
Evaluation of selected fuzzy particle swarm

optimization algorithms

Tomasz Krzeszowski, Krzysztof Wiktorowicz

Rzeszow University of Technology

Faculty of Electrical and Computer Engineering

al. Powstanców Warszawy 12, 35-959 Rzeszów

Email: {tkrzeszo, kwiktor}@prz.edu.pl

Abstract—This paper is devoted to an evaluation of selected
fuzzy particle swarm optimization algorithms. Two non-fuzzy and
four fuzzy algorithms are considered. The Takagi-Sugeno fuzzy
system is utilized to change the parameters of these algorithms. A
modified fuzzy particle swarm optimization method is proposed,
in which each of the particles has its own inertia weight and
coefficients of the cognitive and social components. The evaluation
is based on the common nonlinear benchmark functions used for
testing optimization methods. The ratings of the algorithms are
assigned on the basis of the mean of the objective function and
the relative success.

I. INTRODUCTION

P
ARTICLE swarm optimization (PSO) is a stochastic

optimization technique that was developed by Kennedy

and Eberhart [1]. The PSO is mainly inspired by the social

behavior of organisms that live and interact within large

groups, for example, schools of fish, flocks of birds or swarms

of bees. The usefulness of PSO in solving a wide range of

optimization problems has been repeatedly confirmed. It has

been applied to: the intelligent identification and control of a

dynamic system [2]; solving an economic dispatch problem

in power systems [3]; human motion tracking [4]; feature

selection [5]; automatic incident detection [6]; fuzzy anomaly

detection in networks [7]; the estimation of hurdles clearance

parameters [8] and many more problems. Many variants of the

PSO have been developed since it was introduced in 1995 [1].

The most common are algorithms with a constriction factor

[9] and with a linear inertia weight [10]. Among the PSO

modifications we can distinguish algorithms that utilize fuzzy

systems [2], [3], [11]–[15]. For example, in papers [2], [11]

a fuzzy system was used to dynamically modify the inertia

weight. Another approach was presented in [3], where a fuzzy

system is used to change the inertia weight and the coefficients

of the cognitive and social components.

The goal of this study is to evaluate selected fuzzy PSO

algorithms and to propose a modified fuzzy PSO algorithm.

In our research, we use the Takagi-Sugeno system [16] instead

of the Mamdani system [17] because it has shorter processing

time. In this paper, we consider six different versions of

PSO, including two non-fuzzy, and four fuzzy algorithms. The

evaluation is based on nonlinear benchmarks in the form of

Ackley, Griewank, Rastrigin and Rosenbrock functions. The

calculations were conducted using Matlab software and the

"PSO Research Toolbox" by Evers [18].

II. PARTICLE SWARM OPTIMIZATION

The particle swarm model consists of a group of particles

that are randomly initialized in the d-dimensional search

space. During an iterative process, particles explore this space

effectively by exchanging information to find the optimal

solution. Each i-th particle is described by its position xi,

velocity vi, and best position pbesti. Moreover, the particles

have access to the best global position gbest that has been

found by any particle in the swarm.

In the basic PSO algorithm [1], the velocity and the posi-

tion of each particle in k-th iteration are updated using the

following equations:

vk+1

i = vk
i + c1r1(pbest

k
i − xk

i) + c2r2(gbest
k − xk

i) (1)

xk+1

i = xk
i + vk+1

i (2)

where r1, r2 are vectors with uniformly distributed random

numbers in the interval [0, 1], and c1, c2 are positive constants

equal to 2.

The velocities of particles are determined by three compo-

nents. The first component is the inertia that models the parti-

cle’s tendency to continue moving in the same direction. The

second component is cognitive and attracts particles towards

the best position previously found by the particle. The last

component is a social component that moves particles towards

the best position found earlier by any particle. Selection of the

best global position and the best position for i-th particle is

based on the objective function (denoted later by f(·)).

A. PSO1: Clerc, Kennedy algorithm [9]

Many approaches have been developed to improve the

performance of the basic PSO algorithm. One way is to

use the constriction factor χ that was proposed by Clerc

and Kennedy [9]. The application of this factor controls the

velocity magnitude.

The velocity equation has the form:

vk+1

i = χ[vk
i +c1r1(pbest

k
i −xk

i)+c2r2(gbest
k−xk

i)] (3)

where χ is calculated as χ = 2

|2−ϕ−
√

ϕ2−4ϕ|
and ϕ = c1+c2,

ϕ > 4. In this paper, the following typical values are used:

c1 = c2 = 2.05, ϕ = 4.1 and χ = 0.7298.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 571–575

DOI: 10.15439/2016F206

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 571

B. PSO2: Eberhart, Shi algorithm [10]

Another way to improve the performance of PSO is to

use the inertia weight ω. The inertia weight is significant

for the performance of PSO, because it balances the global

exploration and local exploitation abilities of the swarm.

Exploration is facilitated when the inertia weight is high, but

convergence is slower. On the other hand, when the inertia

weight is low then convergence is faster, but it sometimes leads

to local solutions. Hence, linearly decreasing inertia weight is

proposed in [10].

The velocity equation has the form of

vk+1

i = ωkvk
i +c1r1(pbest

k
i −xk

i)+c2r2(gbest
k−xk

i) (4)

The inertia weight ω is calculated by the formula

ωk = ωmax − ωmax − ωmin

itermax

· k (5)

where ωmax is the initial weight, ωmin is the final weight and

itermax is the maximum number of iterations. The limits for

ω are set to ωmax = 0.9 and ωmin = 0.4.

III. TAKAGI-SUGENO SYSTEM

Consider the Takagi-Sugeno (T-S) fuzzy system with two

inputs y1, y2 and one output u. For the input y1 we define

m fuzzy sets Ai (Fig. 1), for which the vertices are placed

in points pi, where i = 1, . . . ,m. Similarly, for the input y2,

we define n fuzzy sets Bj with vertices in points qj , where

j = 1, . . . , n. The coordinates pi and qj are written in the

form of the vectors p = [pi] = [p1, . . . , pm] and q = [qj] =
[q1, . . . , qn], respectively.

The output of the system is described by m·n fuzzy infer-

ence rules in the form of

Rij : IF y1 ∈ Ai AND y2 ∈ Bj ,THEN u = zij (6)

where zij ∈ R is the consequent of the rule Rij . The rules (6)

are written in the following table:

y1\y2 B1 . . . Bn

A1 z11 . . . z1n
...

... . .
. ...

Am zm1 . . . zmn

(7)

The output u of the Takagi-Sugeno system is calculated as the

weighted average of zij and determined by

u = TS (y1, y2) =

∑m

i=1

∑n

j=1
wij(y1, y2)zij

∑m

i=1

∑n

j=1
wij(y1, y2)

(8)

where wij(y1, y2) = Ai(y1) · Bj(y2) denotes the degree of

fulfillment of the rule Rij .

y1

A1 A2 Am-1 Am

p1 p2 pm-1 pm

...

1

0

y2

B1 B2 Bn-1 Bn

q1 q2 qn-1 qn

...
0

1

0

Fig. 1. Fuzzy sets for the inputs y1 and y2

IV. FUZZY PSO

A. FPSO1: algorithm based on the work by Shi, Eberhart [11]

Better PSO performance can be obtained using the nonlin-

early changing inertia weight that balances global and local

search abilities. It is difficult to design a mathematical model

to adapt the inertia weight dynamically. The solution to this

problem may be obtained using a linguistic description of the

search process. For example, we can use a fuzzy inference

system for tuning the inertia weight [11].

In the FPSO1 algorithm, the inertia weight is described by

the formula

ωk+1 = ωk +∆ω, ∆ω = TS (nf k, ωk) (9)

where the T-S fuzzy system (8) is used to calculate the

change of inertia weight ∆ω. The input nf k is the normalized

objective function value described by

nf k =
fgk − fmin

fmax − fmin

(10)

where fgk = f(gbestk), fmin is the optimal solution (for the

test functions considered in this paper, it is equal to 0), fmax

is the worst solution (in our paper fmax = f(gbest0)). The

fuzzy sets for the inputs nf k and ωk have vertices in points

p = [0, 0.5, 1], q = [0.4, 0.7, 1], respectively, and the fuzzy

rules have the form of

nf k \ωk B1 B2 B3

A1 Z N N
A2 P Z N
A3 P Z N

(11)

where N = −0.1, Z = 0 and P = 0.1.

B. FPSO2: algorithm based on the work by Alfi, Fateh [2]

The improvement of the FPSO1 algorithm was proposed

by Alfi and Fateh [2]. In their method, the inertia weight is

calculated for each particle according to its current state. This

is justified because each particle in the swarm is in a different

place in a complex environment and may have a different

balance between global and local search abilities.

In the FPSO2 algorithm, the change of inertia weight is

determined by the T-S system (8) as

∆ωi = TS (nf ki , ω
k
i) (12)

where

nf ki =
fpk

i − fmin

fp0

i − fmin

(13)

and fpk
i = f(pbestki). The vertices of fuzzy sets for nf ki

and ωk
i are chosen as p = [0, 0.5, 1], q = [0.4, 0.6, 0.8]

respectively, and the fuzzy rules are

nf ki \ωk
i B1 B2 B3

A1 P N N
A2 P Z N
A3 P Z N

(14)

where N = −0.1, Z = 0 and P = 0.1.

572 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

C. FPSO3: algorithm based on the work by Niknam [3]

In the FPSO3 algorithm, the fuzzy system proposed by

Niknam [3] is used to change not only ω, but also the coeffi-

cients c1 and c2. These coefficients determine the influence of

the personal best position pbesti and the global best position

gbest on the particle velocity. For example, if c1 is larger than

c2, then the particle has the tendency to move to the personal

best position, rather than to the global best position found by

the swarm.

In the FPSO3 algorithm, three T-S systems are used to

determine ω, c1 and c2:

ω = TS (nf k,nuk) (15)

c1 = TS (nf k,nuk) (16)

c2 = TS (nf k,nuk) (17)

The input nf k is defined in (10) and nuk is the normalized

number of iterations without change of the best global posi-

tion:

nuk =
uk − umin

umax − umin

(18)

where uk is the number of iterations without change of the

best global position, umin = 0 and umax = itermax . The

fuzzy sets are defined by the vectors p = [0.2, 0.4, 0.6, 0.8],
q = [0.2, 0.4, 0.6, 0.8]. The fuzzy rules for ω are defined as

nf \nu B1 B2 B3 B4

A1 PS PM PB PB

A2 PM PM PB PR

A3 PB PB PB PR

A4 PB PB PR PR

(19)

In table (19) we have PS = 0.4, PM = 0.6, PB = 0.8 and

PR = 1. The fuzzy rules for c1/c2 are defined as

nf \nu B1 B2 B3 B4

A1 PR/PR PB/PB PB/PM PB/PM
A2 PB/PB PM /PM PM /PS PS/PS
A3 PB/PM PM /PM PS/PS PS/PS
A4 PM /PM PM /PS PS/PS PS/PS

(20)

In table (20) we have PS = 1.2, PM = 1.4, PB = 1.6 and

PR = 1.8.

D. MFPSO: authors’ proposition

The modified fuzzy PSO (MFPSO) algorithm proposed

by the authors combines the previously described concepts

developed by Alfi, Fateh [2] and Niknam [3]. In this algorithm,

each of particles has its own coefficients ω, c1 and c2 changing

according to the linguistic description represented by the

fuzzy rules. In this way, each of the particles may be treated

individually. For example, if a particle has found the new local

best position pbesti, then the inertia weight ω should be

decreased and the coefficients c1 and c2 should be increased.

On the other hand, if pbesti has not changed for a long

time, then a better strategy would probably be to increase ω
and decrease c1 and c2 to improve the ability of exploration.

In the MFPSO algorithm, the authors propose ω, and c1, c2
for each particle to be determined using three T-S systems:

ωi = TS (nf ki ,nu
k
i) (21)

(c1)i = TS (nf ki ,nu
k
i) (22)

(c2)i = TS (nf ki ,nu
k
i) (23)

where nf ki is defined in (13), nuk
i has the form of

nuk
i =

uk
i − umin

umax − umin

(24)

and uk
i is the number of iterations without change to the

best personal position for the i-th particle. It should be

noted that in equation (18), nuk is calculated based on the

global best position gbest, whereas in equation (24) nuk
i

is calculated based on the personal best position pbesti.

The vertices of fuzzy sets for nf ki and nuk
i are defined as

p = [0.2, 0.45, 0.65, 0.9], q = [0.2, 0.45, 0.65, 0.9].
The fuzzy rules for ω are the same as in (19). The fuzzy

rules for c1 and c2 are given in tables (20). In (20) we have

PS = 1.4, PM = 1.7, PB = 1.9 and PR = 2.2. For example,

the rule R11 has the form

R11 : IF nf ki ∈ A1 AND nuk
i ∈ B1,

THEN ω = PS AND c1 = PR AND c2 = PR
(25)

and the rule R44 has the form

R44 : IF nf ki ∈ A4 AND nuk
i ∈ B4,

THEN ω = PR AND c1 = PS AND c2 = PS
(26)

Other rules can be interpreted similarly.

V. RESULTS AND DISCUSSION

In order to evaluate the algorithms, four common nonlinear

benchmarks [11], [19] in the form of Ackley, Griewank,

Rastrigin and Rosenbrock functions were used. For these

functions, the asymmetric initialization method, similar to

[11], was used. The velocities of particles were clamped to

vmax, however, the positions of the particles were not limited.

In Table I, the initialization ranges and vmax for the test

functions are listed. In our experiments, two dimension sizes

were chosen: d = 10 and d = 30. The number of iterations

was set to 1000 and 2000 corresponding to the dimensions

10 and 30. The number of particles was equal to 30 and

the number of trials was equal to 30 in all experiments. The

parameters of algorithms were chosen on the basis of the

papers [11] and [14]. The calculations were conducted using

Matlab software and the "PSO Research Toolbox" by Evers

[18]. The maximum average time of execution for one trial

on a mobile workstation equipped with Intel(R) Core(TM) i7-

2820QM did not exceeded 10 s.

The results for benchmark functions are presented in Ta-

ble II. This table contains the basic statistics for the final

value of the objective function and the iteration (iter_success)

in which the algorithm achieved the given value (th) of the

TOMASZ KRZESZOWSKI, KRZYSZTOF WIKTOROWICZ: EVALUATION OF SELECTED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHMS 573

TABLE II
RESULTS FOR THE BENCHMARK FUNCTIONS

fg iter_success

Algorithm d iter mean± std min max mean± std min max success rate [%]

Ackley function: for d = 10, th = 5e−05; for d = 30, th = 5

PSO1
10 1000 2.223e−05± 1.218e−04 3.553e−15 6.669e−04 244± 23 212 300 96.7

30 2000 8.218e+00± 7.791e+00 1.421e−14 1.980e+01 191± 51 141 343 56.7

PSO2
10 1000 6.685e−01± 3.662e+00 8.882e−14 2.006e+01 735± 21 697 777 96.7

30 2000 6.909e−01± 3.784e+00 6.994e−07 2.073e+01 1073± 46 991 1191 96.7

FPSO1
10 1000 1.332e+00± 5.068e+00 3.553e−15 2.006e+01 216± 23 189 280 93.3

30 2000 9.953e−01± 3.781e+00 1.421e−14 2.079e+01 472± 129 352 1004 96.7

FPSO2
10 1000 3.790e−15± 9.013e−16 3.553e−15 7.105e−15 257± 23 224 338 100

30 2000 4.146e+00± 8.032e+00 2.807e−13 2.003e+01 257± 63 198 444 80.0

FPSO3
10 1000 9.000e−01± 3.662e+00 3.553e−15 2.006e+01 175± 152 118 883 80.0

30 2000 8.351e+00± 7.650e+00 1.344e+00 1.998e+01 192± 59 126 362 66.7

MFPSO
10 1000 2.392e−14± 4.870e−14 3.553e−15 2.558e−13 366± 37 296 474 100

30 2000 4.125e+00± 8.384e+00 1.028e−04 2.087e+01 440± 115 330 765 80.0

Griewank function: for d = 10, th = 0.1; for d = 30, th = 0.05

PSO1
10 1000 7.258e−02± 3.584e−02 3.197e−02 2.115e−01 188± 80 109 483 86.7

30 2000 2.701e−02± 4.005e−02 0.000e+00 1.858e−01 356± 31 299 435 83.3

PSO2
10 1000 1.050e−01± 5.726e−02 7.396e−03 2.172e−01 724± 129 541 974 46.7

30 2000 1.303e−02± 1.775e−02 2.092e−11 9.064e−02 1524± 52 1463 1702 96.7

FPSO1
10 1000 8.642e−02± 3.961e−02 1.969e−02 1.796e−01 204± 153 76 569 70.0

30 2000 1.375e−02± 1.688e−02 0.000e+00 5.888e−02 329± 38 292 476 93.3

FPSO2
10 1000 7.701e−02± 3.531e−02 3.201e−02 1.847e−01 234± 138 108 534 76.7

30 2000 1.492e−02± 2.037e−02 0.000e+00 9.562e−02 446± 37 368 539 93.3

FPSO3
10 1000 9.796e−02± 5.344e−02 1.970e−02 2.511e−01 118± 75 56 348 56.7

30 2000 3.036e+00± 2.411e+00 1.049e+00 1.128e+01 − − − 0

MFPSO
10 1000 9.623e−02± 5.589e−02 2.955e−02 2.488e−01 372± 201 145 823 60.0

30 2000 1.956e−02± 2.617e−02 1.718e−06 1.298e−01 1184± 172 901 1507 93.3

Rastrigin function: for d = 10, th = 5; for d = 30, th = 50

PSO1
10 1000 7.097e+00± 3.969e+00 1.990e+00 1.890e+01 235± 118 119 555 40.0

30 2000 1.053e+02± 2.743e+01 4.676e+01 1.512e+02 330± 0 330 330 3.33

PSO2
10 1000 3.715e+00± 1.865e+00 0.000e+00 7.960e+00 717± 118 533 939 83.3

30 2000 3.819e+01± 9.564e+00 2.389e+01 6.766e+01 1454± 128 1179 1655 93.3

FPSO1
10 1000 5.804e+00± 2.575e+00 2.985e+00 1.293e+01 229± 85 100 406 56.7

30 2000 4.580e+01± 8.148e+00 3.084e+01 6.368e+01 486± 124 266 745 60.0

FPSO2
10 1000 4.743e+00± 3.394e+00 0.000e+00 1.791e+01 276± 153 100 690 66.7

30 2000 4.852e+01± 1.391e+01 2.388e+01 8.457e+01 505± 174 256 869 56.7

FPSO3
10 1000 1.270e+01± 5.817e+00 9.950e−01 2.388e+01 117± 31 93 163 13.3

30 2000 9.155e+01± 2.314e+01 5.330e+01 1.353e+02 − − − 0

MFPSO
10 1000 3.689e+00± 2.101e+00 4.832e−03 8.955e+00 447± 208 178 976 80.0

30 2000 3.317e+01± 9.586e+00 1.435e+01 5.132e+01 960± 402 374 1814 96.7

Rosenbrock function: for d = 10, th = 30; for d = 30, th = 100

PSO1
10 1000 2.155e+01± 3.702e+01 1.381e−02 1.261e+02 136± 81 64 391 80.0

30 2000 3.793e+01± 5.813e+01 6.057e−02 2.642e+02 558± 419 255 1597 90.0

PSO2
10 1000 3.602e+01± 1.308e+02 6.977e−01 7.244e+02 613± 136 438 966 86.7

30 2000 8.484e+01± 7.490e+01 5.490e+00 3.359e+02 1657± 177 1361 1996 66.7

FPSO1
10 1000 1.761e+01± 3.553e+01 2.459e−03 1.371e+02 239± 249 47 791 90.0

30 2000 6.247e+01± 7.706e+01 3.930e−01 3.082e+02 499± 220 275 1252 76.7

FPSO2
10 1000 2.529e+01± 5.990e+01 7.227e−02 2.577e+02 171± 157 56 798 83.3

30 2000 5.779e+01± 4.336e+01 1.420e+00 1.683e+02 688± 395 348 1992 83.3

FPSO3
10 1000 7.058e+01± 2.101e+02 2.104e+00 1.152e+03 133± 152 42 635 73.3

30 2000 8.847e+04± 1.825e+05 2.877e+02 8.705e+05 − − − 0

MFPSO
10 1000 1.499e+01± 4.056e+01 1.937e−02 2.239e+02 276± 255 89 936 93.3

30 2000 2.248e+02± 2.320e+02 1.188e+01 9.200e+02 1681± 186 1353 1936 36.7

574 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE I
PARAMETERS OF BENCHMARK FUNCTIONS

Function Init. ranges vmax

Ackley (15, 30)d 30

Griewank (300, 600)d 600

Rastrigin (2.56, 5.12)d 5.12

Rosenbrock (15, 30)d 30

TABLE III
RATINGS OF THE PSO ALGORITHMS

d = 10 d = 30
∑

Algorithm mfg rs mfg rs mfg rs

PSO1 16 18 11 17 27 35

PSO2 11 5 20 9 31 14

FPSO1 13 18 18 20 31 38

FPSO2 18 15 15 18 33 33

FPSO3 6 18 5 6 11 24

MFPSO 20 10 15 11 35 21

objective function. The ratings of the algorithms for all bench-

mark functions are summarized in Tab. III. The following

performance measures were used to evaluate the algorithms:

• mean of the objective function (mfg),

• relative success defined as rs = mean of iter_success
success_rate

.

For these measures, the sums of the ratings are shown in

Tab. III. These ratings were assigned in such a way that the

best algorithm has six points and the worst has one point.

For success_rate = 0 (the algorithm has not succeeded) the

number of points is equal to zero.

For the dimension d = 10 and the measure mfg the highest

rating has the algorithm MFPSO proposed by the authors,

while for the measure rs the highest rating have the PSO1,

FPSO1 and FPSO3. For the dimension d = 30 and the measure

mfg the highest rating has the algorithm PSO2, while for the

measure rs the highest rating has the FPSO1. Analyzing the

sum of ratings for mfg it can be seen that the best algorithm

is the MFPSO. For rs the MFPSO is the one before last.

However, it should be emphasized that in the evaluation of

optimization algorithms the most important criterion is the

obtained objective function value.

VI. CONCLUSION

In this paper, the evaluation of selected fuzzy particle swarm

optimization algorithms was presented. Two non-fuzzy and

four fuzzy algorithms were considered. The main contributions

of this paper are as follows:

• the application of the Takagi-Sugeno system that is more

computationally efficient than the Mamdani system,

• a proposal for the use of the MFPSO algorithm, in which

each of the particles has its own inertia weight and the

coefficients of the cognitive and social components,

• the evaluation of selected fuzzy PSO algorithms using

common benchmark functions.

Further work will focus on improving the proposed algorithm,

building models to support the training process in sport [20],

and the analysis of athletes’ technique [8].

ACKNOWLEDGMENT

This work has been supported by the Polish Ministry of

Science and Higher Education under grant No. U-722/DS/M.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of

IEEE Int. Conf. on Neural Networks, vol. 4. IEEE Press, Piscataway,
NJ, 1995, pp. 1942–1948.

[2] A. Alfi and M.-M. Fateh, “Intelligent identification and control using
improved fuzzy particle swarm optimization,” Expert Systems with

Applications, vol. 38, no. 10, pp. 12 312–12 317, 2011.
[3] T. Niknam, “A new fuzzy adaptive hybrid particle swarm optimization

algorithm for non-linear, non-smooth and non-convex economic dispatch
problem,” Applied Energy, vol. 87, no. 1, pp. 327–339, 2010.

[4] S. Saini, N. Zakaria, D. R. A. Rambli, and S. Sulaiman, “Markerless
human motion tracking using hierarchical multi-swarm cooperative
particle swarm optimization,” PLoS ONE, vol. 10, no. 5, 2015.

[5] M. Adamczyk, “Parallel feature selection algorithm based on rough sets
and particle swarm optimization,” in Computer Science and Information

Systems (FedCSIS), 2014 Federated Conf. on, Sept 2014, pp. 43–50.
[6] D. Srinivasan, W. H. Loo, and R. L. Cheu, “Traffic incident detection

using particle swarm optimization,” in Swarm Intelligence Symposium.

SIS ’03. Proceedings of the IEEE, April 2003, pp. 144–151.
[7] A. Karami and M. Guerrero-Zapata, “A fuzzy anomaly detection system

based on hybrid PSO-Kmeans algorithm in content-centric networks,”
Neurocomputing, vol. 149, Part C, pp. 1253–1269, 2015.

[8] T. Krzeszowski, K. Przednowek, K. Wiktorowicz, and J. Iskra, “Estima-
tion of hurdle clearance parameters using a monocular human motion
tracking method,” Computer Methods in Biomechanics and Biomedical

Engineering, vol. 19, no. 12, pp. 1319–1329, 2016, PMID: 26838547.
[9] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and

convergence in a multidimensional complex space,” IEEE Transactions

on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.
[10] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction

factors in particle swarm optimization,” in Evolutionary Computation,

2000. Proceedings of the 2000 Congress on, vol. 1, 2000, pp. 84–88.
[11] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,”

in Proceedings of the Congress on Evolutionary Computation, vol. 1,
2001, pp. 101–106.

[12] A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: a
generalization of particle swarm optimization,” in Proceedings. IEEE

International Joint Conference on Neural Networks, vol. 2, July 2005,
pp. 1086–1091.

[13] H. Liu, A. Abraham, and W. Zhang, “A fuzzy adaptive turbulent particle
swarm optimisation,” Int. J. Innov. Comput. Appl., vol. 1, no. 1, pp. 39–
47, 2007.

[14] Y.-T. Juang, S.-L. Tung, and H.-C. Chiu, “Adaptive fuzzy particle
swarm optimization for global optimization of multimodal functions,”
Information Sciences, vol. 181, no. 20, pp. 4539–4549, 2011, Special
Issue on Interpretable Fuzzy Systems.

[15] J. J. D. Nesamalar, P. Venkatesh, and S. C. Raja, “Managing multi-
line power congestion by using Hybrid Nelder-Mead - Fuzzy Adaptive
Particle Swarm Optimization (HNM-FAPSO),” Applied Soft Computing,
vol. 43, pp. 222–234, 2016.

[16] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” Systems, Man and Cybernetics,

IEEE Transactions on, no. 1, pp. 116–132, 1985.
[17] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with

a fuzzy logic controller,” International Journal of Man-Machine Studies,
vol. 7, no. 1, pp. 1–13, 1975.

[18] G. Evers, “PSO Research Toolbox (Version 20110515), M.S. thesis
code,” 2016. [Online]. Available: http://www.georgeevers.org/pso_
research_toolbox.htm

[19] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test
functions for numerical global optimization,” in Proceedings. IEEE

Swarm Intelligence Symposium. SIS 2005, June 2005, pp. 68–75.
[20] K. Wiktorowicz, K. Przednowek, L. Lassota, and T. Krzeszowski,

“Predictive modeling in race walking,” Computational Intelligence and

Neuroscience, vol. 2015, p. 9, 2015, Article ID 735060.

TOMASZ KRZESZOWSKI, KRZYSZTOF WIKTOROWICZ: EVALUATION OF SELECTED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHMS 575

