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Abstract—Cluster Deletion (CD) problem asks to transform a
given graph into a cluster graph by at most k edge deletions. CD
is a combinatorial problem arising in the field of classification. In
this paper, we introduce a graph transformation which enabled
the identification of new polynomially solvable classes of CD
problem. We show that if a graph is K3-free or (diamond, kite,
house, xbanner)-free then cluster deletion problem can be solved
in polynomial time on that graph.

Index Terms—graph clustering; cluster deletion; Line Graph;
P3 adjacency graph; forbidden patterns; diamond graph; claw
graph; fork graph

I. INTRODUCTION

C
LASSIFICATION is the problem of identifying to which

of a set of categories a new observation belongs [1]. In

the terminology of machine learning, classification may be

supervised or unsupervised. The corresponding unsupervised

procedure is known as clustering which is considered the

most important unsupervised learning problem [2]. On the

other hand, many combinatorial problems are modelled using

graphs, in particular, the partitioning of graph vertices into

clusters is a classification task that may be used to better

manage many real-world problems. From the theoretical point

of view, the clustering task is closely related to partitioning

problems. As every other problem of this kind, clustering aims

to finding structures or patterns in a collection of unlabeled

data. The goal is to partition these elements into subsets called

clusters such that two meta-criteria are satisfied: homogeneity

(elements in a same cluster should be highly similar to each

other) and separation (elements from different clusters may

have low similarity to each other). In the graph theoretic

approach to clustering, data are often represented in the form

of a graph G. Ideally, the resulting graph would be a cluster

graph, that is, a graph in which every connected component is

a clique, i.e., a complete subgraph. From the practical point of

view, clustering algorithms can be applied in many fields, for

instance in social networks, in Wireless sensor network (WSN)

[3], in particular in optimizing energy distribution between

access points [4], [5], or in designing electronic integrated

circuits [6]. . .

In this paper, we deal with a specific version of the

graph clustering problem, namely, cluster deletion (CD), which

allows a graph partitioning, into a set of complete subgraphs,

just by removing edges. This problem is known to be NP-

hard [7] for general graphs. However, it may become easier

and polynomial-time solvable in specific graphs, for instance

split graphs, block graph, proper interval graph, cographs [8],

[9]. Graph classes on which CD is polynomial-time solvable

can also be specified by forbidding the occurrence of certain

(small) subgraphs in the input graph. For instance, CD is

polynomial-time solvable on a sub-class of P4-sparse graphs

that strictly includes P4-reducible graphs (which are, in turn, a

superclass of cographs) [10]. Those results were obtained for

unweighted graphs. For weighted graphs, the cluster deletion

problem can be solved in polynomial time on the class of K3-

free graphs for which the CD equivalent to maximum weighted

matching [8], [11].

On the other hand, there are several works showing that CD

problem is NP-hard on some subclasses of weighted graphs

such, (C5, P5)-free graphs,(2K2, 3K1)-free graphs and (C5,

P5, bull, 4-pan, fork, co-gem, co-4-pan)-free graphs [9].

Our aim is to derive polynomial subproblems of CD by

resorting to graph transformation. In the literature, there are

several graph transformation, among them the widely used

line graph [12]. A graph H is a line graph of a graph G if

the vertices of H are in a one-to-one correspondence with

the edges of G, with two vertices being adjacent in H if

and only if the corresponding edges of G have a vertex

in common. Clearly, any graph matching in G corresponds

to an independent set in its line graph, and therefore, the

maximum independent set problem in the class of line graphs

is equivalent to the maximum matching problem in general

graphs. What is worth noting here is that finding a maximum

matching in a graph is a polynomial problem [13], which

implies that the maximum independent set problem in poly-

nomially solvable in line graphs [14]. For this reason this

graph transformation has been widely used both for reducing

and solving the maximum independent set problem. Another

transform, known as conic reduction [15], transforms a graph

G into a graph G′ with α(G′) = α(G) − 1, where α(G)
denotes the maximum cardinality of a maximum independent

set in a graph G, that is, the stability number of G. Yet another

interesting transformation is the one based on the removal of

simplicial vertices [16]. Let v be a vertex and let N(v) be the

neighbours set of v. v is simplicial if N(v) is a clique. For

each simplicial vertex v, we have α(G) = α(G \ N [v]) + 1
holds such that N [v] = N(v) ∪ {v}. Thus, given a simpli-

cial vertex, it is easy to reduce the problem of determining

α(G) to the same problem on a smaller graph. There are

other graph transformation, such as clique reduction [17],

C-reduction [18], graph reduction for QoS Prediction [19],
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SWR reduction [20]. All these transformations may simplify

combinatorial problems on graphs.

In the present paper, we introduce a new transformation

called the P3-adjacency graph and we use it to identify new

polynomially-solvable classes of CD.

In the next section, we present a new proof of the tractability

of the CD problem for unweighted K3-free graphs which

is much easier that the one proposed in [11]. Indeed, we

prove that when the initial unweighted graph G is K3-free,

its P3(G) will correspond to its line graph and then finding a

minimum deletion edge-set is equivalent to finding a maximum

independent set in P3(G). In other words, solving the CD

problem on a K3-free graph amounts to finding a maximum

matching in the line graph of G. Next, we show that if G is

diamond-free then any maximum independent set of P3(G)
provides a solution of CD. Secondly, we introduce a new

collection of forbidden patterns, namely kite, house, open-

envelope and xbanner, and prove that P3(G) is claw-free when

G is (kite, house, open-envelope, xbanner)-free. This enables

a polynomial computation of a maximum independent set of

P3(G), and then, provides an optimal solution for CD on G

in polynomial-time.

II. DEFINITIONS AND NOTATIONS

A graph is a mathematical structure consisting of a set of

vertices and a set of edges connecting the vertices. There are

several types of graphs, among which, one can distinguish

simple graphs, which are defined by an ordered pair (V,E),
where V is a finite set of vertices and E ⊆ P2(V ) is the set

of edges, with P2(V ) being the set of all pairs of V . From

a simple graph G = (V,E), one can extract a partial graph

Gp = (V,Ep) obtained by removing some of the edges of G,

we have therefore Ep ⊆ E.

Definition 1. Let G = (V,E) be a simple graph and let U ⊆
V . The simple graph (U,E(U)) is the sub-graph of G induced

by U , where E(U) = E ∩ P2(U)

A sub-graph of a given simple graph is therefore defined as

follows:

Definition 2. A graph Gs = (Vs, Es) is the sub-graph of a

graph G = (V,E) if there exists U ⊆ V such that Gs is the

sub-graph of G induced by U i.e Vs = U and Es = E(U).

A complete graph is a simple graph in which every pair of

distinct vertices is connected by a unique edge. The complete

graph with n vertices is denoted by Kn. A clique of a simple

graph G = (V,E) is a complete subgraph of G. The K3 graph

is the complete graph with three vertices and a P3 graph is

the path on three vertices as it is illustrated in Fig. 1.

Observe that a complete graph cannot contain any P3 as an

induced subgraph.

Let C be a collection of small graphs, that will be designated

by patterns. G is said to be C-free if G contains no member

of C as an induced subgraph.

1

2 3

1

2 3

Fig. 1. A P3 graph (left) and K3 graph (right)

Besides, in the literature there exists a known class of graph

called line graph which represents the adjacencies between the

edges of a given graph.

Definition 3. The line graph of a simple graph G= (V ,E) is

the graph L(G)= (V ′,E′), where:

• Each vertex of L(G) represents an edge of G; and

• two vertices of L(G) are adjacent if and only if their

corresponding edges share a common endpoint in G.

Example 1. Fig 2. shows a simple graph and its line-graph.

1

2
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3 5
x 1
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x 4
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x5x2

x6x3

x1 x4

Fig. 2. Graph G (left) and its line graph L(G) (right)

The relevance of the line graph class is that many combi-

natorial problems, that are NP-hard on general graphs, are

polynomially solvable on line graphs. The clustering problem

is one of these combinatorial tasks. It consists in making

the fewest changes to the set of edges of an input graph in

order to obtain a set of cliques. There are three variations

of graph clustering: cluster completion, cluster deletion and

cluster editing. In the graph completion variations, edges can

only be added. In cluster deletion, edges can only be deleted.

In cluster editing, both edge additions and edge deletions are

allowed. More formally, the cluster deletion (CD) problem

consists in finding, for a given graph G, a P3-free partial graph.

An optimal solution for a CD instance given by a simple graph

G = (V,E) is a P3-free partial graph Gp = (V,Ep) of G that

minimizes |E − Ep|.

III. A POLYNOMIAL CD CLASS

In this paper, we preciselly consider the cluster deletion

problem which allows a graph partitioning just by removing

edges. This version partitions the graph into a set of complete

subgraphs, i.e., cliques, and the goal is to remove the fewest

edges from the input graph. We propose an algorithm that

solves CD by resorting to a new graph transformation, which

is defined as follows:

Definition 4. The P3 adjacency graph of a simple graph G=

(V ,E) is a simple graph, which we denote by P3(G), such

that:

• Each vertex of P3(G) represents an edge of G; and
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• two vertices of P3(G) are adjacent if and only if their

corresponding edges form a P3 sub-graph of G.

Example 2.

1

2

4

3 5

x 1

x
3

x 4

x
2

x5

x6

x2x1

x4x3x6

x5

Fig. 3. Graph G (left) and its P3(G) graph (right)

Lemma 1. P3(G) = L(G) if and only if G is K3-free

Proof. Let G = (V,E) be a simple graph with the associated

P3 adjacency graph P3(G) = (E,EP3
) and line graph L(G) =

(E,EL).
(⇒) Assume that P3(G) = L(G) while G contains a K3 as

an induced subgraph, and proceed to get a contradiction.

By Definition 3, a K3 graph formed by edges x, y, z of

G will be transformed into a K3 in L(G) whose edges are

{x, y},{x, z},{y, z}. On the other hand, since any K3 of G

cannot contain a P3, by Definition 4, x, y and z will not

be connected in P3(G). We deduce that EL 6= EP3
, which

contradicts our assumption. So, P3(G) = L(G) cannot hold

true unless G is K3-free.

(⇐) Suppose that G is K3-free and show that P3(G) =
L(G), which amounts to establishing that EP3

= EL since

P3(G) and L(G) have the same vertex-set by definition. So,

let {x, y} be any edge of EP3
. According to Definition 4, the

edges of G that correspond to vertices x and y in P3(G) must

form an induced P3 subgraph in G, and then, they must share

a common endpoint. This implies that, {x, y} ∈ EL. Thus,

we have EP3
⊆ EL. Converselly, let {x, y} be in EL, which

implies that the edges x and y must share a common endpoint

in G. Moreover, since G is K3-free, it cannot contain a third

edge which form a K3 subgraph with x and y. This implies

that x and y form a P3 in G, which implies that {x, y} ∈ EP3
.

Thus, EL ⊆ EP3
. It follows, that P3(G) = L(G).

Example 3. Consider the graph G1 depicted in Fig. 4. Its

L(G1) and P3(G1) are as shown in Fig. 5.

3

2

1

4

x 4

x
1 x 3
x2

Fig. 4. A graph that contains both P3 and K3.

x3

x1

L(G1)

x4

x2

x3

x1

x4

x2

P3(G1)

Fig. 5. The line graph and the P3 adjacency graph of G1.

We notice that L(G1) and P3(G1) are different. This is due

to the K3 subgraph induced by vertices 1, 2 and 3.

Example 4. The figure below represents a graph G2 composed

of four vertices and containing two P3 but no K3:

3

2

1

4

x 2

x
1 x3

Fig. 6. A simple graph containing two P3 but no K3.

Fig. 7 represents the L(G2) associated with P3(G2).

x3

x1 x2

P3(G2) = L(G2)

Fig. 7. The line graph and P3 adjacency graph of G2

Transforming G2 into L(G2) and P3(G2) gives the same

simple graph because G2 is K3-free. This observation is in

accordance with Proposition 1.

Lemma 2. Let G = (V,E) be a K3-free graph. If E′ ⊆ E

is a maximum independent set of P3(G) then (V,E′) is a CD

solution for G.

Proof. (⇐) Assume that (V,E′) is a CD solution for G.

Since (V,E′) is composed of a set of cliques and a clique

cannot contain any P3 as an induced subgraph, the vertices of

P3(G) that correspond to the edges of E′ will be pairwise not

connected. This means that they form an independent set of

P3(G).
It remains to prove that E′ is a maximum independent set

of P3(G). To this end, assume the converse is true, that is,

there exists E′′ ⊆ E such E′′ is an independent set of P3(G)
and |E′′| > |E′|. Since E′′ is an independent set of P3(G),
then, by Lemma 1, the partial graph of G defined by (V,E′′)
is P3-free. Moreover, we have |E − E′′| < |E − E′| since

|E′′| > |E′|. This implies that (V,E′) is not a CD solution

for G which contradicts the hypothesis.

(⇒) Let E′ be a maximum independent set of P3(G).
Assume that (V,E′) is not a solution of CD for G and proceed

to get a contradiction.
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If (V,E′) is not a solution of the CD instance defined by

G then either (V,E′) contains a P3 or there exists a P3-

free partial graph (V,E′′) such that |E − E′′| < |E − E′|.
By Lemma 1, the first case cannot hold true. In turn, the

second case cannot hold because, otherwise, E′ will not be

a maximum independent set of P3(G) since |E′′| > |E′|.

Combining Lemma 1 and 2, we deduce that

Theorem 1. The CD problem limited to the class of K3-free

graphs can be solved in polynomial time for simple graphs.

Proof. According to Lemma 2, solving a CD instance defined

by G amounts to finding a maximum independent set in

P3(G). On the other hand, according to Lemma 1, if G is

K3-free, then P3(G) is identical to its line graph. In addition,

it is well established that the maximum independent problem

is polynomial on the class of line graphs. It follows that the

CD problem for K3-graphs can be solved by first constructing

a P3 adjacency graph , and then, by computing, in polynomial

time, a maximum independent set in the latter graph. Finally,

since the P3 adjacency graph can be built in O(|V |4) step, the

overall process is polynomial.

In what follows, we identify a wider tractable class of CD,

which is also defined via forbidding certain graph patterns.

Lemma 3. Let G = (V,E) be a diamond-free graph and let

E′ ⊆ E. (V,E′) is a CD solution for G if and only if E′ is a

maximum independent set of P3(G).

v1

v2 v3

v4

Fig. 8. Diamond graph

Proof. (⇐) Let E′ be a maximum independent set of P3(G).
Assume that (V ,E′) is not a CD solution for G. This implies

that either (V,E′) contains P3 as an induced subgraph or there

is a P3-free partial graph (V,E′′) such that |E′′| > |E′|.
Assure the former case, i.e., (V,E′) contains a P3, say u-

v-w, and proceed to get a contradiction. Denote by e, the

edge {u, v} and by e′, the edge {v, w}. Since e and e′ are

in E′ and E′ ⊆ E, which is a maximum independent set of

P3(G), the latter two edges must not form a P3 in (V,E). On

the other hand, e and e′ form a P3 in (V,E′). This implies

that {u,w} is in E but not in E′. This cannot occur unless

there is another edge {x, u} ∈ E′ that forms a P3 with

{u,w} but neither with e nor with e′. Moreover, since {x, u}
and {u,w} form a P3, {x,w} must not be in G. It follows

that ({u, v, w, x}, E({u, v, w, x})) is an induced diamond sub-

graph of G, which contradicts the hypothesis. In the latter case,

there is a P3-free partial graph (V,E′′) such that |E′′| > |E′|.
This implies that E′ is not a maximum independent set of

P3(G), which also contradicts the hypothesis.

(⇒) Let (V ,E′) be a CD solution for G and assume that

E′ is not a maximum independent set of P3(G), then proceed

to get a contradiction.

Since E′ is not a maximum independent set of P3(G) then

either E′ is not an independent set of P3(G) or it is not

maximum. From the definition of P3(G), the former case

implies that there exist e, e′ ∈ E′ that form a P3 in G,

which contradicts the fact (V,E′) is a CD solution for G. The

latter case implies that there exists a maximum independent

set E′′ ⊆ E such that |E′′| > |E′|. Using (⇐), we deduce

that (V,E′) is not a CD solution for G and this contradicts

the hypothesis.

The complete bipartite graph K1,3 is known as the claw

graph. It is illustrated by Fig. 9. In what follows, the goal

3
2

4

1

Fig. 9. A complete bipartite graph K1,3 (Claw graph or Y graph)

is to obtain a P3(G) free from claw. Recall that this allows

to polynomially solve the maximum independent set problem

in P3(G). Thus, interested by determining the patterns which

entail a claw in P3(G).

Lemma 4. Let G = (V,E) be a simple graph. P3(G) has a

claw as an induced subgraph if and only if G contains one of

the graphs in Fig. 10 as an induced subgraph.

1
3

45

2

kite

12

34

5

house

12

34

5

open-envelope

5 4

3

1

2
xbanner

Fig. 10. The set of minimal graphs, which when they are present in G as
subgraphs entail a claw in P3(G) [21]

Proof. (⇒) Let G be a simple graph and let P3(G) be the

P3 adjacency graph of G. Assume that K1,3 is a subgraph of

P3(G) and, by the same time, G does not contain any kite,

house, open-envelope and xbanner as an induced subgraph

and proceed to get a contradiction. By referring to Definition

4 and since K1,3 is composed by a vertex which has three not

connected neighbors, if P3(G) contains a K1,3 then G must

contain three P3 subgraphs sharing a common edge, say a.

So, we should have in G one of the following two subgraphs:
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13

45

2
(1)b

a

d

c

1

3

4

2

5

(2)
a

b

d

c

Fig. 11. Minimal patterns that entail a claw in P3(G)

To ensure that a claw graph (Fig. 9) occurs in the P3 adjacency

graph of G, we add, in all possible manners, the edges

that keep the claw graph as an induced subgraph of P3(G).
This results in the following four patterns, which correspond

exactly to the forbidden patterns of Fig 12 and contradicts the

hypothesis.

1
3

45

2
b

a

d

c

e

13

45

2
b

a

d

c

e f

13

45

2
b

a

d

c

f
g

e 5 4

3

1

2

a
b

d
c

f
e

g

Fig. 12. After change: the set of minimal graphs, which when they are present
in G as subgraphs, entail a claw in P3(G)

(⇐) If G contains a kite, house, open-envelope or xbanner

as an induced subgraph, then P3(G) will respectively contain

one of the following graphs as an induced subgraph (see Fig.

13, Fig. 14, Fig. 15).

c
a

d

b

Fig. 13. P3(kite) and P3(xbanner)

e

c

a

db f

Fig. 14. P3(house)

c

a

d

e

b

g

Fig. 15. P3(open-envelope)

Observe that all these subgrahs contain a P1,3 as an induced

subgraph.

Theorem 2. The CD problem is polynomial in the class of

(kite, house, xbanner, diamond)-free graphs.

Proof. Let G be a (kite, house, xbanner, diamond)-free graph.

Since diamond is an induced subgraph of open-envelope and

by Lemma 4, P3(G) is claw-free. On the other hand, by

Lemma 3, a maximum independent set of P3(G) corresponds

to a CD solution for G. Since maximum independent set

problem can be solved in polynomial time in claw-free graphs

[12], CD can be solved in polynomial time in (kite, house,

xbanner,diamond)-free graphs.

IV. CONCLUSION

In this paper, we identified polynomial classes of the CD

problem. We introduced a new graph transformation, namely,

the P3 adjacency graph. We used this transformation in order

to show that whenever a simple graph G is diamond-free, any

maximum independent set of P3(G) provides a solution of CD.

Next, we showed that CD problem can be solve in polynomial

time in K3-free and (kite, house, xbanner,diamond)-free un-

weighted graphs.
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