 

copy the adapted file to the output stream. 

D. Comparison with Other Techniques 

Companies today often develop and maintain custom 

versions of the same software system for different customers 

using SPL [4]. The core idea is to manage the system family 

as a whole from a base of core assets designed for ease of 

adaptation in various reuse contexts. 

In the SPL context, ART attempts to capture and 

streamline the end-to-end process of adapting software from 

the specifications of variant features (e.g., in Linux called 

configuration options) to the architectural structures and the 

code. ART templates can manipulate any textual file 

independent of their contents. So, it can also manage 

variability in documentation and test cases, keeping all 

textual SPL core assets in sync with evolving code. 

Techniques proposed in research to manage variability in 

SPL are mostly based on the principle of separation of 

concerns (SoC), introduced by Dijkstra in early 1980’s [29]. 

The goal of SoC is to deal with concerns one by one, 

independently from other concerns. When applied at the level 

of design and implementation, SoC attempts to compose 

software from components implementing different concerns. 

Concerns that nicely fit into conventional modules are easy to 

deal with. The challenge is to tackle cross-cutting concerns 

that are tightly coupled with the rest of a program, and cannot 

be easily modularized in a conventional way. There have 

been attempts to bring SoC down to the design and 

implementation levels. Aspect-oriented programming (AOP) 

[30], multi-dimensional SoC (MDSOC) from IBM [31], 

feature-oriented programming (FOP) [32], and colored IDE 

(CIDE) [33] are among the most widely published of such 

techniques. Among these techniques, AOP has been widely 

used. In AOP, various computational aspects are programmed 

separately and weaved at specified join points into the base 

program. AOP can separate a range of programming aspects 

such as synchronization, persistence, security transaction 

management, authentication/authorization, and others. 

Separated aspects can be easily modified and added/deleted 

to/from program modules. Because of that, a number of 

authors proposed AOP as a variability technique in the SPL. 

A study to test this hypothesis revealed difficulties in using 

AspectJ to deal with features that have chaotic impact on the 

base code [34]. While AOP deals with big chunks of 

functionalities (i.e., aspects) reasonably, it lacks a mechanism 

to handle variations at the lower levels of granularity. ART on 

the other hand, can handle variations at any levels of 

granularity. Walkingshaw et al. [35] provided a systematic 

and broader perspective on variational data structures. 

Properties related to program customizations are 

encapsulated in these variability-aware data structures. 

IX. CONCLUSIONS 

A study of industrial systems has shown that around 50% 

of small cloned code fragments tend to be contained in big 

clones [36]. While big clones are certainly intentional, they 

contribute to the increased program size and complexity. 

Therefore, big clones create a useful window from which to 

understand and manage clones at all levels of granularity. 

In this paper, we presented a technique for managing big 

clones with non-redundant templates built with ART. ART 

templates manage big clones without conflicts with 

programming languages and other techniques used for 

managing variability. We demonstrated the technique with 

examples from the Linux kernel that uses cpp (among other 

techniques) to manage variability.  

In various similarity groups, by unifying clones into non-

redundant templates, ART eliminated 30-50% of the code. 

Non-redundant views revealed by ART templates improve 

program understanding. Program relations that have to do 

with the impact of changes are important in program 

understanding, maintenance and evolution, but remain mostly 

implicit in conventional programs. ART templates expose and 

explicate some of these program relations. For example, 

when maintaining duplicated code we often must know 

where such duplicates are and how they are different, in order 

to decide if and how each of them should be modified. ART 

makes such information more visible and tractable, reducing 

the risk of unexpected errors when changing programs. 

ART blends without conflicts with the underlying 

programming language and any other techniques used to 

manage variability in a software system. Therefore, we can 

use ART to handle big clones, while other techniques (e.g., 

cpp and Kconfig in the Linux kernel) deal with other aspects 

of the overall variability management problem. Such 

seamless integration is necessary to allow the developers to 

painlessly inject ART templates into the projects in mature 

stages of evolution when big clones start emerging. ART 

syntax is user-defined to make such injection easy, without 
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affecting already existing software solutions and people who 

work with them. In the Linux context, ART can be viewed as 

an extension of cpp where ART commands syntactically 

resemble cpp directives, and can be incrementally learned as 

extensions that enhance reuse capabilities of cpp. The Linux 

Developers work with ART templates of the program, while 

the ART Processor generates the Linux code in its original 

form for the Linux SysAdmins. 

Any new technique brings some overhead, requires 

learning and skillful application. ART is no different from 

other techniques in this respect. ART templates are not 

created for quick gains during development, but for long-

term gains during software evolution and reuse. ART aims to 

benefit long-lived systems that undergo extensive 

evolutionary changes, or need to be tailored to the needs of 

multiple customers. 
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