
Evaluation of an Optimized K-Means Algorithm
Based on Real Data

Cosmin M. Poteraş
Faculty of Automation, Computers

and Electronics

University of Craiova, Romania

Email: cpoteras@software.ucv.ro

Mihai L. Mocanu
Faculty of Automation, Computers

and Electronics

University of Craiova, Romania

Email: mmocanu@software.ucv.ro

Abstract—In a previous paper [1] we introduced an optimized
version of the K-Means Algorithm. Unlike the standard version of
the K-Means algorithm that iteratively traverses the entire data
set in order to decide to which cluster the data items belong,
the proposed optimization relies on the observation that after
performing only a few iterations the centroids get very close
to their final position causing only a few of the data items to
switch their cluster. Therefore, after a small number of iterations,
most of the processing time is wasted on checking items that
have reached their final cluster. At each iteration, the data items
that might switch the cluster due to centroids’ deviation will be
re-checked. The prototype implementation has been evaluated
using data generated based on an uniform distribution random
numbers generator. The evaluation showed up to 70% reduction
of the running time. This paper will evaluate the optimized K-
Means against real data sets from different domains.

I. INTRODUCTION

THE MORE data continues to grow in both quantity

(volume) and diversity, the more challenging clustering

algorithms become. Clustering refers to identifying data items’

common characteristics (features or attributes) and grouping

the data items according to a quantitative estimation of these

characteristics. The resulted groups are usually called clusters

and they have to be strongly differentiated by their underlying

characteristics.

A wide range of domains have successfully employed

clustering. Paper [2] made use of clustering for analysing

markets as well as recommendations. Papers [3] [4] apply clus-

tering in medicine. Paper [5] uses clustering to analyse news

articles and their comments for e-business related purposes.

Paper [6] employs clustering for predicting students academic

results, while paper [7] applies clustering to human activity

recognition.

Unless a mathematical model is available, choosing the most

suitable clustering algorithm might prove a hard decision. Ar-

guments that might lead the decision can range from complex

experimental results to our own intuition.

Among other challenging open clustering-related issues like:

heterogeneity, volume or scalability, that are worth putting

research efforts into, raised by clustering, the execution time

plays a very important role.

Our proposed optimization focuses on improving the exe-

cution time of the K-Means algorithm while keeping the same

output.

In use for more than four decades, the K-Means algorithm

has been applied in a wide area of fields, ranging from artificial

intelligence to image processing or from neural networks to

machine vision, or more specifically in unsupervised learning,

pattern recognition, classification analysis a.o.

The K-Means algorithm uses a set of cluster centers (cluster

centroids) and distributes the data items to the cluster with the

closest centroid in terms of Euclidean distance. Picking up the

best initial centroids is still an open issue. Different centroids

lead to different output and has an important influence on the

performance of the algorithm. Choosing the right centroids is

beyond the scope of this paper.

The standard K-Means algorithm implies successive explo-

ration of the entire data space with the goal of distributing data

items to clusters. At the end of every iteration, the centroids are

re-computed by averaging the data items inside the cluster. The

next iteration will make use of the newly computed centroids

and re-distribute the data items. The loop continues until the

centroids no longer change or until a maximum number of

iterations has been reached.

The optimization introduced in [1] and presented also in

this paper is based on an easily noticeable fact: after a small

number of iterations, most of the data items no longer change

their cluster, and at the same time, the centroids’ deviation

reduces significantly. So, why exploring the entire data space

if only a small number of data items are subjects to changing

the cluster?

Our solution aims of drawing a line between the data items

that will certainly not change their cluster, avoiding their

exploration in the next iteration(s), and the data items that

might switch their cluster which obviously are to be checked.

Exploring the data space only partially on every iteration

will not affect the centroid computation. The influence of the

data items that are not subject to changing the cluster, on the

future centroids, will be preserved in the next iteration(s).

That being said, it becomes obvious that the optimization

does not affect the output in any way.

The paper’s structure is as follows: section II presents previ-

ous attempts for reducing the execution time of the K-Means

algorithm, section III describes our proposed optimization for

the K-Means algorithm, section IV experimentally evaluates

the algorithm against real data sets, (unlike paper [1] where

the evaluation is performed against a randomly generated data

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 831–835

DOI: 10.15439/2016F231

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 831

set with uniform distribution), while section V concludes the

paper.

II. RELATED WORK

The K-Means algorithm was subject to many research stud-

ies covering a wide range of optimization approaches, from

computational complexity reduction to parallel and distributed

implementations.

In paper [8] the authors propose an optimization that relies

on the assumption that if a data item got closer to the centroid

on the previous iteration, it will not change the cluster. The

assumption allowed the implementation to reduce the amount

of computations necessary for computing new centroids.

Parallel and distributed solutions have been discussed in

[9][10][11] by treating important topics specific to this kind of

environments: synchronization, communication overhead, data

availability, architecture (peer-to-peer, client-server, a. o.). The

parallel and distributed implementations showed considerable

improvement when dealing with very big data sets.

GPUs proved to be a good host for highly-parallel im-

plementations of the K-Means algorithm. Such platforms are

addressed in papers [12][13]

III. OPTIMIZING K-MEANS

In this section we will introduce both the standard K-Means

algorithm and the optimized version of it, as proposed in paper

[1]. The same optimization strategy will be discussed here, for

a better understanding and reading experience.

Algorithm 1 presents the main phases of the standard K-

Means algorithm.

Algorithm 1 Standard K-Means

1. Load initial centroids

2. Visit all data items and distribute them to the cluster with

the closest centroid

3. For each cluster compute the average of all data items and

set the result as the cluster’s centroid

4. If the exit criteria (no centroid changes or the maximum

number of iteration is reached) are not met, go to step 2

5. Exit.

At a closer look, we can immediately identify step number

2 as the one requiring the most execution time. The time spent

on step 2 increases proportionally with the size of the data set,

as the entire data set is explored at every iteration.

Figure 1 illustrates an example of centroids evolution of a

standard K-Means algorithm. Data items are represented as 2D

points. Centroids A, B and C start from their initial positions

A1, B1, C1, and successively traverse positions Ai, Bi, Ci,

where i = 1..6. A6, B6 and C6 are the final positions of the

centroids. One can easily notice that after only few iterations,

the centroids get very close to their final position, which means

that after a few iterations, the number of data items that are

subject to changing the cluster reduces considerably.

This observation plays a key role in improving step 2 of

algorithm 1; it states that after a small number of iterations,

Fig. 1. Centroids Deviation

Fig. 2. Point P in an Arbitrary Iteration

the number of points that must be visited (that might change

the cluster) is reduced considerably. This lead us to defining

specific criteria for splitting the data set in two collections:

the former would be made of all data items that are subject to

changing the cluster (let’s call that the border collection) and

the latter would be made of all other points (not changing the

cluster). Before providing the mathematical criteria behind the

two data item collections, let’s examine figure 2.

Figure 2 is a snapshot of an arbitrary iteration around an

arbitrary point P . Point P is part of cluster C as a consequence

of the fact that the distance from P to C (dPC) is less than

the distance to A (dPA) and the distance to B (dPB). We are

interested in evaluating the ”safety distance” of point P , that

is, the distance that P is missing from jumping to the next

closest cluster (the cluster represented by centroid A). Let’s

call this distance eP (distance to the cluster’s edge). We can

state that P is eP -away from the next closest cluster.

eP = min(dPA − dPC , dPB − dPC) (1)

At the end of the iteration, centroids A, B and C would be

re-computed causing them to jump to new positions A′, B′,

C ′. The worst scenario for P is the following: A moves closer

to P by |AA′|, B also moves closer by |BB′| while C moves

away from P by |CC ′|. The conditions that eP must fulfil in

order for P to remain in cluster C is:

832 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

eP > |CC|+ |AA| (2)

and

eP > |CC|+ |BB| (3)

For the sake of computation reduction, we can merge

conditions 2 and 3 into the following condition:

eP > 2 ∗max(|AA|, |BB|, |CC|) (4)

Inequality 4 help us determining whether a certain point

might change the cluster or not, but doesn’t save us from

visiting the entire data set. The solution is to group the data

items by the value of eP . We can split the range of values

that e can take into intervals. Each group would be associated

an interval. As long as eP is greater than the interval’s lower

bound and lower or equal to the interval’s upper bound, P

would become part of the group associated with that interval.

This allows us to change step 2 of algorithm 1 so that instead

of visiting all points, we could visit the groups and check

inequality 4. If inequality 4 returns false, it means the points

inside that group have to be re-visited. Otherwise, all points

inside the group will hold the cluster.
At the end of each iteration, new centroids are to be

computed, which might cause centroids to deviate from their

current position. To keep the groups synchronized, we will

need to also update the lower and upper bounds of the

associated intervals. That is, we will assume the worst case

scenario presented above, which means the interval bounds

would shift towards 0 by at most twice the maximum centroid

deviation. More precisely, the bounds of the intervals would

be reduced by 2 ∗max(|AA|, |BB|, |CC|).
Algorithm 2 resumes the solution above.
Choosing the WIDTH constant has a big impact on the

performance of the algorithm. The number of groups could

explode if the value of WIDTH is to small. The other way

around, if the value of WIDTH is to big, the intervals for eP
would be very wide causing them to be marked for re-visiting

very often. Both extreme scenarios might reduce considerably

the improvement brought by algorithm 2.
It is very hard to accurately define a general approach for

choosing the right value of WIDTH . It depends a lot on

the data distribution. However, in our research, we defined

WIDTH’s value as the average distance between adjacent

data elements. Such a value for WIDTH , would increase

the chances of balancing the groups. Algorithm 3 explains the

procedure for defining the value of WIDTH , as it was used

in our researches:
Therefore, the data set must be analysed prior to defining

WIDTH , but if the data set is to big, this might require more

time than we gain through the proposed optimization. A good

compromise would be to analyse only a sample of the data

set.
It can be easily noticed that the optimized K-Means has

the same output as the standard K-Means. The quality of the

clusters is preserved.

Algorithm 2 Optimized K-Means

1. Define constant WIDTH

2. Define group intervals

Ii = (i ∗WIDTH, (i+ 1) ∗WIDTH]
3. Mark the entire data set to be visited

4. For each point to be visited

5. e = min(dPCl
− dPCw

) where Cw is the center of the

closest (winner) cluster and Cl, l = 1..k, l <> w stands for

all other centroids

6. Map all points with i∗WIDTH < e ≤ (i+1)∗WIDTH

to interval (i ∗ WIDTH, (i + 1) ∗ WIDTH] where i is a

positive integer

7. Compute new centroids Cj , where j = 1..k and their

maximum deviation D = max(|CjCj |)
8. If D = 0 or the maximum number of iterations was reached,

move to 11

9. Update Ii s boundaries by subtracting 2 ∗D (points owned

by this interval got closer to the edge by 2 ∗D)

10. Pick up all points that are mapped to an interval whose

lower bound became less than or equal to 0, mark them for

re-visiting, then go to 4

11. Exit

Algorithm 3 Defining the WIDTH

1. Extract a 5-10% sample of the dataset

2. Traverse each data element in the dataset and compute the

distance to it’s neighbours.

3. While traversing, average the distances to neighbours that

do not differ by more than 50% than the current average value.

4. Assign WIDTH the result of 3.

IV. EXPERIMENTAL EVALUATION

Experiments were carried out for three publicly available

real data sets posted on UC Irvine Machine Learning Reposi-

tory [14]. The execution environment was made of a Intel(R)

Core(TM) i5-3320M CPU @ 2.60GHz, with 8GB of RAM

memory, Ubuntu 14.04 operating system. We have selected

three data sets that will be described below. A number of 2,

4, 8 and 12 centroids were randomly selected. Multiple runs

were carried out for each scenario. The execution times shown

below represent the average of all measured execution times

for each scenario.

A. US Census (1990) Data Set

The US Census 1990 [15] is a raw 1% sample data set

(2458285 records) of the official US Census 1990, obtained

of from the (U.S. Department of Commerce) Census Bureau

website. For our experiments we’ve clustered the records by

the age information. The WIDTH used for experiments,

computed according to algorithm 3, was 1.

Data distribution is shown in figure 3

Results are shown in table I

One could expect such results considering that the data

distribution on a wide segment (ages 0-70) is almost uniform.

The improvement raises to 61.39% for two centroids, but it

COSMIN MARIAN POTERAS, MIHAI MOCANU: EVALUATION OF AN OPTIMIZED K-MEANS ALGORITHM BASED ON REAL DATA 833

Fig. 3. US Census 1990 Data Distribution

TABLE I
RESULTS FOR US CENSUS DATA (1990) DATA SET

Number of Centroids

2 4 8 12

Time(s) - Standard K-Means 1611 3016 6079 7846

Time(s) - Optimized K-Means 622 1843 4998 6539

Improvement (%) 61.39 38.89 17.78 16.66

TABLE II
RESULTS FOR 3D ROAD NETWORK DATA SET

Number of Centroids

2 4 8 12

Time(s) - Standard K-Means 469 2543 9274 17894

Time(s) - Optimized K-Means 196 833 3438 8104

Improvement (%) 58.16 67.24 62.92 54.70

drops as the number of centroids grow, to as low as 16.66%

in case of 12 centroids.

B. 3D Road Network Data Set

The 3D Road Network data set [16] gives the elevation

information for a 2D road network in North Jutland, Den-

mark. There are 434874 road segments. The road segments

were clustered using both standard and optimized K-Means

algorithms by their elevation. After applying the algorithm 3,

the resulted value for WIDTH was 0.07.

Data distribution is shown in figure 4. It is not a uniform

distribution, but the differences between adjacent data intervals

are smooth.

Results are shown in table II

Results for the 3D Road Network Data set are very encour-

aging. Improvement was between 54% and 67% for a range

of 2 to 12 centroids.

Fig. 4. 3D Road Network Data Distribution

Fig. 5. Bag of Words Data Distribution

C. Bag of words Data Set

Bag of words [17] is a text collection obtained from five

different sources. We’ve run our experiments against the New

York Times collections which is made of words extracted from

New York Times articles. The vocabulary is made of unique

words resulted after removing stop-words and truncating the

collection by only keeping words that occurred more than

ten times. For each word, the number of occurrences was

extracted, resulting a collection of 102660 words. The words

were clustered using both standard and optimized K-Means

algorithms by their number of appearances. Algorithm 3

indicated a value of 33.65 for the WIDTH constant.

Data distribution is shown in figure 5

The distribution shows a concentration of words by their

appearance in the interval [0 - 12000] where approximately

100000 words fit, so more than 97% of the data set.

Results are shown in table III

For the Bag of Words Data Set, the Optimized K-Means,

together with algorithm 3 for determining the value of the

WIDTH constant, proved to be totally inefficient. They

brought an increase of the execution time between 17.7%

and 67.4%. The main reason for this increase seems to be

the data distribution, which causes algorithm 3 to determine

834 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE III
RESULTS FOR BAG OF WORDS DATA SET

Number of Centroids

2 4 8 12

Time(s) - Standard K-Means 125 339 1274 2697

Time(s) - Optimized K-Means 148 399 1768 4515

Improvement (%) -18.6 -17.7 -38.7 -67.4

an inappropriate value for the WIDTH . The bigger the

distance between adjacent words (in terms of the number of

appearances), the greater the value of WIDTH would be.

A greater value for WIDTH would result into wider word

groups, which once invalidated, result into re-visiting a bigger

number of words. Also, the wider the group, the greater the

chances are for that group to be invalidated and re-visited,

even on small deviations.

V. CONCLUSIONS

In this paper we evaluated an optimization for the K-Means

algorithm proposed in a previous paper [1], by using real

publicly available data sets. Two of the data sets (US Census

(1990) and 3D Road Network) shown important improve-

ments, very close the performance resulted by running the

algorithm on the randomly generated uniform data set used in

[1]. The common feature of the two data sets is that there is no

sharp trend on their distribution chart. This is a very important

feature when trying to calibrate the Optimized K-Means

algorithm (computing the WIDTH constant). The third data

set used (Bag of Words), as opposed to the ones mentioned

above, showed an unacceptable loss of performance. The main

reason for this loss is related to the data distribution, namely,

more than 97% of the data elements are concentrated into less

than 5% of their distance range (number of word appearances

range). Calibrating the algorithm under these circumstances

requires a more intensive analysis of the data set. Our future

research efforts will focus on improving algorithm 3 to cover

a wider range of data distributions.

REFERENCES

[1] Cosmin Marian Poteraş, Marian Cristian Mihăescu, Mihai Mocanu:
An optimized version of the K-Means clustering algorithm, Proceed-
ings of the 2014 Federated Conference on Computer Science and
Information Systems, ACSIS, Vol. 2, pages 695–699, 2014, DOI:
10.15439/2014F258.

[2] Dolnicar, S: Using cluster analysis for market segmentation—typical
misconceptions, established methodological weaknesses and some rec-
ommendations for improvement, Australasian Journal of Market Re-
search, 2003, 11(2), 5–12.

[3] Ng, H. P.; Ong, S. H.; Foong, K. W. C.; Goh, P. S.; Nowinsky, W. L.:
Medical Image Segmentation Using K-Means Clustering and Improved
Watershed Algorithm, 7th IEEE Southwest Symposium on Image Anal-
ysis and Interpretation, March 26-28, 2006, Denver, Colorado, pages
61-66

[4] Agnieszka Wosiak, Danuta Zakrzewska: On Integrating Clustering and
Statistical Analysis for Supporting Cardiovascular Disease Diagnosis,
Proceedings of the 2015 Federated Conference on Computer Science
and Information Systems, ACSIS, Vol. 5, pages 303–310 (2015) DOI:
10.15439/2015F151, http://dx.doi.org/10.15439/2015F151

[5] Hongwei Xie, Li Zhang; Jingyu Sun, Xueli Yu: Application of K-
means Clustering Algorithms in News Comments - The International
Conference on E-Business and E-Government, May 2010, Guangzhou,
China, pages 451-454

[6] kK Oyelade, O. J, Oladipupo, O. O, Obagbuwa, I. C: Application of
K-Means Clustering algorithm for prediction of Students’ Academic
Performance, (IJCSIS) International Journal of Computer Science and
Information Security, Vol. 7, No. 1, 2010, pages 292 - 295

[7] Szymon Wawrzyniak, Wojciech Niemirom: Clustering Approach to the
Problem of Human Activity Recognition using Motion Data, Proceed-
ings of the 2015 Federated Conference on Computer Science and
Information Systems, ACSIS, Vol. 5, pages 411–416 (2015), DOI:
10.15439/2015F424, http://dx.doi.org/10.15439/2015F424

[8] Souptik Datta, Chris Giannella, Hillol Kargupta: K-Means Clustering
Over a Large, Dynamic Network, Proceedings of the Sixth SIAM
International Conference on Data Mining, April 20-22, 2006, Bethesda,
MD, USA. SIAM 2006 ISBN 978-0-89871-611-5, pages 153—164.

[9] Yufang Zhang, Zhongyang Xiong, Jiali Mao, Ling O: The Study of
Parallel K-Means Algorithm, Proceedings of the 6th World Congress on
Intelligent Control and Automation, June 21–23, 2006, Dalian, China,
pages 5868–5871.

[10] Jing Zhang, Gongqing Wu, Xuegang Hu, Shiying Li, Shuilong Hao:
A Parallel K-means Clustering Algorithm with MPI, 4th Internation
Symposium on Parallel Architectures, Algorithms and Programming,
ISBN 978-0-7695-4575-2, pages 60-64, 2011.

[11] Jitendra Kumar, Richard T. Mills, Forrest M. Hoffman, William W.
Hargrove: Parallel k-Means Clustering for Quantitative Ecoregion Delin-
eation Using Large Data Sets, Proceedings of the International Confer-
ence on Computational Science, ICCS 2011, Procedia Computer Science
4 (2011) 1602–1611.

[12] Reza Farivar, Daniel Rebolledo, Ellick Chan, Roy Campbell: A Parallel
Implementation of K-Means Clustering on GPUs, Proceedings of the
International Conference on Parallel and Distributed Processing Tech-
niques and Applications, PDPTA 2008, Las Vegas, Nevada, USA, July
14-17, 2008, 2 Volumes. CSREA Press 2008 ISBN 1-60132-084-1,
pages 340–345.

[13] Mario Zechner, Michael Granitzer: Accelerating K-Means on the Graph-
ics Processor via CUDA, The First International Conference on Intensive
Applications and Services INTENSIVE 2009, 20–25 April, Valencia,
Spain, pages 7–15, ISBN 978-1-4244-3683-5.

[14] M. Lichman: UCI Machine Learning Repository, University of Cal-
ifornia, Irvine, School of Information and Computer Sciences, 2013,
http://archive.ics.uci.edu/ml

[15] The USCensus1990raw data set, U.S. Department of Commerce Census
Bureau - http://dataferrett.census.gov/

[16] Manohar Kaul: Building Accurate 3D Spatial Networks to Enable
Next Generation Intelligent Transportation Systems, Proceedings of
International Conference on Mobile Data Management (IEEE MDM),
June 3-6 2013, Milan, Italy

[17] http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

COSMIN MARIAN POTERAS, MIHAI MOCANU: EVALUATION OF AN OPTIMIZED K-MEANS ALGORITHM BASED ON REAL DATA 835

