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Abstract—This paper present identification algorithms of the
VAG gas valve and a comparison between them. One of the
mathematical models is based on the differential-integral cal-
culus of fractional order. This mathematical tool can be used
for modeling devices serving to closed-loop systems synthesis.
Admitting fractional orders in difference equations improves the
performance of proportional-integral-derivative controller action.

Index Terms—gas valve, differential-integral cal-culus of frac-
tional order, identification.

I. INTRODUCTION

HE AUTOMATION determines a comfort of use and op-
T erating costs of the heating system, which is responsible
for controlling its operation [1, 2, 3]. In discussed case the
VC200 control unit is responsible for it, which along with the
VAG gas valve constitutes a set to control the operation of
heating boilers. This control unit is designed to maintain the
degree of the valve opening based on measured temperature
parameters and set temperature by the user. The valve offers
linear and constant characteristics of operation of a gas burner
to heating boiler with standby position. This solution causes
a measurable reduction in gas consumption in older type of
systems, elimination of incomplete burning and condensation
of the exhaust fumes in emittors.

Many unpredictable factors must be taken into account
in design of control systems. Application of coil and steel
core in the VAG valve causes non-linear dependence of the
degree of opening to current amplitude and hysteresis of valve
motion up and down. In case of control with using information
about the model, there is a possibility to remove uncontrolled
disruptions. In PID type of control units the signal that controls
the device is a sum of three functional blocks: multiplication,
integration and differentiation. Difference, which appears be-
tween the set and currently measured value, is a result of
specified operations. It is possible in more accurate way to
describe real objects using differential equations of fractional
order, and therefore application of fractional order control
units in such cases is more beneficial [1, 2, 3].

II. IDENTIFICATION ALGORITHMS

In a room was placed the test bench in order to study static
and dynamic characteristics of the control system temperature.
Setting parameters of the control unit operation is carried out

978-83-60810-90-3/$25.00(©2016, IEEE

Piotr Ostalczyk, DSc. Eng.
Institute of Applied Computer Science
Lodz University of Technology
ul. Stefanowskiego 18/22, 90-924 Lodz, Poland
Email: piotr.ostalczyk @p.lodz.pl

by RS232 communication channel connected to the computer.
The computer has installed the Windows operating system that
is required to run the DIAG200 program. The test bench

Fig. 1. The test bench for measuring the VAG gas valve.

consists of: 1. the VAG gas valve, 2.the VC200 controller, 3.
a computer with the Windows OS, 4. a injector air nozzles, 5.
a gas cylinder LPG.

Description of the black box which is a linear system having
one input and output is described by a differential equations
[3, 4]. In this case, time is a independent variable and binding
input values and the observed response. Measured system is
described by the following differential equation:

dz(t)
dt

du(t)
d(t)

+ aox(t) = bo (1)
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the solution of the Equation (1) is:

z(t) = ae™" )
The difference backward v-th row is defined as:
k
WAz (k) = > al £k + ko — i) (3)
i:kg

another form of the difference backward:

z(k)
) z(k—1)
VAV x(k) = [ag ay a%_ko} : 4)
z(k)

To create the differential equation is applied the backward
difference of first order z(k) function:

oA (k) + agz(k) = bou(k) (5)
x(k) — z[(k — 1)h] + apz(k) = by (6)
o) = 1o lole = D]+ o g

A. Static model

Static model can be described in a form of graph that
presents static characteristics of studied object. The graph of
this type is not dependent on the time. Static characteristics
constitute a material for system identification; it is a relation
between the input and output signal.

The controller uploads current temperature in the room from
a sensor and according to parameters set by the program is
controlled by a needle in the valve. This type of regulation
enables to supply of planned quantity of gas to the injector air
nozzles, and depending on demand to increase or reduce the
temperature in examination room.

Study consisted on leading into the control system, unchang-
ing in time, subsequent values of the input signal, and on
measurement of corresponding values of the output signal. As
a result of conducted experiment related to determination of
the static characteristics, discreet values were obtained and
they were marked on a graph (Fig. 2). Obtained graph of static
characteristics shows the position of valve in relation to output
voltage of the control unit.

The second basic aim in determination of static character-
istics is to appoint characteristics equation from the graph
(Fig. 2). Using computer synthesis methods and analyses there
was a few methods to resolve the task. For the valve an
approximation was used with method of the smallest squares.
In order to obtain the static characterization of object, an
approximation of received extortion values was conducted and
corresponding responses on the graph (red line in Fig. 2).
Below is presented third degree polynomial that approximates
results of conducted measurement:

w(z) = —2® +0,000522 + 0,0322z 4 15,579 (8)

In order to describe appearing phenomena and processes there
are used mathematical models. Complexity result of identi-
fication depends on its destination. It is possible to describe
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Fig. 2. Graph of static characteristics shows the position of valve in relation
to output voltage of the control unit.

its correct construction by mapped accuracy of the process
flow with reference to applied model. On the one hand, too
high complexity of the model structure may require a lot of
calculation by which the model may turn out to be useless.
However, on the other hand, the simplified model may have
large variations in relation to mapped reality [5].

B. Dynamic models

An important aspect is identification of dynamic properties
of the object. Observation of the process response to stimula-
tion enables to obtain information about its description in the
field of variable time. Time line of the output rate triggered
by extortion is called dynamic characterization of the object.
Dynamic characterization is a transmittance between two
established states. Method of dynamic model identification in
case of valve consists in evaluation of the object transmittance
based on variable characterization. The object of regulation
is a movable control needle fixed on the electromagnet core
in the VAG valve. As the variable characterization of valve
a percentage relation of needle fall was accepted, when set
temperature and measured temperature starts to reach standby
position.

Temperature in the room, which is the object of regulation,
at the time of measurement was 17°C. On the controller was
set temperature 23.5°C. After reaching required temperature
the valve began to limit supply of gas to the burner by linear
needle fall. Figure shows the moment of needle fall to full
opening to a minimal position. Duration of a single experiment
was 33s, results of sampling every 1s. were presented in
points. Figure presents three selected sample measurements,
differences between individual measurements result from car-
rying out examining within the entire day. As the variable
characterization of valve a percentage relation of needle fall
was accepted.
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Fig. 3. Measurement of the valve responses to reduce the temperature.

Based on the Fig. 3 it is possible to state that it is the inert
object of first order. Inert response type of regulation object to
irregular extortion results from the process occurring during
the study. Extortion in reductions of opening degree of the
valve causes a change of gas supply flow. Reduced power
of injector air nozzles resulting for this reason proceeds with
certain delay. Other processes are also delayed: heat transfer
between the burner and examination room via air and heat
transport from surrounding to the temperature sensor. After
leveling of new heat loss value in the room with the amount
of heat provided by the burner arise a new steady-state and
air temperature, and a level of the needle position remains
unchanged.
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Fig. 4. Exponential function approximate results of the first measurement.

In the measured discreet system described by Equation (2)
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where continuous time ¢ must be replaced by the value k& which
is next step, the h value is a sampling time and equal 1 second.
On obtained values was approximated exponential function:

z(kh) = ae"*h 9)

To the subsequent measurements was matched functions. For
the first attempt of response was approximated and illustrated
in Fig. 4 exponential function: z(k) = aeT, the second
attempt of response: z(k) = aeT, the third attempt of

response: x(k) = ae Tt
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Fig. 5. Function is based on differential equation of the integer order which
aproximate the results of the first test measurements.

The second dynamic model is described by a discrete
transfer function and the state-space equations [3]. Equation
(1) is approximated by the backward difference of first order:

AT(kR) | on(ikh) = by 24ED) (10)
h h
Ax(kh) + aphx(kh) = by Au(kh) (11)
the difference of function f(kh) is:
Af(kh) = f(kh) = f[(k = 1)h] (12)

the difference of function (12) is substituted to the backward
difference of first order (11). Based on fact that the measured
object got the Dirac delta function extortion it follows Au(kh)
is replaced by d6(kh):

w(kh) — z[(k — 1)hjaghx(kh) = bod(kh)  (13)

(14 ag)x(kh) = x[(k — 1)h] + bod(kh) (14)
The solution of the approximation which is based on the
backward difference of first order is:

1 bo

2l(k = )R] + 1

kh) =
.I'( ) 14+ ag + ap

5(kh)  (15)

The next step is to adjust the parameters ag, by in order to
reproduce the response. The approximate function is based
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on the differential equation of integer order (Fig. 6) where:
order of differential equation for all attempts v = 1 and rate
by of differential equation is equal v . Rates of differential
equation for the first attempt: a9 = 0,107; for the second
attempt ag = 0, 085; for the third attempt ag = 0,073.

The third dynamic model is also described by a dis-
crete transfer function and the state-space equations. The
differ-integral of fractional order is a generalization of the
calculus[3]. Equation (1) is approximated by the backward
difference of fractional order:

Avx(kh)
h
The solution of the approximation which is based on the
backward difference of fractional order is:

+ apz(kh) = by

Au(kh)
o (16)

; x(k—1)h
1 a ay] , +agz(kh) = bod(kh) (17)
z(h)
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Fig. 6. Function based on the differential equation of fractional order.

The next step is to adjust the parameters ag, by, v in order to
reproduce the response. Function based on differential equa-
tion of fractional order (Fig. 6), where: rate by of differential
equation for all attempts is equal v . Order of differential
equation for the first attempt v = 1,08, rates of differential
equation: ap = 0,115; Order of differential equation for
the second attempt v = 1,08, rates of differential equation:
ao = 0,092; Order of differential equation for the third attempt
v = 1,08, rates of differential equation: ag = 0,073.

In order to exclude the role of subjective factors in assessing
the accuracy of model, as a basis it is necessary to adopt
measurable criterion. It is possible to evaluate the level value
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of control system using integral rates of the course of regulated
size. In case of conducted study of valve response, the model

accuracy consists on comparison to what extend modeled
functions correspond to real measurements. As the correctness

criterion of model selection a value of the integral was chosen
from the Integral Square Error between measured values and
mathematical model [5].
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Fig. 7. Comparision a quality of the identification models.

Based on above graphs it is possible to conclude that in
any case the best response of device reflects a model based
on differential equation of fractional order. The model that
reaches the best results in each comparison is several times
better than other. Models based on exponential function and
differential equation of first order reaches similar degree of
approximation.
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