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Abstract—In this article, the modified probabilistic neural
network (MPNN) is proposed. The network is an extension
of conventional PNN with the weight coefficients introduced
between pattern and summation layer of the model. These
weights are calculated by using the sensitivity analysis (SA)
procedure. MPNN is employed to the classification tasks and its
performance is assessed on the basis of prediction accuracy. The
effectiveness of MPNN is also verified by analyzing its results with
these obtained for both the original PNN and commonly known
classification algorithms: support vector machine, multilayer
perceptron, radial basis function network and k-Means clustering
procedure. It is shown that the proposed modification improves
the prediction ability of the PNN classifier.

I. INTRODUCTION

PROBABILISTIC neural network (PNN) is a data classifier

proposed by Specht in [1] and [2]. It attracts researchers

from the field of machine learning. In literature, one can find

PNN’s applications mainly in medical diagnosis and prediction

[3], [4], [5], [6] and image classification and recognition [7],

[8], [9]. However, a very good classification performance

allows PNN to be utilized in other tasks, e.g.: earthquake

magnitude prediction [10], multiple partial discharge sources

classification [11], interval information processing [12], [13],

phoneme recognition [14], email security enhancement [15] or

intrusion detection systems [16].

In its conventional form, PNN is a multilayered feedforward

network composed of four layers: input layer (represented by

data features), pattern layer (consisting of as many neurons

as training patterns), summation layer (with one neuron for

each class) and output layer where a single neuron produces a

classification result. In majority of cases, the connections be-

tween layers in PNN are not equipped with weight coefficients

(or all the weights are equally set to 1). Therefore, the output

response is not influenced by an impact of a particular class.
In literature, a subtle attention has been paid to determining

the weights of PNN. The work of [17] is the first contribution

where the weights are introduced to PNN. However, the

coefficients are not computed directly; the network operates
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by using anisotropic Gaussians, i.e. the covariance matrix is

utilized, instead of a single smoothing parameter, to compute

the output for a particular class. In [18] and [19], the weighted

PNN is proposed in the way it adds weighting factors between

pattern and summation layer. These factors are calculated from

soft labeling probability matrix to carry out a classification.

The authors of [20] and [21] create weighted PNN based

on their class separability. A single weight is defined as the

ratio of ’between-class variance’ and ’within-class variance’

for a particular training pattern. As in [18], the weighting

coefficients are used to connect the pattern and summation

layer.

In this study, we propose the use the SA procedure in

the computation of the weights for the PNN model. Similar

to [18], [19], [20] and [21], the coefficients are inserted

between pattern and summation layer. Their values are equal

to the aggregated sensitivities normalized to [0, 1] interval.

The formulas for the weights are analytically derived. The

idea is applied to PNN activated with a product Cauchy

kernel. The proposed MPNN is tested in the classification

problems of University of California, Irvine machine learning

repository (UCI-MLR) data sets [22] by computing a 10-

fold cross validation accuracy. The obtained outcomes are

thoroughly compared to the ones obtained for original PNN.

Furthermore, we verify MPNN accuracy with the accuracy of

four reference classifiers: support vector machine, multilayer

perceptron, radial basis function neural network and k-Means

clustering algorithm.

This work is structured as follows. In section II, the SA pro-

cedure is highlighted. Section III, presents the fundamentals

of the PNN model. In section IV, the procedure of computing

the weights for PNN is proposed. Section V describes the

input data sets and the reference classifiers used in current

study. Here, the discussion regarding the results obtained in

the simulations is also presented. Finally, section VI concludes

the work.
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II. SENSITIVITY ANALYSIS

SA, in general, is one of many approaches used in determin-

ing the importance of particular inputs of a neural network.

Therefore, it can be applied in the task of elimination of the

irrelevant features in the input vectors. The main idea of SA is

based on computing the influence of input features on a neural

network output signal after a training process. This influence

is characterized by real coefficients [23]
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where xi denotes an input feature and yj stands for an output

signal. In (1), i = 1, . . . , N , j = 1, . . . , J , where N and J

indicate the number of features and outputs, respectively.

More specifically, equation (1) represents the sensitivity of

the jth neural network output on the ith feature of the input

vector x determined based on the pth training pattern x
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Once S(p) is computed for all P training patterns, it is possible

to find aggregated parameters after application of various types

of norms. In the research, one usually utilizes the parameter

of the mean square average sensitivity

Smean
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S
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j,i

)2

P
. (3)

The absolute value average sensitivity and the maximum

sensitivity parameters are also frequently applied in input

significance estimation [24]. The appropriate impact of S
(p)
j,i

on the aggregated outcome of Sj,i implies the selection of a

particular norm.

III. PROBABILISTIC NEURAL NETWORK

PNN is composed of four layers. The coordinates of an

input vector x = [x1, . . . , xN ] constitute the first input layer.

The second layer, called a pattern layer, consists of as many

neurons as training examples. Pattern neurons feed their output

to the next summation layer. In the summation layer, there are

J neurons, however each jth neuron sums the inputs from the

neurons of jth class. In literature, two approaches are usually

utilized to compute the signals of the summation neurons:

the additive Gaussian kernels and the product kernels. In this

work, we use the second approach, therefore the summation

neuron output is defined as follows
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where:

• K (·) is the kernel function calculated in the follow-

ing way

K(x) = K(x1)· K(x2)· . . . · K(xN ), (5)

for which

K(xi) =
2

π(x2
i + 1)2

(6)

denotes the one-dimensional Cauchy multiplicand;

• Pj stands for the number of cases in the jth class (j =
1, . . . , J);

• x
(p)
j = [x

(p)
j,1 , . . . , x

(p)
j,N ] is the pth training vector of the

jth class.

If one regards (5) and (6) as the pattern neuron activation

function, the summation layer output for the jth class is

determined as follows
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1
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Finally, using the Bayes theorem [2], the output layer of PNN

determines the label for a new test vector x

C(x) = argmax
j=1...J

fj(x), (8)

where C(x) denotes the predicted class. The training algo-

rithm for this network amounts to the appropriate choice of

the smoothing parameter hi by means of the plug-in method

[25], and the computation of the modification coefficient sp
[26]. The structure of the PNN model is illustrated in Fig. 1.

IV. PROPOSED ALGORITHM

In Fig. 2, we present the step-by-step data classification

algorithm with the use of modified PNN model. We start

with the calculation of the sensitivity coefficients for all

r = 1, 2, . . . , Pj neurons in the pattern layer
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In (10), the elements of rth column represent the sensitivities

of KDE in jth class in regard to each rth pattern neuron

computed for a specific input pattern p. Since the denominator

of each item of Sj is a vector, the following gradient has to

be determined
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Fig. 1. The architecture of probabilistic neural network.
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The product form of KDE in (5) expands (12) into the

following formula
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The Cauchy kernel in (6) allows us to determine the ith

coefficient of (13)
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We can see that ∇f̂
(p,r)
j is a vector field, therefore, in order

to extract an information on sensitivity of KDE of jth class

for a given rth pattern neuron, it is necessary to determine

the norm of (11). Thus, Sj in (10) must be generalized to the

following matrix
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for the Euclidean norm. The matrix Sj is computed for j =
1, . . . , J .

Now it is necessary to aggregate all p = 1, . . . , Pj entries

in each rth column of Sj to obtain the aggregated sensitivity

vector. For the mean square average sensitivity measure, this

vector takes the following form
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Finally, the normalization of the elements of aj to some

interval introduces the weight vector for each jth class. In

this work, we propose simple “max” normalization
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where max(·) operator returns the maximum value of the

argument.
Including the weights’ coefficients, the summation layer

output (7) is redefined as
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Fig. 2. The algorithm for the computation of the weights in PNN between pattern and summation layer.

where

w
(r)
j =

√

1
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where r refers to rth element of aj .

V. EXPERIMENTS

In this section, we present the classification results obtained

by PNN with introduced weights and the original network.

These results are compared with the outcomes achieved by

other classifiers: support vector machine (SVM) algorithm,

multilayer perceptron (MLP), radial basis function neural

network (RBFN) and k-Means method. Both, input data sets

and the reference classifiers used in the simulations are also

described.

A. Input data sets

The performance of the proposed MPNN, original PNN and

the reference methods (SVM, MLP, RBFN and k-Means) is

evaluated on UCI-MLR data sets. Ten well known and com-

monly tested databases are included: Wisconsin breast cancer

(WBC), Statlog heart (SH), Pima Indians diabetes (PID),

Ecoli (E), Parkinsons (P), Iris (I), breast tissue (BT), monk

(M), seeds (S) and cardiotocography (CTG). The cardinality,

dimensionality, number of classes and the class distributions

for the utilized databases are presented in Table I.

B. Reference methods

In this subsection, the reference classification models are

highlighted. Additionally, we provide the parameter settings

used for these classifiers in the simulations.
1) SVM: SVM is the classification algorithm proposed by

Vapnik [27]. To perform the classification, SVM requires the

solution of the quadratic programming optimization problem.

For this purpose, various kernel functions need to be explored.

In the current study, we verify the following ones:

• radial basis kernel

K(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

, (21)

• polynomial kernel

K(xi,xj) = (α (xi · xj) + β)
k
. (22)

In the classification tasks, the parameters of the kernels (21)

and (22) and capacity control parameter C must be appropri-

ately selected.
2) MLP: MLP is a feedforward neural network [28]. This

network is composed of an input layer, hidden layers, and an

output layer. The number of hidden layers, the optimal number

of neurons in hidden layers and the appropriate activation

functions must be determined for this model. In this work,

the following functions are tested:

• linear identity

f(x) = x, (23)
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TABLE I
UCI-MLR DATA SETS USED TO TEST ALL COMPARED MODELS

Data set Records Attributes Classes Class distribution

WBC 683 9 2 444–239
SH 270 13 2 150–120
PID 786 8 2 500–268
E 327 5 5 143–77–35–20–52
P 195 22 2 147–48
I 150 4 3 50–50–50
BT 106 9 6 21–15–18–16–14–22
M 432 6 2 216–216
S 210 7 3 70–70–70
CTG 2126 22 3 1655–295–176

• logistic sigmoid

f(x) =
1

1 + e−αx
, (24)

• hyperbolic tangent

f(x) =
2

1 + e−βx
− 1, (25)

where α and β are the coefficients used to control the slope

of (24) and (25).

3) RBFNN: RBFNN, similar to PNN and MLP, is a feed-

forward neural network [29]. However, this model consists of

three layers: an input layer, a radial basis hidden layer and a

linear output layer. The number of the neurons in the hidden

layer and the parameters of the RBFNN training method must

be appropriately selected.
4) k-Means: The k-Means clustering is an unsupervised

learning algorithm. It partitions input data into k clusters and

provides a center of each cluster [30]. As a result, the records

within each cluster are similar to each other and distinct from

records in other clusters. The predictions for the unknown

cases are made by assigning them the category of the nearest

cluster center. The parameter k is increased up to K , which

depends on the number of input vectors of a given class

(Pj). In the current study, K does not exceed 50% of Pj ,

j = 1, . . . , J . The step for k is determined empirically.

The training methods and the parameters of the models are

presented in Table II.

C. Results and discussion

In Table III, we present the accuracy (Acc) determined for

MPNN, PNN and the reference methods in the classification

problems of WBC, SH, PID, E, P, I, BT, M, S and CTG

data sets. The accuracy is computed with the use of a 10-

fold cross validation procedure. Table IV shows the optimal

parameters of the reference classifiers for which the highest

accuracy is achieved in particular classification problems. In

the case of the SVM model, the capacity control parameter

C and the spread constant σ are shown for the radial basis

kernel (21) since for this function, a higher accuracy values

are obtained in contrast to the results achieved with the use

of kernel presented in (22). For MLP, the network structure

is presented in the form w–x–y–z, where w and z denote the

TABLE II
SIMULATION PARAMETERS OF THE EXAMINED REFERENCE CLASSIFIERS

SVM
kernel functions:

– radial basis kernel (21)
– polynomial kernel (22)

The grid search is performed for σ, α, β and k

Capacity control coefficient:
C =

{

10−1, 100, 101, 102, 103, 104, 105
}

MLP
training method: scaled conjugate gradients
number of hidden layers: {1, 2}
number of hidden neurons: {2, 3, . . . , 30}
activation functions:

– linear (23)
– logistic (24)
– tangent (25)

RBFN
training method: weighted boosting search [31]
neuron tuning parameters:

size of population: {400, 600, 800, 1000}
maximum generation: {100, 200, 500}
boosting iterations: 50

number of hidden neurons: {2, 3, . . . , 30}

k-Means
number of clusters: {2, . . . ,K}
distance measure: Euclidean distance

number of input and output neurons, respectively while x and

y stand for the number of neurons in the hidden layers. The

abbreviations “lin” and “log” refer to linear (23) and logistic

(24) activation functions, respectively. For example, in the case

of E data classification case, the string “5–13–4–5 log–log–

log” describes MLP with 5 input neurons, 13 neurons in the

first hidden layer, 4 neurons in the second hidden layer and 5

output neurons where the logistic activation function is applied

in hidden and output layers. In the case of the RBFN and k-

Means classifiers, n and k denote the number of neurons in

the network’s hidden layer and the number of cluster centers,

respectively. The optimal parameters are obtained after vast

number of simulations performed in DTREG software [32].

Comparing two first columns of Table III, one can definitely

emphasize the fact that in almost all classification problems,

the introduction of additional weight parameters to PNN
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TABLE III
CROSS VALIDATION ACCURACY FOR: WEIGHTED PNN, ORIGINAL PNN AND THE REFERENCE CLASSIFIERS: SVM, MLP, RBFN AND K-MEANS IN

UCI-MLR DATA CLASSIFICATION TASKS

Data set MPNN PNN SVM MLP RBFN k-Means

WBC 0.9779 0.9706 0.9546 0.9722 0.9663 0.9517
SH 0.8148 0.7963 0.8074 0.7926 0.7926 0.6852
PID 0.6948 0.6842 0.7474 0.7669 0.7435 0.6914
E 0.8485 0.8333 0.7982 0.8379 0.8471 0.8410
P 0.9250 0.8750 0.9231 0.9128 0.9026 0.8308
I 1.000 0.9667 0.9733 0.9733 0.9533 0.9667
BT 0.7273 0.7098 0.6792 0.6038 0.7075 0.6038
M 0.8605 0.8408 0.9884 0.9236 0.7500 0.9120
S 0.9524 0.9524 0.9429 0.9286 0.9476 0.9143
CTG 0.8568 0.8545 0.9751 0.9417 0.9694 0.8664

TABLE IV
THE PARAMETER VALUES FOR WHICH THE HIGHEST Acc IS OBTAINED FOR THE REFERENCE CLASSIFIERS

SVM MLP RBFN k-Menas
Data set C σ structure act. funct. n k

WBC 10
3 0.5 9–3–2 log–lin 50 57

SH 10
2 2.5 13–19–2 log–log 38 4

PID 10
3 0.3 8–7–2 log–lin 74 4

E 10
4 1.5 5–13–4–5 log–log–log 66 2

P 10
5 0.1 22–7–2 log–log 54 33

I 10
0 1.5 4–5–3 log–log 16 4

BT 10
1 27.1 9–3–6 log–log 34 11

M 10
2 0.7 6–14–8–2 log–log–lin 3 23

S 10
3 0.2 7–8–10–3 log–log–log 41 25

CTG 102 2.6 22–13–6–3 log–log–log 100 171

results in significant increase of its accuracy. Note, that in

P data classification case, this increase is over 5% which is

the highest investigated result. The above observation does not

take place in S data set classification task. Here, the proposed

modification of neural structure does not change obtained

accuracy. Thus, the use of weights for original PNN is not

beneficial in terms of prediction ability.
In general, one can note that only in three data set cases,

i.e.: PID, M and CTG, the reference methods provide higher

Acc value. However, among these cases, there is no unequiv-

ocal alternative classifier since SVM and MLP yield higher

accuracy twice and once, respectively.
If we do not take the MPNN accuracy results into account,

it is clear that the original PNN is an average quality classifier

because in WBC, SH, E, P and I classification problems,

higher Acc is obtained by the following methods: MLP, SVM,

RBFNN, SVM, and SVM ex aequo MLP, respectively.

VI. CONCLUSION

In this paper, the modified probabilistic neural network

was proposed. The modification relied on the introduction

of the weights’ coefficients between pattern and summation

layers. The weights for PNN were computed by means of

the SA procedure. Their values were equal to the aggregated

sensitivities normalized to [0, 1] interval. A PNN with product

kernel estimator with Cauchy realization was used. The plug-in

method was applied to determine the smoothing parameter. A

10-fold cross validation accuracies of MPNN were compared

with the ones obtained for the original PNN and the reference

classifiers in the UCI-MLR data sets classification tasks. The

results showed, that among all tested models, MPNN achieved

the highest Acc in seven out of ten classification cases.

In contrast to the conventional PNN, the proposed network

performed better in nine classification problems, while only

in single task (S data set), the accuracies of MPNN and PNN

were identical.
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