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Abstract—For modelling of real-time safety critical systems,
when traditional testing techniques cannot be applied, formal
system verification is crucial. Alvis is a modelling language that
combines possibilities of formal models verification with flexibility
and simplicity of practical programming languages. Solutions
introduced in Alvis make the development process easier and help
engineers to cope with more complex systems. The paper deals
with a state-based approach to the verification of Alvis models.
Until the research presented in the paper were conducted, the
verification process was mostly action-based. The nuXmv tool,
as one of the top model checkers, was selected for the task of
state-base verification of Alvis models translated into the SMV
modelling language. The paper presents a translation algorithm
and usability studies performed on existing safety critical systems.

I. INTRODUCTION

Alvis [1], [2] is a formal modelling language developed

at AGH-UST in Kraków, Department of Applied Computer

Science (http://alvis.kis.agh.edu.pl). The motivation behind its

creation and development is to provide a formal language

which could be used by an average software engineer to model

and verify complex systems. To this end, Alvis combines

advantages of high level programming languages with a visual

modelling language for defining communication channels be-

tween subsystems. Its most significant advantage over classical

formal methods (Petri nets [3], [4], timed automata [5], [6] and

process algebras [7], [8], [9]) is an engineer-friendly syntax.

The heavy mathematical foundations are hidden from the user

without compromising the capabilities and expressive power of

the formalism. Alvis, as a formal language, has an advantage

over the industry programming languages – Alvis models can

be formally verified using model checking techniques [10].

Using Alvis language, an average software engineer is able to

model and verify complex systems which can be then easily

implemented. This is particularly important in concurrent and

distributed systems where traditional methods of software

testing are not applicable. The formal verifications of such

systems is a ground for many current scientific projects [11].

The ongoing research on the Alvis language include also

building an Alvis simulator, Alvis Virtual Machine [12] and

automatic Java code generation [13].

The nuXmv tool [14], [15] is currently one of the top-

notch and mainstream model checkers for temporal logics. It

features a prominent and state-of-the-art verification engine.

The project is still supported and developed, new versions of

the tool are released regularly.

The nuXmv can check whether a given finite state model

satisfies a given temporal logic formula and if not, it can

provide a proper counter-example. System requirements spec-

ification, in the form of a set of LTL [16] and CTL [16],

[17] temporal logics formulae, can be therefore automatically

verified by the tool. In addition, it has a dedicated modelling

language called SMV [15] which is relatively easy to use for

modelling the system. Furthermore, according to the authors

of the project it can verify systems of high complexity, i.e.

containing more than 1020 states.

These outstanding features initially made nuXmv the best

possible choice for the task of state-base Alvis model ver-

ification. The main goal of the conducted research was to

verify whether nuXmv can be effectively used in the process

of verification of complex systems modelled in the Alvis

language. In order to prove the concept, a translation algorithm

was conceived and then implemented. Extensive experiments

of the solution were performed, including modelling and

verification of existing real-time safety critical systems.

The paper is organised as follows. Section II contains a

short introduction to the Alvis language and basic information

about the process of designing and verification of Alvis

models. In Section III formal definitions concerning Alvis state

space representation are provided. Section IV deals with the

algorithm of Alvis model translation into nuXmv. Usability

studies conducted on two examples of real-time safety critical

systems are presented in Section V. A short summary is given

in the final section.

II. ALVIS MODELLING LANGUAGE

An Alvis model is basically a collection of subsystems

called agents that may run concurrently, communicate with

each other, compete for shared resources etc. The concept of

agent is borrowed from CCS [8], [18]. Agents are divided into

active and passive ones and mimic, to some degree, tasks and

protected objects in the Ada programming language [19].

Active agents may perform some activities and are treated

as threads of control in a concurrent system. Passive agents

provide a mechanism for the mutual exclusion and data

synchronization.

Interconnections between agents are defined on communi-

cation diagrams, a visual part of the Alvis language. These
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diagrams present agents as nodes and communication channels

as arcs in a directed graph. To model the behaviour of the

agents, the code layer is used. Alvis source code is similar

to the one of high level programming languages. Alvis state-

ments may also incorporate elements of the Haskell functional

programming language [20].

Furthermore, the complex systems may be modelled using

hierarchical communication diagrams [21]. They introduce a

concept of a hierarchical node which represents a subsystem

defined at the lower level. Therefore, it allows to describe a

system on many different levels of abstraction. A summary of

Alvis graphical elements and code statements is presented in

Fig. 1.

Alvis models are designed using an Alvis design toolkit

including Alvis Editor, Alvis Simulator and Alvis Compiler

tools. Alvis Editor is a visual modelling environment featuring

design of Alvis models. Alvis Simulator enables step-by-step

simulations of the models. Alvis Compiler [22] translates

designed models into Haskell program. The Haskell middle-

stage representation is used to generate LTS graphs (labelled

transition system [23]) of the Alvis models. LTS graphs will be

explained in more detail in the next section. They can be used

to formally verify models using model checking techniques.

LTS graphs are checked in terms of satisfaction of model

properties described as temporal logic formulae. The original

verification process included only action-based verification

with µ-calculus [24] in CADP toolbox [25]. The approach

presented in this paper employs nuXmv tool to allow the

usage of LTL and CTL temporal logics. The modelling and

verification process of Alvis models is presented in Fig. 2.

More details on this topic may be found in the manual at

the website of the Alvis project.

III. ALVIS STATE SPACE REPRESENTATION

Before an Alvis LTS to nuXmv translation algorithm can

be introduced, some of the key concepts regarding Alvis state

space must be defined.

Definition 1. A state of an agent X is a tuple:

S(X) = (am(X), pc(X), ci(X), pv(X)),

where am(X) is an agent mode, pc(X) is a program counter,

ci(X) is a context information list, and pv(X) is parameters

values.

Each agent state can be described unambiguously with

information contained by this four-tuple. Where necessary, to

every one of am, pc, ci and pv symbols, there can be a state

index added, e.g. pvSi
, to indicate which state it refers to.

The agent mode can take one of the five following values:

Finished (F), Init (I), Running (R) and Taken (T). Finished

means that an agent has finished its work. Init is the default

mode for agents that are inactive in the initial state. Running

means that an agent is performing one of its statements. Taken

means that one of the passive agent’s procedures has been

called and the agent is executing it. Waiting, for passive agents,

means that the corresponding agent is inactive and waits for

another agent to call one of its accessible procedures. For

active agents, this mode means that the corresponding agent is

waiting either for a communication with another active agent,

or for a currently inaccessible procedure of a passive one.

The program counter points at the current statement of an

agent i.e. the next statement to be executed or the statement

that has been already executed by an agent but needs a

feedback from another agent to be completed (e.g. a com-

munication between agents).

The context information list contains additional information

about the current state of an agent e.g. if an agent is in the

waiting mode, ci contains information about events the agent

is waiting for.

The parameters values list contains the current values of

the agent’s parameters.

Definition 2. A state of a model A = (D,B, α0), where

D = (A, C, σ) and A = {X1, ..., Xn} is a tuple S =
(S(X1), ..., S(Xn)).

The concept of an Alvis model state is explained in Fig. 3.

Execution of any step is expressed as a transition between

formally defined states of an Alvis model. States of a model

and transitions among them are represented using a labelled

transition system (LTS graph).

Definition 3. A Labelled Transition System is a tuple:

LTS = (S,A,→, s0),

where S is a set of states, A is a set of actions,→⊆ S×A×S
is the transition relation and s0 is an initial state.

For an Alvis model, an LTS is a four-tuple:

LTS = (R(S0), T ,→, S0),

where R(S0) is a set of states reachable from the initial

state, T is a set of all possible steps for a given model,

→= {(S, t, S′) : S − t→ S′ ∧ S, S′ ∈ R(S0)}, where t ∈ T ,

and S0 is an initial state. In untimed Alvis models arcs are

labelled with names of individual steps performed by agents.

In the timed models arcs are labelled with the sets of parallel

steps.

In order to describe the translation algorithm in the next

section, a few additional terms need to be introduced:

• B(X) – Agent X dynamics definition (code);

• card(B(X)) – number of steps in B(X);
• N (t) – a name of the t transition.

NuXmv models are basically finite state transition sys-

tems [15] which can be defined as Kripke structures [26].

Definition 4. A finite state transition system is a tuple TS =
(S, I,→, L), where:

• S is a finite set of states,

• I ⊆ S is the set of initial states,

• →⊆ S × S is the transition relation, specifying the

possible transitions from state to state,

• L is the labelling function that labels states with atomic

propositions that hold for the given state.
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active agent

passive agent

hierarchical agent

ports

one-way connection

two-way connection

input procedure call

output procedure call

• delay t;

• exec x = expression;

• exit;

• in p x;

• in (t) p x;

• in (t) p x {

success {...}

fail {...} }

• jump label;

• loop (g) {...}

• loop (every t) {...}

• loop {...}

• null;

• out p x;

• out (t) p x;

• out (t) p x {

success {...}

fail {...} }

• proc (g) p {...}

• select {

alt (g1) {...}

alt (g2) {...} ... }

• start A;

Agents Communication channels Code statements

Figure 1: Elements of Alvis language.

Design of
communication diagram

Implementation
of code layer

Model design

︸ ︷︷ ︸

Alvis Editor

︸ ︷︷ ︸

Alvis Compiler

Alvis→Haskell

Requirements /

properties

Implementation
of filter functions

Specification of re-
quirements (µ calculus,
LTL and CTL logics)

︸ ︷︷ ︸

text editor

Verification

Verification with
filter functions

Model checking with
CADP or/and nuXmv

︸ ︷︷ ︸

LTS

︸ ︷︷ ︸

GHC, CADP, nuXmv

Figure 2: Alvis modelling and verification process.

model’s agents
︷ ︸︸ ︷

((am1, pc1, ci1, pv1), . . . ,

active agent
︷ ︸︸ ︷

(ami, pci, cii, pvi), . . . ,

passive agent
︷ ︸︸ ︷

(amj , pcj , cij , pvj), . . . , (amn, pcn, cin, pvn))

I – init
F – finished
W – waiting
X – running

agent mode

current
statement
order number

program
counter

extra information
about state
e.g. called procedures

context
information

current values
of agent’s
parameters

parameters
values

W – waiting
T – taken

agent mode

Figure 3: Representation of an Alvis model state.

IV. ALVIS LTS TO NUXMV TRANSLATION ALGORITHM

Finite state transition systems in nuXmv tool are modelled

with a dedicated modelling language called SMV [15]. In the

presented approach, a nuXmv model after translation consists

of three main parts: Variables definitions (VAR and IVAR),

ASSIGN section and specification of transitions’ availability
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(TRANS). The first one of them, the IVAR section, contains

definition of an input variable action. It is used to contain

transitions’ labels.

The VAR section is used to contain definitions of standard

variables. These include set of states and atomic propositions

variables. The ASSIGN section is composed of three main

parts. The first one initializes the state variable, the second is

responsible for defining transitions between the states and the

final one assigns values to the atomic propositions for specific

states. The set of atomic propositions is given implicitly using

variables and their domains. The last main part, the TRANS

section, specifies for every state which actions are available

in it. For instance, line TRANS s = s1 -> (action =

a1) | (action = a2) determines that when the system

is in state s1, the only available actions are a1 and a2.

A translation algorithm of an Alvis model LTS into the

nuXmv code is presented in Fig. 1. In the adopted notation, ⊲

symbol indicates generated nuXmv code, # represents string

concatenation, Label() produces a variable name and Type()
returns a variable’s data type.

The first part of the algorithm is responsible for generation

of a declaration of the input variable action. In the proposed

approach, this variable is used to define names of the transi-

tions between the model states as edges’ labels in the nuXmv

transition system. It enables using transition names in LTL

formulae during the verification process. During the model

simulation this additional information is a major enhancement

that allows to analyse not only the state changes, but also the

steps that led to them. The action set is initialised with a

single element representing empty action named NOP . Every

transition label is added to the set then.

In the next step, the domain of the state variable s is defined.

Its value denotes the current state of an Alvis model. For every

reachable state (S ∈ R(S0)), the state name is added to the

set of nuXmv states.

Lines 13–41 contain steps required to define variables

representing elements of the model’s state. This section starts

with Lam, Lpc, Lci and Lpv sets initialisation. They represent

the sets of defined variable labels for agent mode, program

counter, context information list, and parameters values corre-

spondingly. Every agent has exactly one am and pc variable,

while possibly multiple ci and pv variables.

For every agent of the model, variable labels are generated

by concatenating agent’s name with a two letter abbreviation

indicating the element of the agent state’s tuple it refers

to. Agent mode variable is an enumeration and can have

assigned one of the x, w, f , i and t values. Program counter

variable is a bounded integer, ranging from 0 to card(B(Xi)),
where Xi is the given agent. Context information variable

labels, in addition to the basic naming convention, contain

also information about the possible values of the original ci.

They are booleans and the TRUE value implies that the given ci

entry is present in the context list in the given state. Parameters

values labels are generated by concatenating agent name, pv

keyword, pv order number. If pv variable’s type in the code

layer is integer or boolean, the nuXmv variable is of the same

type. In other case pv value is appended to the label and the

type of the nuXmv variable is boolean. TRUE means that the

given agents parameter is of the value specified as the last part

of nuXmv variable label in the given state.

The next part of the algorithm starts with adding of the

beginning of the ASSIGN section and initialization of the s

variable with the name of the initial state. Then the transition

relation switch statement is opened (line 44). successorsik
is the set of successors of the si state, reachable through

transition tk. In the nested loops that follow, successors lists

for every reachable state are generated.

The next section of the algorithm contains five similar

blocks of pseudocode (lines 57–63, 64–70, 71–80, 81–95, 96–

104). Each generates labelling functions for the agent state

variables defined in the VAR section. Labelling functions

are basically switch statements in which the proper value is

assigned to the variable depending on the current state of the

system. pv variables labelling functions are divided into two

separate loops, depending on the type of the variable in the

code layer.

The last part of the algorithm (lines 105–114) defines

availability of the transitions. It is determined by the value of

the si variable. TRANS line is generated for every reachable

state. It contains a list of available transitions. NOP action is

not listed there because it is only available when no successor

exists. This situation indicates a terminal state of the system.

Algorithm 1 Alvis LTS to nuXmv translation algorithm.

1: ⊲ MODULE main

2: ⊲ IVAR

3: action← {NOP}
4: for all ti ∈ T do

5: action← action ∪ {Label(N (ti))}
6: end for

7: ⊲ action : {NOP,N(t0), N(t1), ...};

8: ⊲ VAR

9: for all Si ∈ R(S0) do

10: s← s ∪ {Label(si)}
11: end for

12: ⊲ s : {s0, s1, ...};

13: Lam ← ∅
14: Lpc ← ∅
15: Lci ← ∅
16: Lpv ← ∅
17: for all Xi ∈ A do

18: lam ← Label(Xi#am)
19: ⊲ X_i#am : {x, w, f, i, t};

20: Lam ← Lam ∪ {lam}
21: lpc ← Label(Xi#pc)
22: k ← card(B(Xi))
23: ⊲ X_i#pc : 0..k;

24: Lpc ← Lpc ∪ {lpc}
25: for all Sj ∈ R(S0) do

26: lci ← Label(Xi#ci#ciSj
(Xi))

27: ⊲ l_ci : boolean;
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28: Lci ← Lci ∪ {lci}
29: end for

30: for all pvj ∈ pv(Xi) do

31: type← Type(pvj)
32: if type = Integer ∨ type = Boolean then

33: lpv ← Label(Xi#pv#j)
34: ⊲ l_pv : type;

35: else

36: lpv ← Label(Xi#pv#j#pv(Xi))
37: ⊲ l_pv : boolean;

38: end if

39: Lpv ← Lpv ∪ {lpv}
40: end for

41: end for

42: ⊲ ASSIGN

43: ⊲ init(s) = s0;

44: ⊲ next(s) := case

45: for all si ∈ s do

46: for all tk ∈ T do

47: successorsik ← ∅
48: for all sj ∈ s do

49: if Si
tk−→ Sj then

50: successorsik ← successorsik ∪ {sj}
51: end if

52: end for

53: ⊲ s = si & action = t_k: {successorsik};

54: end for

55: end for

56: ⊲ esac;

57: for all lam ∈ Lam; (lam = Label(Xi#am)) do

58: ⊲ l_am := case

59: for all sj ∈ s do

60: ⊲ s = sj : am_sj(X_i);

61: end for

62: ⊲ esac;

63: end for

64: for all lpc ∈ Lpc; (lpc = Label(Xi#pc)) do

65: ⊲ l_pc := case

66: for all sj ∈ s do

67: ⊲ s = sj : pc_sj(X_i);

68: end for

69: ⊲ esac;

70: end for

71: for all lci ∈ Lci; (lci = Label(Xi#ci#ciSj
(Xi)) do

72: ⊲ l_ci := case

73: for all sk ∈ s do

74: if cisk(Xi) = ciSj
(Xi)) then

75: ⊲ s = sk : TRUE;

76: end if

77: end for

78: ⊲ TRUE: FALSE;

79: ⊲ esac;

80: end for

81: for all lpv ∈ Lpv : Type(lpv) = Integer ∨ Type(lpv) =
Boolean; (lpv = Label(Xi#pv#j)) do

82: ⊲ l_pv := case

83: for all sk ∈ s do

84: value← pvsk(Xi)
85: if value 6= 0 ∧ value 6= FALSE then

86: ⊲ s = sk : value;

87: end if

88: end for

89: if Type(lpv) = Integer then

90: ⊲ TRUE: 0;

91: else

92: ⊲ TRUE: FALSE;

93: end if

94: ⊲ esac;

95: end for

96: for all lpv ∈ Lpv : Type(lpv) 6= Integer ∧ Type(lpv) 6=
Boolean; (lpv = Label(Xi#pv#j#pv(Xi))) do

97: ⊲ l_pv := case

98: for all sk ∈ s do

99: value← pvsk(Xi)
100: ⊲ s = sk : value;

101: end for

102: ⊲ TRUE: FALSE;

103: ⊲ esac;

104: end for

105: for all si ∈ s do

106: Ti ← ∅
107: for all tk ∈ T do

108: if ∃Sj
Si

tk−→ Sj then

109: Ti ← Ti ∪ {tk}
110: end if

111: ⊲ TRANS s = si ->

112: (action = Ti_0|action = Ti_1 | ... );

113: end for

114: end for

The main purpose of including the above algorithm in this

paper is to convey the basic concept behind the translation.

Therefore, as one may notice, the above algorithm is not opti-

mal. Nonetheless, after many optimizations and enhancements,

this algorithm was implemented as an additional module to the

PetriNet2ModelChecker tool. This module enables automatic

conversion of an LTS graph of an Alvis model stored in .dot

file into nuXmv code, and therefore allows to verify any Alvis

model using LTL and CTL logics in one of the top model

checkers available.

V. USABILITY STUDIES

The presented approach was tested against models of ex-

isting safety-critical systems. Among them, the tests were

conducted on railway switch system and fire alarm contol

panel. The former is the solution manufactured by Grupa

ZUE S.A. [27] and employed in public transport in Krakow,

Szczecin and Wroclaw [28]. The latter is a project of the SITP

organization [29]. More information on this system can be

found in [30]. The approach presented in this paper will be

illustrated on the first one of them. A schematic of the system
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is shown in Fig. 4.

Infrared receiver

Switch

Infrared sender

Induction loop 1Induction loop 2

Traffic lights

Figure 4: Railway switch system.

In every tram, there is an NP03 infra-red transmitter used to

send IR signals to the switch control system. It is located on

a tram driver console panel. An OP03 receiver is responsible

for collecting infra-red signals and sending them to system

driver. It is usually installed on overhead lines or on special

poles placed before the switch. Traffic lights are providing

a motorman with two pieces of information, i.e. the current

direction of the tracks and a status of a switch blades lock.
A motorman’s responsibility is to ensure that switch blades

are set in the right direction and locked before he can drive a

tram through a switch. He can change blade’s direction using

an NP03 transmitter. On receiving a signal, an IR receiver

sends a pulse to a switch motor controller, which in turn

sends a signal to blades controller to change direction of the

rails. The change is possible only in the operating range of

the receiver. Tram driver has limited time for choosing the

expected direction, depending on the speed of the tram. If the

motorman does not change the direction while the tram is in a

reach zone of the IR receiver, he would have to stop the tram

and manually change the direction using a special lever.
In a switch zone, there are also two induction loops in-

stalled, one before and one after switch blades. They are

responsible for detecting a tram entering and leaving the

crossing zone. When a tram is detected, an electrical switch

lock mechanism is locking blades in the current position, in

order for tram to pass safely through the switch zone. They

are unlocked immediately after the tram leaves the crossing.
An Alvis model of this system was constructed. Its com-

munication diagram is presented in Fig. 5.
Using the implementation of the algorithm presented in

Section IV the system model was automatically translated into

a nuXmv source file. The nuXmv representation maintains

every piece of the original information about system behaviour

stored in the LTS. The next step involves verification of system

properties. In the presented approach they are described as

LTL and CTL formulae. Three examples of such formulae are

given in Listing 1.

Listing 1: Examples of LTL and CTL formulae for the railway

switch system model.

SwitchDriver

getDirection

inductionLoop1

setBladesState

setLightsState

inductionLoop2

Tram

iRTransmitter

lights

tramIn

tramOut

IRReceiver

setDirection

getDirection

SwitchBlades

setBladesState

TrafficLights

setLightsState
getState

Figure 5: Railway switch system communication diagram.

--1) TramPassed = false U BladesLocked = true

LTLSPEC (SwitchDriver#pv3 < 2) U (SwitchBlades#pv1 <

→֒ 0)

--2) EF TramPassed = true

CTLSPEC EF (SwitchDriver#pv3 = 2)

--3) F TramPassed = true

LTLSPEC F (SwitchDriver#pv3 = 2)

SwitchDriver#pv3 denotes a tram variable from the

SwitchDriver agent. It can have three values: 0 when the

tram is before the first induction loop, 1 when tram passed

the first induction loop and 2 when the tram passed the

crossing (the second induction loop). SwitchBlades#pv1

is a bladesState variable. When its value is positive, the

switch blades are not locked and when the value is negative,

the blades are locked.

The first formula verifies whether the switch is being locked

before the tram passes the crossing. This formula is crucial

for the safety of railway switch mechanism. The nuXmv

confirmed that it is satisfied in the model. The second formula

checks whether there is a path in which a tram passes through

the crossing. It is also true. The last one is similar to the

previous, except it checks whether a tram always finally

passes through the crossing. This one is not satisfied. The

true potential of nuXmv is in providing the counterexample.

If a formula is not true, nuXmv provides a path that proves

it. In this case the tram does not pass through the crossing

if the driver did not manage to send the signal to change the

blades direction when the tram was in the zone of the infra-

red receiver. Driver has to stop the tram, step out of it and

manually change the direction. It is a desired behaviour of the

system.

Three versions of the same model were prepared with

varying complexity, each describing the system on a different

level of abstraction. For each one of them, the same set

of properties was verified. They were categorized into three

groups: reachability, safeness and liveness properties. For each
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group an average verification time was measured and presented

in Table I. Tests were performed on a PC with AMD Phenom

II X6 processor and 16 GB of RAM. The verification times are

growing fast with complexity but even for the most complex

railway switch system version, they are quite acceptable.

For the comparison, translation to nuXmv was performed

also on the fire alarm control panel system. Its communication

diagram is presented in Fig. 6. As this system is significantly

more complex, the amount of states in the LTS is adequately

larger. Although the translation itself was fast, nuXmv couldn’t

handle loading of such a complex system on the testing

machine. The amount of memory needed to load the model

exceeded available resources (RAM and swap space) and the

nuXmv process was killed by the operating system. Therefore,

the average verification times are not provided.

The results of the tests confirm that the presented approach

is performing well for models of medium complexity. More

complex ones require a lot of resources, especially RAM.

Provided enough RAM or swap space, the approach can be

applied to most models.

SmokeDetector1

alarmSignal

SmokeDetector2

alarmSignal

FacpController

detectors

panel
setAlarmState

getTimerState

EmployeesPanel
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Figure 6: Fire alarm control panel communication diagram.

VI. SUMMARY

The paper introduces state-base approach to verification of

Alvis models. The presented solution enables to automatically

verify properties of the modelled system using the mainstream

model checking tool nuXmv. It employs formulated and imple-

mented algorithm of Alvis LTS translation into nuXmv source

code.

The usability studies of the concept were conducted on mod-

els of actual real-time safety critical systems, railway switch

system and fire alarm control panel. Illustrative properties of

these systems have been specified as LTL and CTL formulae

and verified with nuXmv to demonstrate the capabilities and

limitations of the approach. The results of the tests have been

presented and summarised.

The proposed verification method proved to be handling

most middle-sized models with ease, even on a regular PC.

Although nuXmv supposed capabilities exceed the current

needs, the solution is limited by the amount of RAM available.

Complex systems require a great deal of memory to load.

Compared to the amount of memory required to verify systems

using action-based approach in CADP, nuXmv seems ineffec-

tive. On the other hand, state-based solution allows much more

thorough verification because of the information stored about

the states. The combination of both state- and action-based

verification is currently the most optimal option.

Future work on state-based verification of Alvis models will

focus on other possibilities. The most promising is a concept

of a dedicated query language operating on the middle-stage

Haskell representation.
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