
Efficient parallel execution of genetic algorithms on
Epiphany manycore processor

Łukasz Faber, Krzysztof Boryczko
AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Kraków, Poland

E-mail: {faber,boryczko}@agh.edu.pl

Abstract—Recent years have seen a growing trend towards
the introduction of more advanced manycore processors. On the
other hand, there is also a growing popularity for cheap, credit-
card-sized, devices offering more and more advanced features
and computational power.

In this paper we evaluate Parallella – a small board with
the Epiphany manycore coprocessor consisting of sixteen MIMD
cores connected by a mesh network-on-a-chip. Our tests are
based on classical genetic algorithms. We discuss some possible
optimizations and issues that arise from the architecture of
the board. Although we achieve significant speed improvements,
there are issues, such us the limited local memory size and slow
memory access, that make the implementation of efficient code
for Parallella difficult.

I. INTRODUCTION

F
OLLOWING the Manycore Revolution [1] and the popu-

larity of small integrated, power consumption- and cost-

oriented computing boards (for example, Raspberry Pi), it was

expected that these two “directions” would merge at some

point. One of the results of this “merge” is the Parallella

board1 [2], created by Adapteva. It is a small (credit card-

sized) board, comprising of a 16-core Epiphany coprocessor

and the main dual-core ARM processor.

Such boards are interesting for researchers due to their costs,

simplicity, and the low level requirements for beginning work

with them. Parallella has the benefits of being a standalone,

plug-and-play coprocessor similarly to Intel Phi [3]. In this

case, “standalone” means that it is a completely separate

computer unit that can run independently of any other nodes.

On the other hand, it is plug-and-play, because it only requires

an Ethernet cable to connect to it.

In this paper we want to review the Parallella board as a sim-

ple and effective tool for implementing strictly computational

systems. We do not expect the platform to provide higher

performance than well established manycore architectures like

GPGPU. However, it seems that the programming model and

achievable efficiency are good enough for creating quick, low-

cost hardware-accelerated parallel platforms for simulations

and computations. We want to show that it is feasible to

implement various execution strategies on the platform and

demonstrate its possible weaknesses.

The work reported in this paper concentrates on the realiza-

tion of genetic and evolutionary algorithms on the Parallella

1https://www.parallella.org/

board. It is related to and extends our previous publications

regarding the implementation of effective tools for running

population-based computational intelligence systems [4], es-

pecially using the agent paradigm [5], [6] in both parallel and

distributed [7], as well as heterogeneous environments [8].

In the following sections, we briefly introduce the Parallella

platform and Epiphany manycore (Section II) and its memory

and programming models. Then, in Section III, we discuss

our benchmarks and introduced optimizations. In Section IV

we present the results. Finally, these results are discussed in

Section V, alongside introducing the next steps we are taking

with Parallella.

II. PARALLELLA

Parallella is a hardware platform built on top of the many-

core Epiphany [2] coprocessor, created by Adapteva in 2011.

It was funded by a Kickstarter campaign2 The board was first

presented in June 2014.

The Epiphany processor consists of a 2D array of nodes

(known as “eNodes”) connected by a mesh network-on-a-chip.

Each node consists of a single RISC core (called “eCore”), a

DMA engine, 32 kB of memory and a network interface. Each

core includes a 32-bit floating point RISC CPU, local memory,

a DMA engine, an event monitor and a network interface.

The mesh connections on a 16-core processor are shown in

Figure 1.

Each “eCore” contains a floating-point unit (FPU), an

arithmetic logic unit (ALU) and a 64-word register file, as

shown in Figure 2.

The address space in Epiphany is flat and consists of 232

bytes. Each node has 32 kB of its own local range of memory

aliased in addresses 0x0000–0x7FFF. However, memory of

each node can be accessed by prefixing the address with a

globally addressable ID consisting of 6 bits for a row ID

and 6 bits for a column ID (counted from 0) – thus giving

a theoretical maximum of 64 × 64 − 1 = 4095 cores. For

example, if a core wanted to access the memory of the core

located in the second row and the third column (1,2) it would

access addresses 0x04200000–0x04207FFF.

Some specifics of the Epiphany architecture related to

eMesh include:

2https://www.kickstarter.com/projects/adapteva/
parallella-a-supercomputer-for-everyone

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 865–872

DOI: 10.15439/2016F255

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 865

eCore eCore eCore eCore

eCore eCore eCore eCore

eCore eCore eCore eCore

eCore eCore eCore eCore

Fig. 1. eMesh Network-on-a-Chip. The blue lines indicate cMesh (used
for on-chip writes), green — xMesh (off-chip writes), red — rMesh (read
requests).

Integer ALU Floating
Point Unit

64-word Register file

Interrupt
controller

Debug
unit

Program
sequencer

eCore

DMA

Event
timers

Network
interface

32 kB local memory

eNode

Fig. 2. eNode components. Each eNode has an eCore and 32 kB of local
memory, a network router, a DMA engine and two event timers. Each eCore
has a 64-word register file, FPU, ALU, interrupt controller, sequencer and
debug unit.

• writes are preferred over reads – for a single read there

need to be two transactions: one for a read request and

one for an answer,

• non-local memory accesses are weakly ordered.

The main goals of the Epiphany architecture are: power

efficiency (a single 16-core Epiphany processor consumes a

maximum of 2 W, the whole Parallella board requires around

5 W), scalability, an easy programming model, and high

performance (2 GFLOPS per single core).

Currently, there are 16- and 64-cores Epiphany processors

available. However, 64-core versions have only been produced

in limited numbers and are only available directly from

Adapteva.

The Parallella board uses a 16-core Epiphany processor

(E16G301), a Xillinx Zynq (models 7010 or 7020 with two

ARM cores) and 1 GB of RAM. Additional components

include: 1 Gbit Ethernet interface, USB and HDMI ports,

and a MicroSD slot. The standard operating system (in this

case – Linux) boots from the MicroSD card onto an ARM

processor and can communicate with the Epiphany using

an e-Link interface. 32 MB of memory is shared between

ARM processors (host) and Epiphany. It is mapped in eNodes

to 0x8E000000–0x8FFFFFFF address space. eCores can

use it in the same way as internal memory, however the

performance will be lower as shown in Section IV-A1.

The memory size usable by the programmer is dependent

on many factors. In the most common linker configuration the

internal memory (32 kB) is used, for example, to store:

• program code,

• global variables,

• stack.

And a fragment of the external memory (32 MB) is used for

the C standard library code, data and stack [9].

Programming on the Epiphany side is done in the usual way.

The SDK supports the standard C library with mathematics

functions. Additionally, it provides some specific utilities for

managing hardware resources: registers operations, interrupts

handling, timers, mutexes, barriers and DMA functions. The

“workgroup” concept is supported and each created workgroup

can have a different code loaded. The important thing to

remember is that Epiphany is an MIMD processor and each

core can execute a completely different code. There is no

synchronization between cores (besides library functions and

experimental SYNC instruction).

Alternative approaches to using the basic SDK are MPI [10]

and OpenMP [11].

Epiphany does not provide double precision float operations

in hardware. As such, these are emulated by a compiler and

thus carry performance loss when used.

III. PROGRAMS

Our benchmark application was a simple genetic algo-

rithm [12] with the fitness-proportional selection, mutation

866 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

enabled and using the two-dimensional Beale’s function as

a fitness function:

f(x, y) = (1.5− x+ xy)
2

+
(

2.25− x+ xy2
)2

+
(

2.625− x+ xy3
)2

The initial population was generated within [−5.0, 5.0]
boundary.

With this basic skeleton we prepared several versions of the

implementation for the Parallella using different solutions and

optimizations.

As we wanted to implement the whole algorithm on the

Epiphany processor, we needed a separate pseudo-random

number generator. We used a “tiny” version of the Mersenne

Twister [13], [14] that requires only 127 bits of memory, and

could be easily used with Epiphany.

A. Fitness computation offloading

The first and the simplest way to use the Epiphany processor

is to offload what is usually the heaviest computation in genetic

algorithms – the evaluation of the fitness function.

The main loop of the computation performs the following

operations:

1) Generate a new population (on the host side).

2) Compute the fitness (on the Epiphany processor).

3) Find the best organism (on the host side).

The simplified version of the function initializing and start-

ing Epiphany cores is shown in Listing 1. We perform the

following steps:

1) reset workgroup,

2) load the device code,

3) write population and its size,

4) start the workgroup,

5) wait for all cores to finish working,

6) read the computed fitness values.

void epi_fitness_fill(

simulation_t * simulation,

e_platform_t * platform) {

// Reset device and load code

e_reset_group(&dev);

e_load_group("e_main.srec", &dev, 0, 0,

platform->rows, platform->cols,

E_FALSE);

// Write required data - size and population

e_write(&e_size_mem, 0, 0, 0x0,

&(simulation->size), sizeof(float));

e_write(&e_population_mem, 0, 0, 0x0,

simulation->population,

simulation->population_size);

// Send start interrupt

e_start_group(&dev);

// Wait for all cores to finish work

epi_wait_for_status(STATUS_EXITED);

// Read computed fitness

e_read(&e_fitness_mem, 0, 0, 0x0,

simulation->fitness.values,

simulation->fitness_size);

}

Listing 1. Host part of fitness computation

For transferring the population we use an array of pairs of

floats (with a size twice that of the population). The output

(fitness values) is stored in a separate array of floats. In the

basic version, both are located in the external memory.

B. Full population evaluation

In the second version we offloaded both the fitness compu-

tation and finding the best individual to the Epiphany cores. In

this case, each core, finds the best individual in its fragment

of the population. After computing all the fitness values, each

core sends (using a 16-element size_t array) the index of

the best individual that was found. The host collects these 16

elements and chooses the best among them. It also generates

a new population.

C. Whole algorithm on Epiphany

In the final stage, we also implemented the whole algorithm

on the Epiphany processor. Most of the implementation was

straightforward, as the code flow could be similar. The main

issue was handling large data with the small amount of local

memory.

In order to handle a large number of organisms efficiently,

for each iteration, we split the population into chunks each

consisting of 16 × 1024 organisms (except the last one).

Each core copies 1024 organisms from the external memory

into its local memory. Then, it computes the fitness and

generates a new population for this fragment and puts the

new organisms to the external memory. After all cores perform

these operations on all chunks, they load new organisms from

the external memory and execute the next iteration.

A loss in the exchange of organisms between cores can

be observed and we basically operate on subpopulations.

However, to resolve (at least partially) this problem, we shuffle

the population when copying organisms from the external

memory. We do this efficiently using the DMA engine (see

Section III-D3).

There is no explicit communication between cores and the

host, although the host can “preview” the data at any time. In

addition, cores do not exchange data in any other way than

using the external memory, as previously mentioned.

The role of the host is only limited to initializing the

population, copying data to the external memory and, after

all iterations, copying the final population and fitness values

back.

D. Implementation solutions used in test programs

In order to improve the efficiency of the implementation,

we have implemented and tested technical optimizations such

as removing the need for reloading the Epiphany code and

using better communication facilities.

ŁUKASZ FABER, KRZYSZTOF BORYCZKO: EFFICIENT PARALLEL EXECUTION OF GENETIC ALGORITHMS 867

1) Removing need for reset–load before each computation:

By default Epiphany does not provide a simple way to “restart”

the same computation as before. The programmer needs to

reset a device group and load the device code again when

needed. Although such an approach generally works, it could

have a noticeable impact on performance. We have measured

the reload time and presented the results in Section IV.
The solution to this issue is to make the computation execute

in an infinite loop and signal new data available for processing

by using the same interrupt that is used for starting the

computation (E_SYNC). At the beginning of the computation

we register and enable an empty handler for this interrupt.

Then, when waiting, we execute idle opcode in a loop

effectively putting the core to sleep. When it receives the

interrupt, it wakes up and retests the loop condition which

can be, for example, checking for new data. The waiting loop

is shown in the Listing 2.

while (1) {

// Perform computation

while (/* Test status/flag */){

// Go into idle mode

__asm__ __volatile__ ("idle");

}

}

Listing 2. Waiting loop

On the host side we simply execute e_start_group on

the whole workgroup each time we want to signal new data.

Internally, it sends the correct interrupt.
2) Communication: In most cases there is no need for com-

munication between cores, as data can be cleanly split among

them. On the other hand, communication with the host is

performed at least two times for every step of the computation

(for versions executing on Epiphany only partially). Epiphany

does not provide any way to synchronize its cores with the

external host.
We solved this issue by using a simple status variable

that eCores use to share their statuses with the host and the

host signals that there is new work to do. We store statuses

in a 16-element array of uint8_t (8-bit unsigned integer)

elements. This gives us enough flexibility to use multiple

different statuses and is still small enough not to waste the

memory.
To wait for a specific status on the host side we make a

tight loop for reading the whole array and check all values

after every read.
On the Epiphany side if the core needs to wait for a

particular status, it is done by a simple while loop checking

a dedicated array index.
3) DMA: We have also decided to test the difference the

DMA engine makes to memory operations. Epiphany offers

two DMA channels per core. They can be used in a linear

(copying continuous blocks of memory) or non-linear (copying

regularly spread fragments of memory) fashion. In most cases

we used the former method, but for the porting of the whole

algorithm, we used the latter. This allowed us to efficiently

shuffle populations without involving cores.

TABLE I
MEASURED MEMORY BANDWIDTH ON PARALLELLA.

Initiator Target Type Bandwidth (MB/s)
ARM Host eCore (0,0) write 45.82

ARM Host eCore (0,0) read 5.20

ARM Host DRAM write 88.25

ARM Host DRAM read 131.96

ARM Host DRAM memcpy 353.01

eCore (0,0) eCore (1,0) write (DMA) 1242.38

eCore (0,0) eCore (1,0) read (DMA) 401.46

eCore (0,0) DRAM write (DMA) 233.94

eCore (0,0) DRAM read (DMA) 87.45

eCore (0,0) eCore (1,0) write 534.37

eCore (0,0) eCore (1,0) read 115.70

eCore (0,0) DRAM write 71.61

eCore (0,0) DRAM read 4.29

IV. RESULTS

Our tests focused mainly on execution time and memory

performance. We performed two micro-benchmarks in order

to determine:

• memory bandwidths,

• Epiphany initialization penalty.

Then, we measured times related to the execution of the test

case presented in the previous section.

A. Microbenchmarks

1) Memory bandwidth: The memory bandwidth results

shown in Table I were obtained using a micro-benchmark

provided with the Parallella SDK. It is easily observable that

writes involving the Epiphany processor perform significantly

(several times) better than corresponding reads. This is related

to the way the reads are executed (see Section II) – they consist

of two transactions. The DMA engine also provides a large

speed boost.

Moreover, these operations are significantly slower than

the theoretical limits which would be 1.6 GB/s [15] for the

bidirectional off-chip traffic and 8 GB/s for on-chip DMA [16].

However, for the former the cMesh implementation limits it

to around 4.8 GB/s. There are also two errata items reporting

issues with DMA engine limiting its bandwidth to around 25%

of this value.

These speeds and significant differences to the theoretical

values are similar to other results [17].
2) Loading the code on Epiphany: To load and start the

code on the Epiphany processor we need to call the following

functions:

1) e_reset_group

2) e_load_group

3) e_start_group (this can be implicitly called by

previous function).

There is no means provided to “restart” the same code on

Epiphany and it is necessary to handle it manually using

interrupts (see Section III). Thus, we decided to perform a

microbenchmark measuring the time it takes to execute a full

reload operation on all 16 cores.

The results are as follows: for the code and data filling

the whole 32 kB of core memory: 314.613 ms. For the

868 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

minimal example (writing a single integer to the well-known

memory buffer): 117.620 ms. These values are not high, but

considering possible multiple iterations of the algorithm they

can accumulate to significant delays.

B. Genetic algorithm

We implemented several different optimization scenarios

and measured execution times for each of them. These sce-

narios were:

• naive — no Epiphany-specific optimizations: we put

the data in the external (DRAM) memory and restarted

Epiphany in each iteration, cores use data directly from

DRAM,

• no reload — as above but without code reloading and

Epiphany restart (see Section III-D1),

• local — as “naive” but each core copied fragments of

data to local memory before processing,

• no reload, local — as “no reload” but each core copies

fragments of data to the local memory before processing

(using standard memcpy),

• no reload, local, dma — as “no reload, local” but cores

used DMA engine to perform copying of data,

• no reload, push — as “no reload” but the host (ARM)

pushed data directly to the local memory of each core;

it is the host’s responsibility to split the data into sizes

fitting the local Epiphany memory.

Additionally, we executed the basic one-thread computation

on the Parallella’s ARM CPU as a reference for other mea-

surements.

For every scenario we executed 100 (one hundred) iterations

over various selected population sizes: 16, 32, 128, 256,

1024, 2048, 8192, 10240, 51200. These numbers needed to be

divisible by 16, as each core should have the same population

to work on. The results for 51200 are presented in Table II.

Our time measurements included three, increasing in size,

portions of the code:

• code execution on the Epiphany coprocessor in a single

iteration and the same code on the host (in the CPU

version),

• a single iteration — both ARM host and Epiphany code

including code upload in some of the above scenarios but

without the generation of a new population,

• a whole algorithm — from the Epiphany initialization to

closing the device.

For measuring the execution time we used

the clock_gettime() function with the

CLOCK_MONOTONIC clock.

We tested the three scenarios described in Section III: fitness

offloading, population evaluation and a whole algorithm. For

the whole algorithm we measured only the full computation

time, as the measurement of a single iteration would not be

efficient or useful.

It is worth noting that in the largest measured population

(51200 organisms) each Epiphany core has only 3200 organ-

isms to evaluate.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 16 50 100 150 200 250

T
im

e
 [

m
s
]

Population size

CPU
naive

optimized
local
dma
push

Fig. 3. Time of a single iteration execution of the “fitness offloading” version
on the Epiphany processor for population sizes 16, 32, 128, 256.

 0

 5

 10

 15

 20

 25

 30

 1024 10000 20000 30000 40000 50000

T
im

e
 [

m
s
]

Population size

CPU
naive

optimized
local
dma
push

Fig. 4. Time of a single iteration execution of the “fitness offloading” version
on the Epiphany processor for population sizes 1024, 2048, 8192, 10240,
51200.

Figures 3 and 4 show times for the Epiphany-offloaded

code and the equivalent code on the CPU. Firstly, we can

observe, that the “push” version performs the best. This is

a direct result of the fact that there are no external memory

operations on the Epiphany side in this version. All memory

handling is done on the host. Secondly, the “local” version

that uses memcpy performs more than two times worse

than the CPU version. This is caused by very slow (around

4.3 MB/s, as shown in Table I) read rates for non-DMA copies

between cores and DRAM. After changing the copy method to

DMA the measured time was significantly reduced, performing

even better than no-copy versions (“naive” and “no reload”).

Finally, there are no significant differences between versions

with and without code reloading so more complicated iteration

logic on the Epiphany side has no penalties (as expected).

For smaller population sizes some of these observations

differ (DMA and “push” versions are slower), but this is due

to the initialization of these memory access paths [16].

Figures 5 and 6 show times for the whole iteration – host

and device sides – without generation of the new population.

They do not include lines for the “naive” version for readabil-

ity.

ŁUKASZ FABER, KRZYSZTOF BORYCZKO: EFFICIENT PARALLEL EXECUTION OF GENETIC ALGORITHMS 869

TABLE II
MEASURED EXECUTION TIMES FOR 51200 ORGANISMS.

Version Version Epiphany [ms] Iteration [ms] Full [s]
CPU — 13.769 16.533 545.53

fitness offloading

none 8.368 223.764 546.83

no reload 8.423 22.303 546.24

no reload, local 28.699 42.559 546.03

no reload, local, dma 5.806 19.593 545.89

local, dma 5.861 232.556 546.93

no reload, push 0.276 51.702 546.11

full
none 8.645 215.802 546.68

no reload 8.737 18.248 545.90

no reload, local, dma 5.714 15.280 545.87

whole
local memory — — 2.42

external memory — — 38.73

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 16 50 100 150 200 250

T
im

e
 [

m
s
]

Population size

CPU
optimized

local
dma
push

Fig. 5. Time of a single iteration execution of the “fitness offloading” version
(Epiphany + host) for population sizes 16, 32, 128, 256. The “naive” version
is not included due to the scale.

The first thing to observe is the very poor performance

(as much as ten times worse) of the versions that reset the

Epiphany during the iteration. As we noted in Section IV-A2,

such an operation takes at least 110 ms (for the smallest

possible binary).

In these results, we see that the “push” version performs

poorly. This is due to the fact, that all of the memory

operations are executed on the host side and, firstly, host-to-

core transfers are slower (as seen in Table I), secondly, the host

needs to perform sixteen separate copies instead of one to the

external memory. The CPU version has the best performance,

but it is important to note, that there are no additional memory

copies in this version. In all Epiphany implementations we

need to perform at least one additional copy of the population

per iteration.

We also measured the execution time of the whole program

(for a smaller number of iterations), however, as the most time-

consuming task for large populations is the generation of the

new population, the results are similar in each implementation.

The “full evaluation” version, which also included finding

the best organism on Epiphany, did not make any significant

difference to the previous one. We can observe, that iteration

times are several milliseconds shorter than the corresponding

“offload” version. This follows from the fact, that we split the

 0

 10

 20

 30

 40

 50

 60

 1024 10000 20000 30000 40000 50000

T
im

e
 [

m
s
]

Population size

CPU
optimized

local
dma
push

Fig. 6. Time of a single iteration execution of the “fitness offloading” version
(Epiphany + host) for population sizes 1024, 2048, 8192, 10240, 51200. The
“naive” version is not included due to the scale.

lookup on all cores.

The final version we tested — the whole algorithm ported

to Epiphany — was implemented in two versions: one which

copied the data to the local memory of cores (using DMA),

and another which operated fully on the external memory.

The latter performed nearly 15 times better than the single

CPU version, which is very good considering the memory

bandwidths shown in the Table I. However, the former, using

the local memory, presented the best computation time: below

3 s.

C. Memory limits of Parallella

As mentioned in Section II, the Epiphany cores in Parallella

board can address only 32 kB of the internal and 32 MB of

the external memory. These limits have significant impact on

the size of program and data size.

This 32 kB of internal memory is divided in four banks, of

which only two are usable for the user data without limitations,

because the first one contains the code and the last one – the

stack (starting at the end of the block). It is safe to assume

that, for user data, 16 kB is fully available on each core, plus

the remaining memory from the fourth bank. We have limited

the local memory used in test scenarios to these sizes. As we

use 24 bytes for a single organism, we can store a maximum

870 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

of 1024 organisms (if we ignore the stack). However, in cases

where we do not need to remember the population between

iterations we can safely reuse the same memory for delivering

results to the host, giving us 1536 organisms for a single core.
As previously mentioned, one has to consider the stack, so

the final numbers have to be smaller and the real code size

must be taken into account.

D. Observed issues

During development we observed several issues with the

board and SDK.
First, the board has a tendency to overheat. When the

temperature measured by sensors reached 65°C we observed

unstable behavior: missing writes (the host did not see updates

from Epiphany) and hangups. To counteract these issues we

kept the board cooled to around 50°C.
Second, the default linker configuration places standard C

library and math functions in the external memory (DRAM).

For example, we tested the code with the two-dimensional

Ackley test function:

f(x, y) = −20 exp
(

−0.2
√

0.5 (x2 + y2)
)

− exp (0.5 (cos (2πx) + cos (2πy))) + e+ 20

In this case, the Epiphany version was several times slower

than the plain CPU implementation. This is due to the execu-

tion of the math functions from the external memory. One of

the solutions for this issue is to change linker configuration to

place them in the local memory of the Epiphany.

V. CONCLUSIONS AND FUTURE WORK

Our main concern in this paper was to review the Parallella

board in order to follow later with more advanced plans

touching on simulations and multi-agent systems. We have

reviewed the board internals and its programming model. We

then performed some microbenchmarks and tested a genetic

algorithm in various versions from a naive implementation to

more advanced optimizations.
Our benchmark results show that the Parallella can be

fast and offers quite large benefits, but these are destroyed

by slow memory transfers and the large number of manual

optimizations required to get to them. Comparing only the

results for a single-core CPU version and Epiphany “push”

versions (as described in Section IV) we can notice that actual

computation is nearly 50 times faster on Parallella. However,

the work required for memory copying between the device

and the host causes the Epiphany version to perform worse

in a single iteration than the single-core ARM one. To gain

really better results, we need to port the whole algorithm to the

Epiphany in order to avoid Epiphany–ARM memory copying.

However, porting the code, especially with a very small local

memory, requires significant work.
Nevertheless, in the case of offloading only the most costly

part of algorithms (for example, fitness computation), the local

copying by Epiphany cores using the DMA engine has the

best performance among all implementations and would be

recommended for simple scenarios.

It is clear from our and others’ results that Parallella is not

mature enough to replace more advanced and well-established

manycore platforms. However, it is an interesting board that

can be used to accelerate parallel workloads in a very simple

and cheap way. There is nearly no effort required to port

programs written in C to the Epiphany compiler in a naive

way. Optimization of such programs requires more work, but

it is still simple considering the relatively poor feature set of

the Software Development Kit and the processor.

Our next steps regarding Parallella will focus on the usage

of multiple boards in a single cluster and Java–Epiphany in-

teraction. We see possibilities for deploying island and agent-

based models of evolutionary algorithms [4] on such clusters,

as they usually can be organized in a way that requires little

communication between islands. Separate populations could

be computed on different boards with rare synchronization

events between them.

The last model, namely Evolutionary Multi-Agent Systems

(EMAS) [18], [19], which uses the agent paradigm for decen-

tralizing the process of evolution, is of special interest to us,

since it allows achieving a fine-grained parallelism with its

implementation of agents [7]. This opens the way for another

possible approach, even without using multiple boards – the

implementation of multi-agent systems with lightweight agents

(or groups of agents) executing on separate cores [20]. The

MIMD nature of the Epiphany processor should be a matching

architecture for these systems.

ACKNOWLEDGMENT

The research reported in the paper was supported by the

grant “Hybrid model of the early detection of internal diseases

based on the paradigm of interacting particles and multi-agent

system” (No. DEC-2013/09/N/ST6/01011) from the Polish

National Science Centre.

REFERENCES

[1] J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick, K. Keutzer, and
T. Mattson, “The MANYCORE revolution: will HPC lead or follow,”
SciDAC Review, vol. 14, pp. 40–49, 2009.

[2] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting High-
performance Energy-efficient Manycore Architectures with Epiphany,”
Nov. 2-5, 2014. doi: 10.1109/ACSSC.2014.7094761

[3] G. Chrysos, “Intel® Xeon Phi™ Coprocessor-the Architecture,” Intel

Whitepaper, 2014.
[4] M. Kisiel-Dorohinicki, G. Dobrowolski, and E. Nawarecki, “Agent

populations as computational intelligence,” in Neural Networks and Soft

Computing: Proceedings of the Sixth International Conference on Neural

Networks and Soft Computing, Zakopane, Poland, June 11–15, 2002,
L. Rutkowski and J. Kacprzyk, Eds. Heidelberg: Physica-Verlag HD,
2003, pp. 608–613. ISBN 978-3-7908-1902-1

[5] M. Kisiel-Dorohinicki, “Agent-based models and platforms for paral-
lel evolutionary algorithms,” in Computational Science - ICCS 2004,
M. Bubak, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, Eds.
Springer Berlin Heidelberg, 2004, pp. 646–653.

[6] Ł. Faber, K. Piętak, A. Byrski, and M. Kisiel-Dorohinicki, Agent-Based

Simulation in AgE Framework. Springer Berlin Heidelberg, 2012, pp.
55–83. ISBN 978-3-642-28888-3

[7] D. Krzywicki, W. Turek, A. Byrski, and M. Kisiel-Dorohinicki,
“Massively concurrent agent-based evolutionary computing,” Journal

of Computational Science, vol. 11, pp. 153–162, nov 2015. doi:
10.1016/j.jocs.2015.07.003

ŁUKASZ FABER, KRZYSZTOF BORYCZKO: EFFICIENT PARALLEL EXECUTION OF GENETIC ALGORITHMS 871

[8] M. Pietroń, A. Byrski, and M. Kisiel-Dorohinicki, “GPGPU for difficult
black-box problems,” Procedia Computer Science, vol. 51, pp. 1023–
1032, 2015. doi: 10.1016/j.procs.2015.05.249

[9] Epihany SDK Reference, rev. 5.13.09.10. [Online]. Available: http:
//adapteva.com/docs/epiphany_sdk_ref.pdf

[10] J. A. Ross, D. A. Richie, S. J. Park, and D. R. Shires, “Parallel Program-
ming Model for the Epiphany Many-Core Coprocessor Using Threaded
MPI,” in Proceedings of the 3rd International Workshop on Many-core

Embedded Systems. ACM, 2015. doi: 10.1145/2768177.2768183 pp.
41–47.

[11] A. Papadogiannakis, S. N. Agathos, and V. V. Dimakopoulos, OpenMP

4.0 Device Support in the OMPi Compiler. Cham: Springer Interna-
tional Publishing, 2015, ch. OpenMP 4.0 Device Support in the OMPi
Compiler, pp. 202–216. ISBN 978-3-319-24595-9

[12] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-

tionary Computation, 1st ed. Bristol, UK, UK: IOP Publishing Ltd.,
1997. ISBN 0750303921

[13] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan.
1998. doi: 10.1145/272991.272995

[14] (2011) Tiny Mersenne Twister (TinyMT): A small-sized variant

of Mersenne Twister. [Online]. Available: http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/TINYMT/

[15] Andreas Olofsson - Public forum communication. [Online]. Available:
https://parallella.org/forums/viewtopic.php?f=9&t=2391&p=13653

[16] Epihany Architecture Reference, rev. 14.03.11. [Online]. Available:
http://adapteva.com/docs/epiphany_sdk_ref.pdf

[17] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Programming
the Adapteva Epiphany 64-core network-on-chip coprocessor,” Interna-

tional Journal of High Performance Computing Applications, 2015. doi:
10.1109/IPDPSW.2014.112

[18] A. Byrski and M. Kisiel-Dorohinicki, Man-Machine Interactions 3.
Cham: Springer International Publishing, 2014, ch. Agent-Based Ap-
proach to Continuous Optimisation, pp. 487–494. ISBN 978-3-319-
02309-0

[19] A. Byrski, R. Dreżewski, L. Siwik, and M. Kisiel-Dorohinicki,
“Evolutionary Multi-Agent Systems,” The Knowledge Engineer-

ing Review, vol. 30, no. 02, pp. 171–186, mar 2015. doi:
10.1017/s0269888914000289

[20] D. Krzywicki, Ł. Faber, A. Byrski, and M. Kisiel-Dorohinicki,
“Computing agents for decision support systems,” Future Gener-

ation Computer Systems, vol. 37, pp. 390–400, jul 2014. doi:
10.1016/j.future.2014.02.002

872 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

