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Abstract—OntoUML is an ontologically well-founded con-
ceptual modelling language that distinguishes various types
of classifiers and relations providing precise meaning to the
modelled entities. Efforts arise to incorporate OntoUML into the
Model-Driven Development approach as a conceptual modelling
language for the PIM of application data. In a prequel paper, we
have introduced and outlined our approach for a transformation
of OntoUML PIM into a PSM of a relational database. In
this paper, we discuss the details of various variants of the
transformation of Rigid Sortal types of OntoUML.

I. INTRODUCTION

S
OFTWARE engineering is a demanding discipline that

deals with complex systems [1]. The goal of software

engineering is to ensure high quality software implementation

of these complex systems. To achieve this, various software

development approaches have been developed.

Model-Driven Development (MDD) is a very popular ap-

proach in the recent years. It is a software development

approach based on elaborating models and performing their

transformations [2]. The product to be developed is described

using various types of models specifying the requirements,

functions, structure and deployment of the product. These

models are used to construct the product using transformations

between models and code.

The most usual part of the MDD approach used in the

practice is the process of forward engineering: transformations

of more abstract models into more specific ones. The most

common use-case of such process is the development of

conceptual data models and their transformation into source

codes or database scripts.

To achieve a high-quality software system, high-quality

expressive models are necessary to define the requirements

for the system [1]. To use such models in the Model-

Driven Development approach, the model should define all

requirements and all constraints of the system. Moreover, it

should hold that more specific models persist the constraints

defined in the more abstract models [3].

This research was partially supported by grant by Student Grant Competi-
tion No. SGS16/120/OHK3/1T/18.

OntoUML was formulated in 2005 as a graphical modelling

language for developing ontologically well-founded concep-

tual models [3]. As it is based on cognitive science and modal

logic, it helps to create expressive models that are able to

describe the domain very precisely. As OntoUML is domain-

agnostic, it may be used for any domain. In our research, we

focus on the domain of software application data and therefore

we use OntoUML to create the PIM of the system. Such model

can be then transformed into a PSM of the data persistence.

However, as OntoUML uses various types of entities and rela-

tions to provide additional ontological meaning to the model

elements, the transformation needs to deal with these aspects.

As relational databases represent a very common type of

data storage, we focus on the transformation of an OntoUML

PIM of application data into an ISM of a relational database.

To achieve that, we divide the transformation into the follow-

ing steps:

1) Transform an OntoUML PIM into a UML PIM including

all the aspects defined by the OntoUML constructs.

2) Transform the UML PIM with the additional constraints

into a PSM of a relational database including the re-

quired additional constraints.

3) Transform the PSM with the additional constraints into

the ISM to define the constructs in the database to hold

the data and maintain the constraints.

In the prequel paper [4], we outlined the various possi-

bilities of the transformation of Sortal universal types used

in OntoUML. In this paper, we discuss the details of the

transformation of Rigid Sortal types (Kinds and Subkinds)

and illustrate various possibilities on examples. The parallel

research focused on the transformation of OntoUML Anti-

rigid universal types is discussed in the parallel paper [5].

The structure of the paper is as follows: in section II,

the work related to our approach including the OntoUML

notation is discussed; in section III, the running example of

the OntoUML PIM is explained; in section IV, our approach is

discussed and illustrated on the running example; in section V,

discussion to our approach is provided; finally, in section VI,

the conclusion of the paper results is provided.
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II. BACKGROUND AND RELATED WORK

A. Model-Driven Development

Model-Driven Development (MDD) is a very popular ap-

proach in the recent years. It is a software development

approach based on elaborating models and performing their

transformations [2]. The product to be developed is described

using various types of models specifying the requirements,

functions, structure and deployment of the product. These

models are used to construct the product using transformations

between models and code generation.

MDD was originally based on Model-Driven Architecture

(MDA) [6] designed by OMG in 2001. MDA defines these

types of models:

• Computation Independent Model (CIM),

• Platform Independent Model (PIM),

• Platform Specific Model (PSM),

• Implementation Specific Model (ISM) [7].

Although established already in 2001, there is still deep

interest in this approach, as can be seen in recent publications.

The book Model-Driven Software Development: Technology,

Engineering, Management by Stahl et al. [8] provides a great

overview of the MDD approach including the terminology,

specifications, transformations and case studies. Another book

Model-Driven Software Engineering in Practice by Brambilla

et al. [9] presents the foundations of MDSE approach and also

deals with the technical aspects of MDSE including the basics

of domain-specific languages, transformations and tools. Also,

the survey by da Silva [10] provides a good overview of the

MDD approach and terminology related to MDE, MDD and

MDA. Another survey was published by Whittle et al. [11]

that focused on the support of the MDE approach in tools and

provides a taxonomy of tool-related considerations.

The most usual part of the MDD approach used in the

practice seems to be the process of forward engineering: trans-

formations of more abstract models into more specific ones.

The most common use-case of such process is the development

of conceptual data models and their transformation into source

codes or database scripts. In our research, we focus on the

modelling of application data creating a PIM in OntoUML

and performing transformations to generate creation scripts of

a relational database schema.

B. UML

Unified Modeling Language (UML) [12], [13] is a popular

modelling language for creating and maintaining variety of

models using diagrams and additional components [10]. UML

defines a set of building blocks – various types of elements

(e.g. classes, use cases, components, etc.), relations (e.g. as-

sociation, generalization, dependency, etc.) and diagrams (e.g.

class diagram, use case diagram, sequence diagram, etc.). It

defines also the syntax and semantics of models and a general

architecture of the model [7]. In context of the data modelling,

UML Class Diagram is the notation mostly used to define

conceptual models of application data. Also, to describe the

structure of a relational database schema, UML Data Model

profile as an extension to the UML Class Diagrams may be

used [14].

The main elements of a UML Class Diagram are classes,

which serve to classify various types of objects in the domain

of interest and specify their features and behaviour [13].

Between the classes, associations and generalization/special-

ization relations can be defined. The associations are used to

define the fact that various instances of one class can be related

to some instances – according to association multiplicities –

of the other class.

Generalization is a taxonomic relationship between a more

general class – superclass – and a more specific class –

subclass [13]. It is used in situations when there are multiple

special cases of the more general class with additional features

and/or specialised meaning. In such a situation, the subclasses

inherit all features of their superclass and add their own

features, so their instances have all the features of both the

superclass and the subclass1. As UML is designed following

the object-oriented programming approach, an object can be

an instance of only one class [7]. As UML is based on

object-oriented paradigm, an object is either an instance of

the superclass or an instance of the subclass, inheriting the

features from the superclass but not being its direct instance.

The subclasses of the same superclass may form a gener-

alization set to define a partition of subclasses with common

meaning [13]. For each generalization set, two meta-properties

should be set to restrict the relation of an instance to the

individual subclasses: isCovering – expressing whether each

instance of the superclass must be also an instance of some

subclass in the generalization set – and isDisjoint – expressing

whether an object can be an instance of multiple subclasses in

the set at the same time. The default setting of these properties

differ in the various versions of UML: UML 2.4.1 [12]

and older define the {incomplete, disjoint} as de-

fault, while UML 2.5 [13] defines the {incomplete,

overlapping} as default. As each object is an instance

of exactly one class in the most current programming lan-

guages, the concept of generalization sets can be used only

in conceptual models and it must be transformed before its

realization.

C. OCL

Object Constraint Language (OCL) [15] is a specification

language that is part of the UML standard. It can be used for

the following purposes:

• to access model elements and their values,

• to define constraints and restrictions for model elements

and their values,

• and to define query operations [7].

Several types of OCL constructs may be used to define

the constraints for the model elements. Invariants are defined

in context of certain class of the attached UML model and

they are used to define constraints which must be satisfied

1In fact, the features of the superclass may be overriden by features of the
subclass, but this situation is not considered here.
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by all contextual instances at any moment. Preconditions and

postconditions are defined in context of certain method of

a class in the attached UML model. Preconditions define

the constraints that must be satisfied before executing the

method (e.g. the values of the method parameters), while

postconditions define the constraints which must be satisfied

after the method execution (e.g. the value of the result).

In [16], the authors define basic syntax and semantics of

OCL constructs and introduce several tools that support mod-

elling and evaluation of OCL constraints. In [17], the authors

define a technique for transformations of OCL constructs into

other equivalent forms to support their definition, validation

and transformation.

In our approach, we use OCL invariants to define the

constraints on the UML PIMs and PSMs derived from the se-

mantics of OntoUML universal types that cannot be expressed

directly in the diagram.

D. OntoUML

OntoUML is a conceptual modelling language focused on

building ontologically well-founded models. It was formulated

in Guizzardi’s PhD Thesis [3] as a light-weight extension of

UML based on UML profiles.

The language is based on Unified Foundational Ontology

(UFO), which is based on the cognitive science and modal

logic and related mathematical foundations such as sets and

relations. Thanks to this fact, it provides expressive and precise

constructs for modellers to capture the domain of interest.

Unlike other extensions of UML, OntoUML does not build

on the UML’s ontologically vague “class” notion, but builds

on the notion of universals and individuals. It uses the basic

notation of UML Class Diagram like classes, associations

and generalization/specialization together with stereotypes and

meta-attributes to define the nature of individual elements

more specifically. On the other hand, it omits a set of other

problematic concepts (for instance aggregation and compo-

sition) and replaces them with its own ontologically correct

concepts.

UFO and OntoUML address many problems in conceptual

modelling, such as part-whole relations [18] or roles and the

counting problem [19]. The language has been successfully

applied in different domains such as interoperability for med-

ical protocols in electrophysiology [20] and the evaluation of

an ITU-T standard for transport networks [21].

However, being domain-agnostic, we believe that it may

be suitable even for conceptual modelling of application data

in the context of MDD. Using OntoUML, we can create very

precise and expressive models of application data. These mod-

els can be later transformed into relational database schema

containing various domain-specific constraints to maintain

consistency according to the OntoUML model.

The following description of the OntoUML and UFO as-

pects is based on [3].

1) Universals and individuals: UFO distinguishes two

types of things. Universals are general classifiers of various

objects and they are represented as classes in OntoUML (e.g.

Person). There are various types of universals according to

their properties and constraints as discussed later. Individuals,

on the other hand, are the individual objects instantiating the

universals (e.g. Mark, Dan, Kate).

The fact that an individual is an instance of a universal

means that – in the given context – we perceive the object to

be the Universal (e.g. Mark is a Person). Important feature

of UFO is the fact that an individual may instantiate multiple

universals at the same time but all the universals must have a

common ancestor providing the identity principle (e.g. Mark

is a Person and he is a Student as well).

2) Identity principle: Identity principle is a key feature of

UFO, which enables individuals to be distinguished from each

other. Various universals define different identity principles

and thus different ways how to distinguish their individuals

(e.g. a Person is something else than a University);

different individuals of the same universal have different iden-

tities (e.g. Mark is not Kate even when both are Persons).

Each individual always needs to have a single specific

identity, otherwise there is a clash of identities (e.g. Mark

is a Person and therefore it can never be confused with

another concept such as a University). The identity of an

individual is determined at the time the individual comes to

existence and it is immutable – it can never be changed (e.g.

Mark will always be Mark and he will always be a Person).

The types of universals that provide the identity principle

for their instances are called Sortal universals (e.g. Person,

Student). The types of universals not providing the identity

principle are called Non-Sortal universals (e.g. a Customer

may be a Person or a Company). In this paper, we discuss

only the transformations of the Sortal types of universals, as

they form the basis of models.

3) Rigidity: UFO and OntoUML are built on the notion of

worlds coming from Modal Logic – various configurations of

the individuals in various circumstances and contexts of time

and space. Rigidity is, then, the meta-property of universals

that defines the fact if the extension of the universal (i.e. the

set of all instances of the universal) is world invariant [22].

UFO distinguishes rigid, anti-rigid and semi-rigid universals:

• Rigid universals are such types of universals

whose extension is rigid – instances of the Rigid uni-

versals cannot cease to be their instances without ceasing

to exist (e.g. Mark will always be a Person). Certain

types of both Sortal and Non-Sortal universals are rigid.

• Anti-rigid universals are such types of univer-

sals which, in one world, contain an instance in their

extension, which is not included in the extension in

another world. It means that an individual that is an

instance of the Anti-rigid universal in one world may not

be an instance of that universal in another world without

ceasing to exist (e.g. Mark is a Student now, but he

will not be a Student 50 years later). Certain types of

both Sortal and Non-Sortal universals are anti-rigid.

• Semi-rigid universals are such types of univer-

sals that can include both rigid and anti-rigid instances in
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their extension. Only Non-Sortal types of universals are

semi-rigid.

In this paper, we focus only on the Rigid Sortal types of

universals and we discuss the details of the transformation of

such universals into the relational databases.

4) Generalization and Specialization: In contrast to UML,

in UFO and OntoUML, the generalization relation defines

the inheritance of the identity principle. According to that,

an individual which is an instance of the subclass is also an

instance of the superclass automatically through inheriting the

identity principle from the superclass. Also, the relation is

rigid in UML – when an instance of the superclass is also

an instance of the subclass, it cannot cease to be so without

losing its identity – while in OntoUML, the relation may be

non-rigid: a single individual may be an instance of both the

superclass and subclass in one world and it may be an instance

of only the superclass in another world.

The generalization sets in OntoUML are much more com-

mon as they define the required identity for various universal

types. Unless altered, {incomplete, non-disjoint} is considered

the default value of the meta-properties.

5) Kinds and Subkinds.: The backbone of an OntoUML

model is created by Kinds. Kind is a Rigid Sortal type of

universals that defines the identity principle for its instances,

thus defining the way how we are able to distinguish individual

instances of that universal. In OntoUML, the Kind universals

are depicted as classes with the ≪ Kind ≫ stereotype. Ex-

amples of Kind universals are a Person and a University.

Subkind is a Rigid Sortal universal type that does not define

its own identity principle, but it inherits it from its ancestor

and provides it to its instances. Therefore, Subkind universals

form generalization sets of other Kind or Subkind universals;

they form inheritance hierarchies with the root in a Kind

universal. In other words, each instance of a Subkind universal

is automatically – through the transitive generalization relation

– also an instance of all the ancestral Kind and Subkind

universals, receiving the identity principle from the root Kind

universal. The inheritance may have any combination of values

of the isDisjoint and isCovering meta-properties. Examples of

Subkind universals may be a Man and a Woman as subkinds

of a Person.

6) Other universal types.: UFO and OntoUML define sev-

eral other universal types such as Role, Phase, Relator, Mixin,

Quantity et al. However, they are out of scope of this paper.

E. Tools

There are tools supporting certain parts of the transforma-

tion process described in section IV. Although none of them

supports the full transformation, they can be used for the

individual steps or serve as an inspiration for a complex tool

to be developed.

Enterprise Architect2 is a complex CASE tool supporting

the whole software development process. Beside the modelling

in UML and other notations, it offers transformation between

2http://www.sparxsystems.com.au/products/ea/

models and source code generation. In context of our work,

the transformation of a class model into a database model

and the generation of SQL DDL scripts are useful. Beside

Enterprise Architect, there are many other tools providing

similar functions for UML and relational databases (e.g. Visual

Paradigm3).

There are also several tools supporting definition of OCL

constraints and their evaluation on a given model instance,

such as DresdenOCL4, OCLE5 or USE6. DresdenOCL even

provides functions to generate Java source code with AspectJ

for the OCL constraints or SQL DDL scripts with views for

the OCL constraints.

For OntoUML, there are a few tools available, as well.

OntoUML lightweight editor (OLED)7 is an environment for

modelling with OntoUML which also offers functions for

model visualisation, validation and transformation into OWL.

However, it does not offer transformation into UML nor into

relational databases. Menthor Editor8 is a successor of OLED,

providing more convenient environment for modelling and

providing transformations of an OntoUML model along with

OCL constraints into OWL, RDF and UML. As for other

tools, there is an Enterprise Architect plugin9 and a palette

for UMLet editor10 available for OntoUML modelling.

F. Previous work

In our previous work, we focused on the transformation

of special multiplicity values in a UML PIM into PSM for

relational databases [23] and the possible realizations of such

constraints [24]. The approaches described in these papers may

be used for the realization of the constraints derived from the

OntoUML constructs used in the PIM as discussed in this

paper.

In [25] we focused on the transformation of an ontological

conceptual model in OntoUML into a pure object implemen-

tation model in UML and also the instantiation of such model

to validate it. In the paper [4], we outlined our approach

to the transformation of OntoUML PIM into an ISM of a

relational database. In the parallel paper [5], we discuss the

details of the transformation of OntoUML Anti-rigid Sortal

types. This paper presents the parallel research focused on the

transformation of OntoUML Rigid Sortal types (Kinds and

Subkinds).

III. RUNNING EXAMPLE

Our approach to the transformation of the Sortal Rigid

universal types in an OntoUML PIM into ISM of a rela-

tional database is illustrated on the running example shown

in Figure 1. The model shows an excerpt of the domain

of an automotive company. The company takes care about

3https://www.visual-paradigm.com/
4https://github.com/dresden-ocl
5http://lci.cs.ubbcluj.ro/ocle/
6http://sourceforge.net/projects/useocl/
7https://github.com/nemo-ufes/ontouml-lightweight-editor
8http://www.menthor.net/menthor-editor.html
9http://www.menthor.net/ea-plugin.html
10https://zenodo.org/record/51859
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«Kind»

Vehicle

- manufacturer: String

- model: String

- plate number: String

«SubKind»

Motorcycle

- content: int

«SubKind»

Car

- seats count: int

- spare wheel: boolean

{disjoint, complete}

Fig. 1. OntoUML PIM of vehicle types

motorcycles and personal cars in their fleet. These two types

of vehicles are represented by the Motorcycle and Car

Subkinds of the common ancestral Kind Vehicle defining

the identity of a vehicle.

As the company uses only motorcycles and personal cars,

the generalization set is complete. Also, it is not possible

for a single vehicle to be both the motorcycle and the car,

therefore the generalization set is disjoint.

IV. OUR APPROACH

Our approach to the transformation of a PIM in OntoUML

into its realization in a relational database consists of three

steps which are discussed in the following sections:

1) subsection IV-A discusses the transformation of an On-

toUML PIM into a UML PIM,

2) subsection IV-B discusses the transformation of the

UML PIM into a PSM for relational database,

3) subsection IV-C discusses the transformation of the PSM

into an ISM of the relational database.

As mentioned in the introduction, it should hold that no

information should be lost when transforming from a more

abstract model into a more specific one. As OntoUML applies

certain constraints based on the OntoUML type used for

an entity, these constraints should be carried over to the

other models. In our approach, we use OCL to define such

constraints in the UML models that cannot be expressed

directly in the diagrams.

Although we may formulate a direct transformation from

OntoUML into the relational database, the transformation via

an auxiliary UML model enables to leverage all the available

knowledge (e.g. [26], [24] and tools for transformation of a

UML PIM into database models such as Enterprise Archi-

tect11. Also, various optimizations and refactoring may be

applied whenever possible (e.g. when the entity does not hold

any attributes, they can be expressed by a mere attribute of

the superclass).

In the approach presented here, we assume the (most

common) situation where all attributes of the model classes

11http://www.sparxsystems.com.au/products/ea/

Vehicle

- manufacturer: String

- model: String

- plate number: String

Motorcycle

- content: int

Car

- seats count: int

- spare wheel: boolean

{disjoint, complete}

Fig. 2. UML PIM of vehicle types

have multiplicities [1..1]. In the conclusions, we discuss

how the situation changes for different multiplicities.

A. Transformation of OntoUML PIM into UML PIM

This phase of the transformation deals with the transforma-

tion of various types of universals in an OntoUML model into

a pure UML model while preserving all the semantics defined

by the universal types.

In this phase of the transformation, the semantics of the

OntoUML model is mostly realized by the multiplicities of

the relations between the classes in the UML model.

As various OntoUML universal types define different se-

mantics, they are also transformed in a different manner.

However, we discuss only the transformation of Rigid Sortal

types (Kinds and Subkinds) and their variants in this paper.

1) Kinds and Subkinds: As both Kind and Subkind univer-

sals in OntoUML are rigid, their instances cannot cease to be

their instances without ceasing to exists. The same applies in

UML for the relation between the instances and their classes.

Therefore, the representation of Kinds and Subkinds in UML

may stay the same: each ≪ Kind ≫ and ≪ Subkind ≫

class is transformed into a standard UML class keeping all its

features – attributes and relations.

The resulting transformed PIM into UML for the vehicle

domain shown in Figure 1 is shown in Figure 2. Each of

the ≪ Kind ≫ and ≪ Subkind ≫ classes has been

transformed into standard UML class.

2) Generalization sets: A Subkind in OntoUML represents

a special case of a Kind or other Subkind, forming a gener-

alization set together with other Subkinds. As both Kinds and

Subkinds are rigid, also the generalization set is rigid: when

an object is an instance of the Subkind, it is also an instance of

its rigid ancestor – a Kind or another Subkind – and it cannot

cease to be the instance of any of them without loosing its

identity.

Thanks to the rigidity, the generalization sets of

≪ Subkind ≫ classes in the OntoUML model can be

transformed into the standard UML generalization set. Also,

the meta-properties isDisjoint and isCovering of the
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generalization set remain the same. The example of this

transformation can be seen in Figure 2.

B. Transformation of PIM into PSM

The second step is the transformation of the UML PIM

into a PSM of a relational database. The UML Data Model

profile – an extension to the UML class diagrams – is used

in the examples to define the structure of relational databases

in UML [14]. Additional constraints required to preserve the

semantics derived from the OntoUML model are defined as

OCL invariants, as OCL is part of the UML standard and there

are tools supporting the transformation of OCL constraints into

database constructs such as DresdenOCL12. The basics of this

transformation was already discussed in [24]. In this paper, we

focus on the transformation of the constraints derived from the

OntoUML Rigid Sortal universal types.

In general, when performing transformation from a UML

PIM into a PSM of a relational database, classes are trans-

formed into database tables, class’s attributes are transformed

into table columns and associations are transformed into FOR-

EIGN KEY constraints. Also, PRIMARY KEY constraints

are defined for unique identification of individual rows in the

tables.

The transformation of classes representing various Kind

universals is straightforward – the class with its attributes is

transformed into a table with its columns as discussed in [24].

However, more complicated situation arises for the subclasses

representing the Subkind universals, as they always form

generalization sets. There are multiple standard variants of

the transformation of generalization [27], however, they have

certain limitations regarding the OntoUML Subkind universal

constraints, as discussed in the following sections.

1) Single table: In this variant of generalization realization,

the superclass and all its subclasses are realized by a single ta-

ble. Such table contains the columns for all the attributes of the

superclass and all its subclasses. Instances of the superclass are

represented by rows with the subclasses’ columns containing

NULL values, instances of a subclass contain values only in

the superclass columns and their respective subclass columns

– the other columns remain NULL. Usually, a special column

to discriminate the subtypes is also defined in the table. The

resulting transformed model of the PIM in Figure 2 is shown

in Figure 3, where the column id serves as the PRIMARY

KEY and the column type serves as the discriminator.

As our assumption is that attribute multiplicities are

[1..1] – as mentioned at the beginning of this section –

all columns of a class should be NOT NULL in the table.

This can be easily defined by the NOT NULL constraints

for the columns of the superclass, as they have values even

for the instances of the subclasses. However, the constraints

for the subclasses’ columns depend on the subclass of the

instance, which the row represents – the other columns may

contain NULL values. Moreover, all columns of a single

subclass – not only a subset of them – should have a value.

12https://github.com/dresden-ocl

Vehicle

«column»

*PK id: INT

* manufacturer: VARCHAR(100)

* model: VARCHAR(100)

* plate_number: VARCHAR(10)

* type: VARCHAR(10)

content: INT

seats_count: INT

spare_wheel: BOOL

«PK»

+ PK_Vehicle(INT)

Fig. 3. PSM of vehicle types realized by a single table

As such constraints are not defined on the column level,

they cannot be captured directly in the UML model. Instead,

they must be defined as additional OCL invariants that are

later transformed into their realization in a relational database

(see subsection IV-C). For the example in Figure 3, these

constraints can be defined for the individual subclasses as

shown in Algorithm 1.

Furthermore, the constraints should be defined in respect to

the meta-properties of the generalization set according to the

following variants:

• {complete, disjoint}: For each row, all the

columns of the superclass and all the columns of a

single subclass must contain NOT NULL values, the other

columns must contain NULL values.

• {complete, overlapping}: For each row, all the

columns of the superclass and all the columns of at least

a single subclass cannot contain NULL values.

• {incomplete, disjoint}: For each row, all the

columns of the superclass must contain NOT NULL

values. At the same time, all the columns of at most one

of the subclasses may contain NOT NULL values, the

other columns must contain NULL values.

• {incomplete, overlapping}: For each row, all

the columns of the superclass must contain NOT NULL

values. All the columns of any subclass may or may not

contain NOT NULL values.

Such OCL invariant for the example shown in Figure 3

is shown in Algorithm 2. Because the generalization set is

{disjoint, complete}, the Vehicle columns must

contain a value – this is achieved by the NOT NULL con-

straints of the columns – and the columns of Motorcycle

class must contain NOT NULL values while the Car class

must contain NULL values, and vice versa.

The constraints discussed above become the more compli-

cated the more attributes there are in the subclasses because
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Algorithm 1 OCL invariants for the NOT NULL constraints of the subclasses

c o n t e x t v : V e h i c l e inv M o t o r c y c l e N o t N u l l :

v . t y p e = ’ M o t o r c y c l e ’ i m p l i e s v . c o n t e n t <> OclVoid

c o n t e x t v : V e h i c l e inv CarNotNul l :

v . t y p e = ’ Car ’ i m p l i e s v . s e a t s _ c o u n t <> OclVoid and v . s p a r e _ w h e e l <> OclVoid

Algorithm 2 OCL invariant for the {disjoint, complete} generalization set realized by a single table

c o n t e x t v : V e h i c l e inv Motorcyc leOrCar :

d e f : v a l i d M o t o r c y c l e : Boolean =

v . c o n t e n t <> OclVoid and v . s e a t s _ c o u n t = OclVoid and v . s p a r e _ w h e e l = OclVoid

d e f : v a l i d C a r : Boolean =

v . c o n t e n t = OclVoid and v . s e a t s _ c o u n t <> OclVoid and v . s p a r e _ w h e e l <> OclVoid

v a l i d M o t o r c y c l e xor v a l i d C a r

of the exclusivity of the NOT NULL values. Therefore, we

would recommend this variant of the transformation only in

cases there are not many subclasses and their attributes.

2) Subclasses’ tables: In this variant of the transformation,

the tables are created only for the subclasses. The attributes of

the superclass are transformed into columns in all the tables

of all the subclasses. Therefore, each instance of a subclass

is able to store also the values of the superclass’s attributes

along with their own in a single table. Because of this, all the

NOT NULL constraints can be easily defined for all columns.

However, in this variant, it is more complicated to ensure

the unique values for attributes of the superclass, as the data

are distributed in several distinct tables.

Also, this variant cannot be used for an incomplete

generalization set as it does not allow the storing of an instance

of only the superclass. Even if the NOT NULL constraints on

the subclasses’ columns would not be defined, it would not be

clear in which table to store the instance13.

Moreover, this variant is not suitable for overlapping

generalization sets either, as storing the data of multiple

subclasses to their respective tables also duplicate the data

of the superclass.

Therefore, based on the mentioned restrictions and compli-

cations, we would not recommend this variant of the transfor-

mation in any situation and we will not discuss it anymore.

3) Superclass and subclasses’ tables: According to this

variant, the superclass and all the subclasses are transformed

each into their own table and the individual subclass’s tables

contain the FOREIGN KEY referring to the superclass’s table.

This direction is determined by the fact that an instance of

the subclass is also an instance of the superclass. Therefore

a record in the subclass’s table requires exactly one record

in the superclass’s table – thus being related to 1..1 parent

records. More details about determination of the FOREIGN

13Technically, it is possible to designate one of the subclass’s tables for
this purpose. However, we find this approach inconceptual.

KEY direction based on the multiplicities can be found in

[28].

In this variant, the NOT NULL constraints are easier to

define, as all columns in a table represent attributes of the

same class and they can be expressed by simple NOT NULL

constraints defined directly for each column. Still, an addi-

tional constraint must be defined for the meta-properties of the

generalization set of the subclasses according to the following

combinations:

• {complete, disjoint}: exactly one row from only

one of the subclass’s tables refers to the row in the

superclass’s table.

• {complete, overlapping}: at most one row from

each of the subclass’s tables refers to the row in the

superclass’s table, but at least one in total.

• {incomplete, disjoint}: at most one row from

only one of the subclass’s tables refers to the row in the

superclass’s table.

• {incomplete, overlapping}: at most one row

from each of the subclass’s tables refers to the row in

the superclass’s table.

The restriction of at most one row from a table can be

realized by a UNIQUE KEY constraint on the FK column;

the same column may also be part of the PRIMARY KEY

constraint. However, the exclusivity must be checked by a

special constraint, still.

In the running example, the subclasses Motorcycle and

Car are transformed into their respective tables (see Figure 4).

As their generalization set is complete and disjoint, the

FK column is part of the PRIMARY KEY constraint to make

it unique. Furthermore, the constraint shown in Algorithm 3

must be defined.

The other variants of the generalization meta-properties are

not discussed here.
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Vehicle

«column»

*PK id: INT

* manufacturer: VARCHAR(100)

* model: VARCHAR(100)

* plate_number: VARCHAR(10)

«PK»

+ PK_Vehicle(INT)

Motorcycle

«column»

*pfKvehicle_id: INT

* content: INT

«FK»

+ FK_Motorcycle_Vehicle(INT)

«PK»

+ PK_Motorcycle(INT)

Car

«column»

*pfKvehicle_id: INT

* seats_count: INT

* spare_wheel: BOOL

«FK»

+ FK_Car_Vehicle(INT)

«PK»

+ PK_Car(INT)

0..1

(vehicle_id = id)

«FK»

1

0..1

(vehicle_id = id)

«FK»

1

Fig. 4. PSM of vehicle types realized by a separate superclass’s and subclesses’ tables

Algorithm 3 OCL invariant for the {disjoint, complete} generalization set realized by a superclass’s and subclasses’

tables

c o n t e x t v : V e h i c l e inv Motorcyc leOrCar :

d e f : v a l i d M o t o r c y c l e : Boolean = M o t o r c y c l e . a l l I n s t a n c e s ()−> e x i s t s (m|m. v e h i c l e _ i d =v . i d )

d e f : v a l i d C a r : Boolean = Car . a l l I n s t a n c e s ()−> e x i s t s ( c | c . v e h i c l e _ i d = v . i d )

v a l i d M o t o r c y c l e xor v a l i d C a r

C. Transformation of PSM into ISM

The last step is the transformation of the PSM of a relational

database into an ISM. This model consists of database scripts

for the creation of the database tables, constraints and other

constructs.

As we have the PSM of the relational database, the trans-

formation is quite easy. Most of the current CASE tools such

as Enterprise Architect or Visual Paradigm14 can be used to

generate SQL DDL scripts. These scripts usually include the

CREATE commands for the tables, their columns, NOT NULL

constraints and PRIMARY and FOREIGN KEY constraints.

However, the OCL invariants defined for the additional

constraints require special transformation. Only a few tools

currently seem to offer transformation of such constraints –

e.g. DresdenOCL15, OCLE16 or USE17.

14http://www.visual-paradigm.com/
15https://github.com/dresden-ocl
16http://lci.cs.ubbcluj.ro/ocle/
17http://sourceforge.net/projects/useocl/

Our approach to the realization of the OCL constraints

derived from the OntoUML universal types is inspired by the

approach for special multiplicity constraints discussed in [24].

Based on that approach, the following constructs may be used

to prevent violating the derived constraints:

• Database views can be used to query only the valid data

meeting the constraints. They do not slow down the DML

operations, but they do not prevent inserting data violating

the constraints.

• Updatable database views with CHECK option can be

used to manipulate only the valid data, preventing to

create invalid data by insert, update and delete operations.

However, the use of such views is restricted by several

constraints for the query expression.

• CHECK constraints can be used to check the values

inserted to various columns of the table, but the common

current database engines (e.g. Oracle 11g) do not sup-

port subqueries in the CHECK constraint expression and

therefore they cannot be used for relational constraints.

1588 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



• Triggers can be defined on the DML operations to prevent

creating invalid data in the tables. In the triggers, complex

queries and checks can be realized, and therefore they

are capable to deal with almost every possible constraint.

The constraint checks slow down each DML operation,

however as shown in [24], the time increase is typically

not substantial.

In [24], the research was focused on the realization of

special multiplicity constraints. The same approach, however,

may be used also for the realization of the constraints derived

from the Rigid Sortal universal types and their generalization

sets in OntoUML.

In the following sections, the transformation of the resulting

PSMs from subsection IV-B is discussed using the approaches

listed above (marked by italics).
1) Single table: For the generalization set transformed into

a single database table, the constraint was defined as shown

in Algorithm 2. Its realization using the database view is

simple: query only such rows from the table that have either

the Motorcycle columns or the Car columns filled with

values. The resulting database view is shown in Algorithm 4.

The WHERE condition filters out such vehicles that are neither

motorcycle nor car as well as such vehicles that are both – and

it exactly meets the {complete, disjoint} property of

the generalization set.

Moreover, as the view definition meets the constraints for an

updatable view, it can be defined WITH CHECK OPTION and

used even for DML operations like inserts, updates and deletes.

The WITH CHECK OPTION makes the database engine to

check the view after each such operation executed on the view

and prevents inserting a row that will not be accessible by the

view or updating a row to make it inaccessible.

The same effect might be achieved also by defining a

CHECK constraint which is checked after each operation on

the table. The resulting CHECK constraint is shown in Al-

gorithm 5. Using such constraint, it is not possible to create

invalid data in the table and therefore the table can be used

directly for querying the valid data.

As the CHECK constraint does not contain any subqueries,

it is supported by the common database engines without

any problems. The realization by triggers would achieve the

same results but with more complex definition and slower

evaluation. Therefore, it is not worth to use the triggers

approach in this case.
2) Superclass’s and subclasses’ tables: For the generaliza-

tion set transformed into database tables for the superclass

and all the subclasses, the constraint was defined as shown

in Algorithm 3.

The resulting database views for the realization of

the OCL invariant are shown in Algorithm 6. The view

Valid_Vehicles is used to query only such rows from the

Vehicle table that have a row either in the Motorcycle or

in the Car table referring to it. Therefore, using this view, we

can access data about such vehicles that are either a motorcycle

or a car, the vehicles having invalid data are hidden from the

view.

To query the data of valid motorcycles, the view

Valid_Motorcycles can be used that filters out invalid

motorcycles using the Valid_Vehicles view. By analogy,

the view Valid_Cars can be used to query only the valid

cars.

All of these views are updatable – meeting the criteria for

an updatable view – and therefore they can be defined WITH

CHECK OPTION and used to manipulate with the vehicles

to prevent creating vehicles without the motorcycle or car

data. However, it would not be possible to insert data into

any of the views as inserting into the Valid_Vehicles

would violate the view condition while inserting into the

Valid_Motorcycles orValid_Cars would violate the

FOREIGN KEY constraint. Therefore, the FOREIGN KEY

constraint must be defined as deferrable, so it is checked at

the end of the transaction and not at the time of execution

of the command. Then, it is possible to insert data to the

Valid_Motorcycles or Valid_Cars views, first refer-

ring to a not-existing vehicle and then to insert data into the

Valid_Vehicles view.

However, the existence of such views does not prevent

the manipulation with the data directly in the tables and

thus violating the constraints. Therefore, another database

construct should be used. A CHECK constraint might have

been used as discussed in subsubsection IV-C1, however, as the

constraint would contain subquery, it is not supported by the

common current database engines [24]. Therefore, the CHECK

constraint cannot be actually used in this situation.

Instead, according to the triggers approach, triggers might

be defined for each of the tables for all the DML operations

– insert, update, delete – to check that the operation will not

violate the constraint. The following triggers would be needed:

• BEFORE INSERT ON Vehicle: This trigger would

check there are car data or motorcycle data available in

their respective tables for the vehicle. If violated, an error

is raised and the operation is cancelled.

• BEFORE UPDATE OR DELETE ON Motorcycle:

The trigger would check there are no vehicle data in the

Vehicle table, to which the updated or deleted rows

refer. If violated, an error is raised and the operation is

cancelled.

• BEFORE UPDATE OR DELETE ON Car: The similar

trigger should be defined as for the Motorcycle table.

Defining such triggers, along with the FOREIGN KEY con-

straints a PRIMARY KEY constraints, would prevent creating

invalid data in the tables during any DML operation. However,

the FOREIGN KEY constraints must be defined as deferrable

– same as for the views – to allow inserting the subclasses’

data before inserting the superclass’s data or to delete the

superclass’s data before deleting the subclasses’ data.

V. DISCUSSION

As mentioned above, our approach to the realization of the

constraints derived from the OntoUML Sortal universal types

is based on the approach discussed in [24]. In this paper,

the authors discuss possible ways to realize constraints for
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Algorithm 4 Database view to query valid data from the combined Vehicle table

CREATE VIEW Motorcyc leOrCar AS

SELECT ∗ FROM V e h i c l e v WHERE

( v . c o n t e n t IS NOT NULL AND v . s e a t s _ c o u n t IS NULL AND v . s p a r e _ w h e e l IS NULL)

OR

( v . c o n t e n t IS NULL AND v . s e a t s _ c o u n t IS NOT NULL AND v . s p a r e _ w h e e l IS NOT NULL)

WITH CHECK OPTION

Algorithm 5 CHECK constraint for the combined Vehicle table

ALTER TABLE V e h i c l e ADD CONSTRAINT Motorcyc leOrCar CHECK

( v . c o n t e n t IS NOT NULL AND v . s e a t s _ c o u n t IS NULL AND v . s p a r e _ w h e e l IS NULL)

OR

( v . c o n t e n t IS NULL AND v . s e a t s _ c o u n t IS NOT NULL AND v . s p a r e _ w h e e l IS NOT NULL)

Algorithm 6 Database views to query only valid data from the Vehicle, Motorcycle and Car tables

CREATE VIEW V a l i d _ V e h i c l e s AS

SELECT ∗ FROM V e h i c l e v WHERE

( EXISTS (SELECT 1 FROM M o t o r c y c l e m WHERE m. v e h i c l e _ i d = v . i d )

AND NOT EXISTS (SELECT 1 FROM Car c WHERE c . v e h i c l e _ i d = v . i d ) )

OR

(NOT EXISTS (SELECT 1 FROM M o t o r c y c l e m WHERE m. v e h i c l e _ i d = v . i d )

AND EXISTS (SELECT 1 FROM Car c WHERE c . v e h i c l e _ i d = v . i d ) )

CREATE VIEW V a l i d _ M o t o r c y c l e s AS

SELECT v . ∗ , m. c o n t e n t FROM V a l i d _ V e h i c l e s v

JOIN M o t o r c y c l e m ON ( v . i d = m. v e h i c l e _ i d )

CREATE VIEW V a l i d _ C a r s AS

SELECT v . ∗ , c . s e a t s _ c o u n t , c . s p a r e _ w h e e l FROM V a l i d _ V e h i c l e s v

JOIN Car c ON ( v . i d = c . v e h i c l e _ i d )

special multiplicity values using database views and triggers.

The authors also provide results of experiments, proving that

their realization guarantees database consistency in context

of the multiplicity constraints with just a slight decrease in

efficiency.

The OCL constraints derived from the OntoUML Sortal

universal types have the same structure – they are based on

multiplicities of related objects or their exclusivity. Therefore,

also their realization using the views and triggers is very

similar. Based on this, we can expect the same impact on

the efficiency of the DML operations and queries. However,

as our research is not yet fully concluded, experiments are yet

to be done to prove that.

Also, in this paper, we focused on the most common situ-

ation of mandatory attributes (attribute multiplicity [1..1]).

In case of optional attributes (minimal multiplicity 0), some

of the constraints will simplify – e.g. the NOT NULL

constraints for individual columns representing the attributes

of the subclasses (Algorithm 1 and Algorithm 2). On the

other hand, collection attributes (attributes with the maximal

multiplicity *) lead to the realization in the form of relations,

references and FOREIGN KEYs.

VI. CONCLUSIONS

In this paper, we introduced our approach to the transforma-

tion of an OntoUML PIM of application data into an ISM of a

relational database. This transformation is separated into three

sequential steps: the transformation of an OntoUML PIM into

a UML PIM, the transformation of the UML PIM into a PSM

for relational database and the transformation of the PSM into

an ISM of a relational database.

During these transformations, various options and additional

constraints should be defined and realized to maintain the

semantics defined by the OntoUML universal types. In this

paper, we discussed the details of the transformation of Rigid

Sortal universal types – Kinds and Subkinds and their gen-

eralization sets – discussing various possible realizations of

the constraints derived from the semantics of these OntoUML
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constructs. All the variants are described using a running

example of a simple OntoUML PIM of vehicle types.

As for the future research, a similar work should be elabo-

rated for the Non-sortal universal types – e.g. Category, Mixin,

RoleMixin – and relational constructs – part-whole relations,

Relators, etc. Also, combinations of multiple generalization

sets of a single universal with various combinations of the

meta-properties should be investigated. Finally, experiments

should be carried out to study the finer points of individual

variants of the constraints realization.
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