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Abstract—In the paper, the deep evolving neural network and

its learning algorithms (in batch and on-line mode) are proposed.

The deep evolving neural network’s architecture is developed

based on GMDH approach (in J. Schmidhuber’s opinion it

is historicaly first system, which realizes deep learning ) and

least squares support vector machines with fixed number of the

synaptic weights, which provide high quality of approximation

in addition to the simlicity of implementation of nodes with

two inputs. The proposed system is simple in computational

implementation, characterized by high learning speed and allows

processing of data, which are sequentially fed in on-line mode.

The proposed system can be used for solving a wide class of

Dynamic Data Mining tasks, which are connected with non-

stationary, nonlinear stochastic and chaotic signals. The com-

putational experiments are confirmed the effectiveness of the

developed approach.

I. INTRODUCTION

Nowadays, artificial neural networks (ANNs) are widely

used for solving a lot of Data Mining tasks. In these tasks

initial information is presented in the form of both ”object-

properties” table and multivariate time series, which are gener-

ated by stochastic or chaotic nonstationary nonlinear objects.

The advantages of these computational intelligence systems

are, first of all, their universal approximation properties and

learning abilities using real experimental data [1], [2].

Recent years Computational Intelligence specialists are in-

terested in deep neural networks (DNN) [3], [4], [5], [6], [7].

The deep neural networks comparatively with conventional

ANNs, also called shallow neural networks (SNNs), provide

much higher quality of information processing. However, these

networks are essentially tedious with relation to computational

implementation, also are subjected to overfitting in case of

short training samples and demand of high operation time and

computational resources especially when operated with Big

Data [8]. Both the standard neurons (which form set of layers)

and shallow neural networks can be used as the basic elements

of deep neural networks.

One of the most effective representatives of the shallow

neural networks are support vector machines (SVM) [9], [10],

[11], [12], [13]. The tuning of support vector machines is

provided by using both lazy learning (the activation functions’

centers tuning) and optimization procedures (the synaptic

weights tuning). However, if the process of the lazy learning

is implemented immediately, then optimization tasks solving

using support vector machines with big training set is enough

complex. In this connection deep neural networks, which

are implemented using support vector machines [14], [15],

[16], providing high quality of information processing are

essentially tedious from the computational point of view.

It can be noticed, that tuning process of support vector

machines can be essentially speed up if the least-squares

support vector machines (LS-SVM) [17] are used instead of a

conventional approach. The learning process of least-squares

support vector machines reduces to a solution of the set of

Karush-Kuhn-Tucker equations and the result of this learning

can be written in an analytical form.

Among a great number of possible deep neural networks’

architectures, the deep networks based on GMDH are one of

the most effective networks, as it was mentioned in [6]. These

networks are based on the group method of data handling

[18], [19], [20], which allows automatically increasing a

number of layers for information processing to achieve the

required accuracy of the results. A combination of the GMDH

approach with ANNs have led to synthesis of wide range of

computational intelligence systems [21], [22], [23], [24], [25],

[26], [27], [28] where different type of artificial neurons are

used as nodes.

In this case unlimited increasing of layers in the sistem

(using the GMDH paradigm) and simplicity of learning LS-

SVM with two inputs (using their universal approximation

properties) allow to efficiently information processing in on-

line mode of the deep learning.

In the connection with mentioned above, it seems appro-

priate to develop deep neural networks’ architecture based on

GMDH and LS-SVM and its learning algorithm. The proposed

approach is characterized by simplicity of a computational

implementation and high speed learning for the solution of
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wide range of Data Mining tasks, which are described by both

short and large volume data set.

II. THE ARCHITECTURE OF DEEP EVOLVING

GMDH-SVM-NEURAL NETWORK

An architecture of the proposed deep evolving GMDH-

SVM-neural network is shown in Fig.1.

A (n × 1)-dimensional vector of the input signals x =
(x1, x2, . . . , xn)

T ∈ Rn is fed to the zero (receptive) layer

of the GMDH-SVM-neural network. Further, this input vector

is passed to the first layer, which consists of n1 = C2
n =

0.5n(n − 1) nodes that are the conventional LS-SVM with

two inputs. It is obvious that learning process of the LS-SVM

with two inputs has not any problem both in relation of a

computational implementation and with regard for require-

ments to a volume of training set. The output signals ŷ
[1]
l

(l = 1, 2, . . . , n1) are formed by the nodes’ outputs of the

SVM [1] of first hidden layer.

Further these signals are fed to the selection block SB [1]

of the first hidden layer. This selection block SB 1 selects

n∗

1(n
∗

1 ≤ n1) signals from a range of signals ŷ
[1]
l . The selected

signals are the best in the sense of accepted criterion, in

more cases it is the mean square error σ2

ŷ
[1]

l

, but any other

accuracy criterion can be used in relation to reference signal

y(k) (k = 1, 2, . . . , N is an observation number in a training

set or a current discrete time, when a learning process and

data processing take place in on-line mode).

From the n∗

1 best output’s signals of the first hidden layer

ŷ
[1]∗
l (using the conventional GMDH approach) are formed

n2(n ≤ n2 ≤ 2n) pairwise combination of signals ŷ
[1]∗
l , ŷ

[1]∗
p ,

which are fed to the inputs of the second hidden layer. The

second hidden layer is formed by SVM [2] nodes, which are

similar to the elements of the first hidden layer.

From the output’s signals ŷ
[2]
l of this layer, the selection

block SB[2] of the second hidden layer selects only that signals

ŷ
[2]∗
l , whose accuracy is better than the best signal ŷ

[1]∗
l of the

first hidden layer. The third hidden layer with selection block

SB[3] forms the signals, which have accuracy better than the

best signal ŷ
[2]∗
l of the second layer.

In such way, the network’s architecture is formed during

learning process likewise evolving computational intelligence

systems [29], [30].

The architecture’s evolution process takes place until the

selection block SB [n−1] forms only two signals ŷ
[s−1]∗
1 and

ŷ
[s−1]∗
2 in its output. Just these two signals are fed to the single

output nodes of SVM [3] where the output system’s signal ŷ [s]

is computed.

III. THE LEARNING OF DEEP EVOLVING

GMDH-SVM-NEURAL NETWORK

As it was previously noted an each node of the proposed

system is the LS-SVM with single output and two inputs.

Hence, two-dimensional vector xij(k) = (xi(k), xj(k))
T

(i = 1, 2, . . . , n; j = 1, 2, . . . , n; i �= j) is fed to the input

of the first hidden layer and output of the each node is a

scalar signal ŷ
[1]
l (l = 1, 2, . . . , n1). Therefore, the LS-SVM

is the hybrid system, which combines a learning based on

both an optimization and a memory [1], [2], [6], [7], [17], and

implements minimization of an empirical risk criterion. It is

necessary to notice, that the SVMs are the most effective under

short data set conditions and are not subject to an overfitting

and proved a high quality of approximation.

The mapping, which implements standard LS-SVM SNN,

can be written in the form

ŷ
[1]
l = (w

[1]
l )Tϕ

[1]
l (x) + w

[1]
0l (1)

where w
[1]
l = (w

[1]
1l , w

[1]
2l , . . . , w

[1]
Nl)

T , ϕ
[1]
l (x) =

(ϕ
[1]
1l , ϕ

[1]
2l , . . . , ϕ

[1]
Nl)

T . The learning process reduces to

setting the centers of activation functions (usually Gaussians)

in the point, which are determined by a training sample

xij (k = 1, 2, . . . , N ) and minimization of squared criterion

simultaneously in the form

E
[1]
l (N) =

1

2
‖w

[1]
l ‖2 +

γ

2

N
∑

k=1

(e
[1]
l (k))2 (2)

in the presence of N equality-constraints in the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y(1) = (w
[1]
l )Tϕ

[1]
l (xij(1)) + w

[1]
0l + e

[1]
l (1),

...

y(N) = (w
[1]
l )Tϕ

[1]
l (xij(N)) + w

[1]
0l + e

[1]
l (N)

(3)

where γ > 0 is a regularization parameter and

e
[1]
l (k) = y(k)− ŷ

[1]
l (k) =

= y(k)− (w
[1]
l )Tϕ

[1]
l (xij(k))− w

[1]
0l .

(4)

In this way, LS-SVM learning task is reduced to finding of

a saddle point of Lagrange function

L
[1]
l (w

[1]
l , w

[1]
0l , e

[1]
l , λ

[1]
l (k)) = E

[1]
l (N)+

+

N
∑

k=1

λ
[1]
l (k)

(

y(k)− (w
[1]
l )Tϕ

[1]
l (xij(k))−

− w
[1]
0l − e

[1]
l (k)

)

.

(5)

This saddle point can be found by solving the Karush-Kuhn-

Tucker equations set. In this case, besides N + 1 synaptic

weights w
[1]
l , w

[1]
0l the N indefinite Langrange multipliers

λ
[1]
l (k) have to be found.

The main disadvantage of SVM in the system under con-

sideration is necessity of adding new synaptic weights in each

nodes with rising of a training set volume. Therefore, if it is

necessary to process Big Data than proposed system becomes

too tedious. To avoid this problem it is possible by limiting a

number of synaptic weights in each node by using, so-called,

”sliding window” data processing. Such ”sliding window”

contains only h last observations.

Introducing the Lagrange function with ”sliding window”

instead of the expression (5) in the form
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ŷ

[1]

2
ŷ
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ŷ

[2]

2
ŷ
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Fig. 1. The architecture of proposed deep evolving GMDH-SVM-neural network

L
[1]
l (w

[1]
l , w

[1]
0l , e

[1]
l , λ

[1]
l (k), h) =

=
1

2
‖w

[1]
l ‖2 +

γ

2

k
∑

τ=k−h+1

(e
[1]
l (τ))2+

+

k
∑

τ=k−h+1

λ
[1]
l (τ)

(

y(τ) − (w
[1]
l )Tϕ

[1]
l (xij(τ))−

− w
[1]
0l − e

[1]
l (τ)

)

(6)

and solving Karush-Kuhn-Tucker equations set, we can write

the result in the form

(

0 ITh
Ih Ω(k) + γ−1Ihh

)(

w
[1]
0l

Λ(k)

)

=

(

0
Y (k)

)

(7)

where Λ(k) = (λ(k − h + 1), . . . , λ(k))T , Ih is a (h × 1)
unity vector, Ihh is a (h × h) unity matrix, Y (k) = (y(k −

h+1), . . . , y(k)), Ω(k) = {Ωτl = ϕ
[1]T
l (xij(τ))ϕ

T
l (xij(t)) =

K(xij(τ), xij(t))}, τ = k−h+1, . . . , k, t = k−h+1, . . . , k,

K(xij(τ), xij(t)) is the kernel function, which is satisfied

to the conditions of Mercer theorem [17], and usually it is

Gaussian function in the form

K(xij(τ), xij(t)) = exp

(

−
‖xij(τ)− xij(t)‖

2

2σ2

)

. (8)

In this case, the transformation (1), which is implemented

by the LS-SVM node, can be rewritten in the form

ŷ
[1]
l =

k
∑

τ=k−h+1

λ
[1]
l (τ)K(xij(τ), xij(t)) + w

[1]
0l (9)

where parameters λ
[1]
j (τ), w

[1]
0l can be defined from the system

(7) in the form

(

w
[1]
0l

Λ(k)

)

=

=

(

0 ITh
Ih Ω(k) + γ−1Ihh

)

−1 (
0

Y (k)

)

.

(10)

As a result, the learning of nodes in the proposed system

reduces to a solving of linear equations set with fixed number

of variables. It should be noticed, the ”sliding window”

learning allows managing the deep neural network tuning

process, when information is fed to the system’s input in on-

line mode in the form of data stream. The nodes of second and

next hidden layers are tuned absolutely likewise the expression

(10).

IV. SIMULATION RESULTS

A. Identification of the mechanical system signal

Efficiency of proposed deep evolving GMDH-SVM-neural

network was examined based on different benchmark data in-

cluding the identification task using real data from mechanical

system. Data is taken from a flexible robot arm. The arm is

installed on an electrical motor. [We are grateful to Hendrik

Van Brussel and Jan Swevers of the laboratory of Production

Manufacturing and Automation of the Katholieke Universiteit

Leuven, who provided us with these data, which were obtained

in the framework of the Belgian Programme on Interuniversity

Attraction Poles (IUAP-nr.50) initiated by the Belgian State

- Prime Minister’s Office - Science Policy Programming.

http://homes.esat.kuleuven.be/ smc/daisy/daisydata.html].

Inputs number of deep evolving GMDH-SVM-neural net-

work were taken as n = 5, that for input vector in the form

u(k − 2), y(k − 2), u(k − 1), y(k − 1), u(k) for identification

value y(k) where u is a reaction torque of the structure, y
is an accelaration of the flexible arm . Node of deep evolv-

ing GMDH-SVM-neural network was training by proposed

learning algorithm during 100 iterations. Initial parameters

values of kernel functions were taken σ = 0.1. After 100

iterations the training process was stopped, and the next 50

points for k = 101 . . .150 we have used as the testing data
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Fig. 2. Results of signal identification

set to compute forecast. Initial values of synaptic weights

were taken equal to 0. As the quality criterion of forecasting

root mean squared error (MSE) was used. Fig.2 shows the

results of signal identification. The two curves, representing

the actual (dot line) and identification (solid line) values, are

almost indistinguishable.

Table I cotains comparative analysis of the signal identifi-

cation based on different approaches.

Thus as it can be seen from experimental results the

proposed approach provides the best quality of prediction in

comparison with conventional GMDH-neural networks.

B. The identification of nonlinear nonstationary signal

Simulation of deep evolving cascaded GMDH-SVM-neural

network was performed in the process of identification of

nonlinear signal, which is described by equation in the form

[31]

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (11)

where u(k) = sin(2πk/25) + sin(2πk/10) is control signal.

The inputs number of evolving cascaded GMDH-neural

network were taken as n = 4, which correspond to the input

vector x(k−3), x(k−2), x(k−1), x(k) for the value x(k+1).

LS-SVM-neuron was trained based on proposed procedures

for 400 iterations (400 training samples for k = 1 . . . 400).

After 400 iterations the training process was stopped, and the

next 100 points for k = 401 . . .500 we have used as the testing

data set to compute signal value. Initial values of synaptic

weights were taken equal to 0. As the identification quality

criterion mean squared error (MSE) was used.

Fig. 3 shows the results of signal identification. The two

curves, representing the actual (dot line) and identification

(solid line) values, are very close. Table II shows the compar-

ative analysis of nonlinear non-stationary signal identification

based on different approaches.
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 3. Results of non-linear non-stationary system identification

V. CONCLUSIONS

In the paper, the deep evolving neural network and its

learning algorithms are proposed. The architecture of the deep

evolving neural network is developed based on GMDH and

least squares support vector machines with fixed number of the

synaptic weights are used as nodes. The proposed system is

simple in computational implementation, characterized by high

learning speed and allows processing of data, which are fed

sequentially in on-line mode. The combining, in the context of

the common deep learning system, the GMDH paradigm with

unlimited increasing of the layers number and LS-SVM nodes

with fixed sinaptic weights number allow to predetermine an

on-line deep learning in Dynamic Data Mining tasks. The

computational experiments are confirmed the effectiveness of

developed approach.
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