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Abstract—In the paper, we discuss the formal approach to
Tarski geometry axioms modelled with the help of the Mizar
computerized proof assistant system. Although our basic de-
velopment was inspired by Julien Narboux’s Coq pseudo-code
and is dated back to 2014, there are significant steps in the
formalization of geometry done in the last decade of the previous
century. Taking this into account, we will propose the reuse of
existing results within this new framework (including Hilbert’s
axiomatic approach), with the ultimate future goal to encode
the textbook Metamathematische Methoden in der Geometrie by
Schwabhäuser, Szmielew and Tarski. We try however to go much
further from the use of simple predicates in the direction of the
use of structures with their inheritance, attributes as a tool of
more human-friendly namespaces for axioms, and registrations
of clusters to obtain more automation (with the possible use of
external equational theorem provers like Otter/Prover9).

I. INTRODUCTION

F
OR YEARS, foundations of geometry attracted a lot of

interest of resarchers from various areas of mathematics.

From the very beginnings, human thought was stimulated by

geometrical objects, to take Thales as the prominent exam-

ple of an ancient philosopher. Classical geometry involved

illustrative examples and construction problems instead of a

building strong axiomatic basis. However, from the modern

viewpoint of automated theorem-provers, diagrams can deliver

some really tough problems. Here an important example is the

possibility of ruler-and-compass construction: impossibility of

trisecting the angle and doubling the cube (as two out of four

problems of antiquity), where the treatment of constructible

numbers is way more efficient from the formal point of view.

Euclid and his Elements are often recalled as one of the

first successful uses of an axiomatic method in mathematics,

and such an approach can be formalized efficiently with

the use of computer proof-assistants. Then, changing even

simple notions with obvious (at least at the very first sight)

properties, as parallel postulate (or Playfair axiom), gave rise

to various geometries (e.g., Bolyai-Lobachevskian hyperbolic

geometry). The same work can be modelled with machine

formalizations, using various sets of axioms (creating types).

Now, apart from the discussion whether the non-emptiness

of types in Mizar is real difficulty (because from informal

point of view one can consider an object with any properties,

even mentioning their coherence), and how much more can

be attained if the reimplementation of the Mizar type system

will be done in the foreseeable future, we have to cope

with the limitations of the existing type structure. On the

other hand, type checking allows some errors to be caught

early – when making mathematical definitions. In this context

the requirement of constructing at least one object of the

desired type is quite natural, as it prevents contradictory types.

Similarly, the appropriate model had to be constructed either

to assure that proposed axioms are correct (which is not very

hard as they can be parsed by ordinary mathematician even

straight from its corresponding Mizar source code), or (and

this is probably even more important) to bind the fresh formal

apparatus with the existing Mizar developments. Some of

them are written in a language which is not as expressive as

contemporary Mizar language is; in the time of the beginnings

of the Mizar Mathematical Library (MML) as a tight collection

of Mizar articles covering various branches of mathematics,

geometry was an area which was developed quite dynamically.

The language of the Mizar system was influential for other

systems for formalization of mathematics, e.g. miz3 is a

proof interface built on top of HOL Light interactive theorem

prover, with the declarative language compatible with the

Mizar language [47]. Recently, William Richter used miz3

tool to formalize Tarski geometry axioms, with the ultimate

aim to incorporate it in HOL Light, but of course part of his

pseudo-code could be also treated both as a case study and as

a good starting point for further work.

The choice of the topic is not accidental – recent code

available in Coq [7] and the use of automated equational

provers caught an eye of researchers and, as a by-product,

some results, which shed some new light on the axiomatization

of geometry, were published. One of the bright milestones was

also the publication of the new issue of the classical textbook

Metamathematische Methoden in der Geometrie by Wolfram

Schwabhäuser, Wanda Szmielew and Alfred Tarski [40] (to

which we refer by the acronym SST) with the foreword of

Michael Beeson.

In this paper, we are not focused on any of geometric

challenges known in the community, as proving Hilbert axioms

from Tarski [7], or formalizing full SST in Mizar, although

it can be definitely good starting point as in [38] we prove

some Hilbert’s axioms. What we were trying to do was to
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increase of the integrity of (the geometrical part of) the

MML as pointed out in the paper of Piotr Rudnicki and

Andrzej Trybulec [39] and this could be a kind of partial

realization of their postulates. This was done mainly via the

mechanism of revisions of the repository – stepwise refinement

of items already included in MML, done not necessarily by

authors themselves [19]. An alternative approach – focusing

on computations instead of proofs, and work in the analytic

framework of Euclidean spaces R
n is also well-represented

in the repository of Mizar texts, with the recent examples of

Morley trisector theorem or Ceva theorem. The process of for-

malizing geometry within Mizar Mathematical Library started

years before first Coq geometry formalizations; furthermore,

constructive logic behind the Coq proof assistant naturally

forces program extraction from proofs and intuitionistic setting

of the reasoning. In Mizar the stress is put on three main

issues:

• writing readable proofs using classical logic,

• possibility of cooperation with external theorem provers,

and

• knowledge reuse (increasing possible connections be-

tween various developments, called integrity of a reposi-

tory).

The outline of the paper is as follows. In Section II,

we describe the history of formalizing geometry in Mizar,

Section III presents the discussion on abstract and concrete

mathematics; the next one outlines some basic constructions

needed to understand our work, that is concrete translation of

chosen properties straight from Tarski’s axioms (A1)–(A7). In

Section V and VI we give some insight on knowledge reuse

and on its readability, respectively, while in the last part we

describe related work, then we draw some concluding remarks

and propose some future work.

II. MIZARING AFFINE GEOMETRY

In Tarski’s system of axioms [44] the only primitive ge-

ometrical notions are points, the ternary relation B of “soft

betweenness” and quaternary relation ≡ of “equidistance”

or “congruence of segments”. The axioms are reflexivity,

transitivity, and identity axioms for equidistance; the axiom of

segment construction; reflexivity, symmetry, inner and outer

transitivity axioms for betweenness; the axiom of continuity,

and some others. The original set consisted of 20 axioms

for two-dimensional Euclidean geometry and was constructed

in 1926–27, submitted for publication in 1940, and finally

appeared in 1967 in a limited number of copies. There are

many modifications of this system, and Gupta’s work in

this area [20] offers an important simplification. The strict

betweenness was studied even before: it gave rise to “between-

ness geometry” by Veblen in 1904.

Another notable axiomatization, proposed by Hilbert [21]

in 1899, has three sorts: planes, points, and lines, and three

relations: betweenness, containment, and congruence. In this

sense it is a little bit more complex than Tarski’s (but not

necessarily in terms of numbers of axioms as it has also 20 of

these). The two approaches establish a geometrical framework,

in which theorems can be proven logically (remember Euclid’s

Elements proofs are mainly pictures or graphical constructions

and rely heavily on the intuition). This allows to use a

computerized theorem prover in order to find the proof or

proof checker to check the theory for its correctness. In

the paper, we deal with the proof checker Mizar, based on

classical first order logic and Tarski-Grothendieck set theory

(a variant of Zermelo-Fraenkel). Using this tool we describe,

how Tarski’s theory was built formally.

There are two significant connections of Andrzej Trybulec,

the founder of the Mizar project, with persons involved in the

area of Tarski’s geometry. The first one and very influencial

was the cooperation with Lesław W. Szczerba, the author of

[42], in the early 80s of the previous century. Szczerba, who

also submitted to the Mizar Mathematical Library twice, was

at that time a head of the Institute of Mathematics in Białystok,

Poland; the place the Mizar system was mainly developed

(and that was also the affiliation of Trybulec). These contacts

resulted in the research on the theory of interpretation and

semantic foundations of logic in the sense of Epstein. At that

time, Trybulec himself was not very active in formalizing

geometry. The other connection was that after finishing his

study in mathematics at the University of Warsaw under the

guidance of Karol Borsuk (famous Polish topologist), Andrzej

Trybulec took the position of an assistant in the Chair of

Geometry, where Wanda Szmielew was a professor.

Although the very first approach to formal geometries we

can consider the work of Wojciech A. Trybulec INCSP_1

[45], at the state of its writing it was not tightly connected

with the rest of the formal appproach to geometry in Mizar.

Krzysztof Prażmowski (who is currently the head of the Insti-

tute of Mathematics, University of Białystok, Poland) created

quite an active research group of fifteen people in the field of

automated deduction in geometry, with the extensive use of

the Mizar system. Main authors of these contributions were

Krzysztof Prażmowski, Henryk Oryszczyszyn, and Wojciech

Leończuk, all from former University of Warsaw, Białystok

Branch. Together with the other authors, e.g., Kusak, Skaba,

Muzalewski, and others, they wrote 43 Mizar articles on

geometry (5 were removed later in the process of revisions).

At the very beginning, there were many independent paths of

formal development of various geometries (which expressed

in various Mizar structures: directed vs. undirected parallelity

relation, orthogonality, etc.).

Statistical data from Table I are not very impressive with

respect to the current state of MML. The number of authors is

quite big (six percent of all the authors of MML), hence the

style of geometry in Mizar is not very uniform. The writing

style can be measured by the percentage of zipped kBytes,

which is higher than for the whole MML. This specific ratio

(zipped instead of unpacked bytes) is usually taken when

computing the so-called de Bruijn factor, showing how much

additional code we should write comparing with informal

proof to be fully understandable by computers. Furthermore,

hierarchy of geometric objects is based on eight various

structures, so it raises communication issues between various
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TABLE I
STATISTICAL DATA ON THE FORMAL DEVELOPMENT OF GEOMETRY

WITHIN MML

Geometry MML Percentage

files 38 1,254 3.0
authors 15 255 6.0
kBytes 1.981 93.324 2.1

zipped kBytes 406 17,642 2.3
definitions 294 11,606 2.5
theorems 1,319 56,547 2.3
attributes 135 3,079 4.4
clusters 113 13,071 0.9

structures 8 157 5.0

approaches. The last article was PROJPL_1 dated back to

1994, and the series was not very actively developed (with

the exception of the paper of the combinatorial Grassmannians

COMBGRAS). But in 1990 Mizar articles on geometry were

about 30% of the whole Mizar repository (out of 140 files).

Of course, after that time revisions of this specific area were

quite active: one of the main streams (done also by the current

author) was to get separate axioms of selected properties

instead of a large block for the mode (i.e., the constructor of

the type in Mizar). As we can read from the table, the use of

clusters (relatively new feature of Mizar language) is still very

low comparing with the rest of MML, so there is a lot of work

to be done. Affine approach to geometry was less important

as there was another big challenge which for fifteen years

stimulated geometry (in analytical setting, however): the proof

of the Jordan Curve Theorem [23], which will be recalled in

Section V.

As notable affine geometrical facts already formalized in

Mizar we can enumerate:

• Hessenberg’s theorem – HESSENBE;

• Desargues theorem (present in “Top 100 mathematical

theorems”) – ANPROJ_2;

• Pasch configuration axioms – PASCH;

• Fano projective spaces – PROJRED1;

• Desarguesian projective planes – PROJRED2;

• Pappus, Minor, Major and Trapezium Desargues axioms

– AFF_2;

• Minkowskian geometry – ANALORT.

The “Top 100 mathematical theorems” list of important

theorems in mathematics, proposed by Paul and Jack Abad

at the end of provious century, is the popular collection

of challenges for contemporary computerized proof-assistant

systems; the list maintained by Freek Wiedijk described in [48]

is available at http://www.cs.ru.nl/~freek/100/. Currently, the

Mizar system holds the third position with 64 items formalized

so far.

In our opinion, the unifiying approach in Tarski’s spirit

could be quite useful to bind all of these geometrical results

together. Among another significant facts in geometry we can

point out Morley trisector theorem [8], Ceva and Menelaus

theorem [41]. These facts however deal with Euclidean plane,

so the proofs are in the area of analytic geometry; they were

developed more than ten years later than the foundations

TABLE II
THREE MAIN SECTIONS OF THE MIZAR MATHEMATICAL LIBRARY

Part of MML Files % kBytes %
classical part 323 25.8 20,013 21.8
abstract part 866 69.0 67,996 74.0

SCM 65 5.2 3,837 4.2
Total 1254 100.0 91,846 100.0

of geometry in Mizar, when Euclidean spaces were more

thoroughly explored in MML.

III. THE CHOICE OF FORMAL FRAMEWORK: CLASSICAL

VS. ABSTRACT MATHEMATICS

The distinction between classical and abstract mathematics

(i.e. the one based on ordinary axioms of set theory, and all

those using the notion of a structure, respectively) is important

from the viewpoint of the organization of the Mizar repository.

We had to choose between two paths:

• it is possible to formulate Tarski’s axioms without the use

of a structure, and also set theory could be meaningless

for that framework, only the classical logic with Mizar

predicates is enough (equality plays a special role in the

system based on set theory [18]);

• the use of Mizar structures forces us paradoxically to use

basics of set theory – defining a signature of Tarski’s

plane needed to give a type of congruence of segments

and betweenness relation, which was set-theoretic (Mizar

language is typed, and in the earlier case one should also

give a type at least to points, but it can be defined as

Mizar object).

The latter was also chosen by us as the whole geometry in

MML is written in abstract style (as the majority of MML, as

you can read from Table II) as structures in Mizar are present

for a long time. Even if in ordinary mathematical tradition

they are considered as ordered tuples, in the implementation

in Mizar they are treated rather as partial functions, with

selectors as arguments, and ordinary inheritance mechanism

(with polymorphic enabled, which will be extensively used in

our formalizations). The details of the implementation can be

found in [16], we give here only general syntax of declaring

Mizar structure:

struct (Predecessor_List) Structure_Name

(# selector_1 -> type_1,

selector_2 -> type_2,

...

selector_n -> type_n #);

To every argument, its type should be declared, which

corresponds to ordinary definition of the signature of an

algebra.

In the contemporary MML, the basic Mizar article devoted

to structures is [26]; it is dated as for 1995, earlier than the

first article from MML on structures [45], i.e. 1989, because

it was created much later as a result of revision. Its main

step was introducing common predecessor of all structures

– 1-sorted, and the name of the selector carrier was
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chosen. Wojciech A. Trybulec proposed in [45] the formal-

ization of Hilbert axioms (hence we have three sorts: points,

lines and planes). Interestingly, the original name Points

remained untouched (although many similar approaches were

later unified).

definition

struct IncProjStr

(# Points, Lines -> non empty set,

Inc -> Relation of

the Points, the Lines #);

end;

definition

struct (IncProjStr) IncStruct

(# Points, Lines, Planes -> non empty set,

Inc -> Relation of the Points, the Lines,

Inc2 -> Relation of the Points, the Planes,

Inc3 -> Relation of the Lines, the Planes #);

end;

definition

let S be IncProjStr;

mode POINT of S is

Element of the Points of S;

mode LINE of S is

Element of the Lines of S;

end;

Introducing two different structures to host only points and

lines in the first case was a result of revision allowing to use

simpler structures to cope with planar geometry. Note however,

that this disagrees with Tarski’s single sort universe (of points);

and this is quite a basic structure in MML, 1-sorted, as we

already mentioned. Based on this, other descendant objects can

be defined:

definition

struct (1-sorted) AffinStruct

(# carrier -> set,

CONGR -> Relation of

[:the carrier,the carrier:] #);

end;

This was the very first approach, and in fact the article

with MML identifier ANALOAF offered quite simple structure;

here, CONGR is a relation on the Cartesian square of the

carrier, and it is used mainly in the context of parallelity

predicate. Merging it with another relation, the orthogonality,

MML offers a variety of affine geometries. The outline of this

universe is shown in Figure 1. It can be observed that the

hierarchy is not very deep, as many approaches were done

originally in parallel, without reusing notions or theorems

between various paths of development. Furthermore, incidence

structures are not descendants of 1-sorted, which should be

definitely corrected in the future.

definition

struct (AffinStruct, OrtStr) ParOrtStr

(# carrier -> set,

CONGR, orthogonality -> Relation of

[:the carrier,the carrier:] #);

end;

In the original form of [45], the number of axioms was

introduced in the form of a single big formula introducing

mode IncSpace. What is interesting, after the revision, and

evolution of the Mizar system, the file is 10 kB smaller.

definition

struct (1-sorted) TarskiPlane

(# carrier -> set,

Betweenness -> Relation of

[:the carrier, the carrier:], the carrier,

Equidistance -> Relation of

[:the carrier, the carrier:],

[:the carrier, the carrier:] #);

end;

Observe that the choice of the arity of the relation is really

meaningless here: the betweenness relation can be treated as

a ternary relation; but the choice of this concrete model was

quite arbitrary as the difference between dealing with ternary

relations and relations between ordered pairs and elements will

not cause any major problems later (we use mainly predicates).

definition

let S be TarskiPlane;

mode POINT of S is Element of S;

end;

definition

let S be TarskiPlane;

let a, b, c be POINT of S;

pred between a,b,c means

:: GTARSKI1:def 1

[[a,b],c] in the Betweenness of S;

end;

definition

let S be TarskiPlane;

let a, b, c, d be POINT of S;

pred a,b equiv c,d means

:: GTARSKI1:def 2

[[a,b],[c,d]] in the Equidistance of S;

end;

One can mention possibly misleading type definitions for

the betweenness relation (it can be considered as three-

argument relation than as it is now, i.e. relation between an

ordered pair and an element), and also – pretty technical –

predicate between a,b,c for arbitrary points a, b, c. Of

course, the notation could be changed easily into well-readable

candidate b is_between a,c (maybe with the need for

replacing arguments), but we have chosen this notation to be

closer to SST. Brackets can be used as between (a,b,c),

but they can also be omitted, there is no strict obligation for

using them.

IV. THE ORIGINAL SELF-CONTAINED APPROACH

In the very first version of Mizar formalization of Tarski’s

axioms done by William Richter with the help of miz3, we

can find the remark:

In Mizar it isn’t possible to define such a type

(or model) without proving that some model exists.

Trybulec’s existence proofs runs over 450 lines. So

we define a predicate ‘S Tarski-model’ which means

that the plane S satisfies the axioms A1–A7, and
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Fig. 1. Geometrical structures in the Mizar Mathematical Library

then prove trivial theorems A1–A7 which say that

if S Tarski-model, then S satisfies an axiom A1–

A7. The extra clutter involving the predicate Tarski-

model, and the label TarskiModel which stands for

the statement ‘S Tarski-model’ could be avoided by

loading all our results into one gigantic theorem.

Our approach seems preferable.

This motivation essentially caused the lack of the appropri-

ate Mizar type. Indeed, Trybulec’s existence proof gets even

more lines (over 500), but it should be taken into account that

[45] was one of the very first Mizar articles submitted to MML

(numbered #25) and auxiliary set of handy lemmas or models

was really modest at that time.

One can consider having predicates, but attributes instead of

them seems to be better idea: we can have modular building

of a complex structure, all other can be reused; hence in our

Mizar article we focus on pure betweenness-equidistance part,

not really mentioning the question of dimensions. We prove

44 theorems (properties of the predicates), with the Gupta’s

proof of Hilbert’s I1 axiom (that two distinct points determine

a line).

theorem ::: I1:

a <> b & x <> y &

a on_line x,y & b on_line x,y

implies x,y equal_line a,b

proof

assume

H1: a <> b & x <> y; then

P2: b,a equal_line a,b by LineEqA1;

assume

H2: a on_line x,y & b on_line x,y;

per cases;

suppose x = b; then

x,y equal_line b,a by H1, H2, I1part2;

hence thesis by P2;

end;

suppose

x <> b; then

P4: x,y equal_line x,b by H2, I1part2; then

x,b equal_line a,b

by H1, I1part2Reverse, H2;

hence thesis by P4;

end;

end;

TABLE III
THE STATISTICS OF THE CONTENT OF [38]

Items Numbers
attributes 10

lines 1522
kBytes 50

theorems 47

Final Gupta’s proof of I1 (GTARSKI1:46) above uses

additional auxiliary predicates, e.g. on_line, which shortens

the notation and provides future connections with Hilbert’s

axioms. Of course, at the end we are left with the proofs

that the set of formulas (obtained by the so-called definitional

expansions [24]), chosen formula can be deducted, but our

attribute-steered approach seems to be better, not in terms of

the efficiency of proving, but readability and usefulness for

human mathematician.

Our Mizar versions of Tarski’s axioms have descriptive

names, and follow the ones from SST (using ≡ for congruence

of segments and B for betweenness relation):

• CongruenceSymmetry (A1):

∀a,b ab ≡ ba,

• CongruenceEquivalenceRelation (A2):

∀a,b,p,q,r,s ab ≡ pq ∧ ab ≡ rs ⇒ pq ≡ rs,

• CongruenceIdentity (A3):

∀a,b,c ab ≡ cc ⇒ a = b,

• SegmentConstruction (A4):

∀a,q,b,c∃x B(q, a, x) ∧ ax ≡ bc,

• BetweennessIdentity (A6):

∀a,b B(a, b, a) ⇒ a = b,

• and Pasch (A7):

∀a,b,p,q,z B(a, p, z) ∧ B(b, q, z) ⇒ ∃x B(p, x, b) ∧
B(q, x, a).

One attribute has the form which substantially differs from

SST version: in order to shorten the notation, we introduced

technical predicate

definition

let S be TarskiPlane;

let a, b, c, x, y, z be POINT of S;

pred a,b,c cong x,y,z means

:: GTARSKI1:def 3

a,b equiv x,y &
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a,c equiv x,z &

b,c equiv y,z;

end;

denoting essentially SSS predicate for triangles. Using this

notion, SST axiom (A5) could be encoded as follows:

definition let S be TarskiPlane;

attr S is satisfying_SAS means

:: GTARSKI1:def 9

for a, b, c, x, a1, b1, c1, x1

being POINT of S holds

a <> b & a,b,c cong a1,b1,c1 &

between a,b,x & between a1,b1,x1 &

b,x equiv b1,x1 implies

c,x equiv c1,x1;

end;

that is,

∀a,b,c,x,a′,b′,c′,x′ (a 6= b ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧ ac ≡ a′c′ ∧

∧ B(a, b, x) ∧ B(a′, b′, x′) ∧ bx ≡ b′x′) ⇒ cx ≡ c′x′.

It should be noted that the sequence of internal Mizar

utilities can be run on the code, and hence proofs can be

modified or even shortened. The remarkable case are the

three assumptions from auxiliary lemmas added in the original

miz3 code, which was automatically removed as unnecessary.

The usual running cycle of auxiliary programs like relprem,

relinfer, chklab, and inacc is as follows: first, un-

necessary premises are marked, then irrelevant (obvious for

the Mizar checker) proof steps are marked as unused and

eliminated, and finally the whole structure of the proof can be

pretty-printed. Such “cleaning” cycle [16] caused the reduction

of proofs of properties by more than 300 lines, not affecting

readability that much. The net of connections between def-

initions, lemmas, and theorems obtained in this way can be

further studied in order to get better refactoring of knowledge

via dedicated techniques [17].

Having separate attributes for distinct axioms had already

shown its usefulness in various geometrical settings. It could

also allow later for defining equivalent axiom systems for

Tarski geometry (and due to mechanism of clusters this

equivalence will be obvious for the checker, once proven).

V. INTRODUCING METRIC STRUCTURE

It is well known fact that every metric space can be

equipped with the natural topology. This informally obvious

mathematical property brings some unexpected difficulties

when dealing with structures if automated proof-assistants play

a role. Namely then, if one considers topological spaces in a

quite natural way, that is 〈U, τ〉, and metric space as 〈U, d〉,
respectively, one can rather naturally merge both structures

into common 〈U, τ, d〉.
During the formalization of the Jordan Curve Theorem

in Mizar [23], however, another approach was chosen (and

pushed consequently until the successful finale): Euclid 2

denoted metric space concerned with the Euclidean plane,

and then special functor converting any metric space into

the topoogical space was applied to obtain TOP-REAL 2

(of course the conversion can be made for arbitrary natural

number n, not necessarily 2, but Jordan curves deal with two-

dimensional case). The basic signature for metric spaces are

MetrStruct, where distance is a function defined on the

Cartesian square of the carrier with the real values. Then,

metrics (or pseudo-, quasi-, semimetrics, etc.) can be defined

in terms of attributes [22], that is properties of the distance

function.

definition

struct (MetrStruct,TarskiPlane) MetrTarskiStr

(# carrier -> set,

distance -> Function of

[:the carrier, the carrier:], REAL,

Betweenness -> Relation of

[:the carrier, the carrier:],

the carrier,

Equidistance -> Relation of

[:the carrier, the carrier:],

[:the carrier, the carrier:] #);

end;

Then we have two worlds merged: affine, where we have

two Tarski’s relations, and Euclidean, where in terms of

distance function, we can have betweenness relation and the

the measure for segments. We argue that, regardless of all

the complications caused by merging structures [12] (which

increases the number of selectors, hence the chain of notions

gets more complicated), such approach – not converting be-

tween two contexts, but rather to make reasoning in the world

which is successor of both – allows for more flexible reuse of

knowledge from two original areas.

definition let M be MetrTarskiStr;

attr M is naturally_generated means

:: GTARSKI1:def 15

(for a, b, c being POINT of M holds

between a,b,c iff b is_Between a,c) &

(for a, b, c, d being POINT of M holds

a,b equiv c,d iff

dist (a,b) = dist (c,d));

end;

In merged structure, we want to have two segments congru-

ent, if they are equal in terms of distance, and betweenness

relation uses the predicate is_Between, also given in terms

of the sum of distances. To construct a model of the Tarski’s

space, such “one gigantic theorem” mentioned by Bill Richter

in the quotation from the previous section can be somehow

avoided. In Trybulec’s paper [45], the massive construction

of the appropriate space satisfying all incidence axioms was

hidden under the existence proof of the following Mizar type:

registration

cluster strict IncSpace-like for IncStruct;

end;

Recalling the previous discussion on the structure merging,

the construction of such a space from scratch (essentially

more or less modified copy-and-paste work on the proof from

[45]) can be avoided with the help of some useful tricks,

investigating knowledge already present in MML with its

possible reuse. For example, based on the geometry on the real
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line, appropriate geometrical structure from metric structure

can be just an extension with properly defined distance.

definition

func TarskiSpace -> MetrTarskiStr equals

:: GTARSKI1:def 22

the naturally_generated TarskiExtension

of RealSpace;

coherence;

end;

Then, we can show that in such extension the metric is well

defined, i.e. this space is reflexive, symmetric, and discerning.

Furthermore, if we take into account “geometrical part”, the

following axioms can be proven true:

registration

cluster TarskiSpace ->

satisfying_CongruenceSymmetry

satisfying_CongruenceEquivalenceRelation

satisfying_CongruenceIdentity

satisfying_SegmentConstruction

satisfying_BetweennessIdentity;

VI. HUMAN-ORIENTED REPRESENTATION OF

KNOWLEDGE IN Formalized Mathematics

Of course, detailed proofs of all the work are already present

in the Mizar Mathematical Library and were published in the

special issue of Formalized Mathematics devoted to 25 years

of MML. We tried to find subtle compromise between strict

mathematical notation and a fluent text looking quite as good

as that written by human – as the author has the opportunity

of chosing the translation formats for newly introduced defini-

tions (in XML stylesheet); the example of two automatically

translated theorems are given on Figure 2 (versions straight

from MML and FM).

theorem :: GTARSKI1:31 ::: GuptaEasy:

a <> b & between a,b,c & between a,b,d &

b <> c & b <> d implies not between c,b,d;

theorem :: GTARSKI1:32

a,b,c cong a9,b9,c9 &

between a,x,c & between a9,x9,c9 &

c,x equiv c9,x9 implies b,x equiv b9,x9;

VII. RELATED WORK

Although the history of the development of the axiom

system for geometry by Tarski is not very clear from the

beginnings (as the early works by Tarski seem to be postponed

by the World War II), and even if the ultimate source of

information is SST which was badly printed (the book was

recently reissued with the foreword of Michael Beeson), now

it attracted a lot of focus from automated deduction systems.

The remarkable item here is of course Julien Narboux’s

formal development of Tarski’s system with the use of Coq

[33]. We are planning to include some interesting results from

GeoCoq in the Mizar system; Nakasho’s et al. MML symbol

reference system [32]1 offers quite user-friendly interface for

1The system can be browsed at http://webmizar.cs.shinshu-u.ac.jp/mmlfe/
current/ with the official version of the Mizar system.

browsing appropriate content. Of course, GeoCoq provides

ready-to-use list of notions, which are connected only with the

Tarski’s system – that makes the browsing more convenient.

Of course, after rescaling all definitions and theorems can be

browsed within MML providing a look in the style of GeoCoq

project.

Similar web-browsing system giving practical insight into

Tarski’s geometry is offered by the aforementioned Michael

Beeson’s Tarski Formalization Project. It offers linkages with

underlying items from SST; the correctness relies on the Otter

prover. Here the readability is not the main issue, however a

few open questions was answered. Tim Makarios used Isabelle

to formalize elliptic geometry in order to provide indepen-

dence results for the parallel postulate [28]. Accidentally, this

is one the items from the “Top 100 mathematical theorems”,

which is also challenging for us. It can be treated as a further

development of axiomatical approach to geometry in Isabelle

started by Meikle [31] (in Hilbert’s Foundations of Geometry

[21] style).

As we are concerned with the integrity issues for the Mizar

Mathematical Library, we do not want to make basics from

scratch, especially if the strong fundamentals are already done.

There a need for further careful study of how much can be

done in the direction of unveiling the knowledge included in

the repositories of the Mizar system. Due to mechanism of

revisions it is not the case that this work is just useless as it

is very old. Mizar geometry just used the other way.

There are many simplifications of the original system by

Tarski; e.g. by Tarski himself and his collaborators, Gupta’s

[20], or Makarios [28]. Also showing the correspondence

between various axiom systems (with Hilbert’s at the very

beginning) for geometry is quite influencial and here provers

can be quite useful. Of course, one of the well-advertised areas

is the topic of axiom system for various equationally-defined

classes of algebras, with the leading problem by Robbins and

its solution by William McCune obtained in 1996 with the

help of EQP/Otter equational theorem prover. But the question

remains, how to cope with the space between obviousness

for the human and for the machine, in the time before QED

Singularity, as Michael Beeson (at QED+20 workshop in

Vienna, July 18, 2014 [4]) called this time when formal proofs

will be the norm in mathematics.

VIII. CONCLUSIONS AND FUTURE WORK

In the paper, we have shown how already quite well

established repository can be enhanced to cope with new

capabilities of the Mizar system. We mention here a new

approach to structures, including their merging, extensive use

of attributes, and implemented automatization of definitional

expansions. Also the issues of the integration with external

provers should be taken into account.

We have created in [38] (and recent GTARSKI2 [9]) com-

plete formal axiomatization of Tarski’s geometry which, at

least in our opinion, has the advantage of higher readability

for ordinary mathematicians than, e.g., Coq or Prover9 proof

objects. In the same it is tightly connected with another
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Fig. 2. Screenshot of an excerpt from Formalized Mathematics

axiomatization of Euclidean plane, due to Hilbert, already

available in MML. We have shown also that the real Euclidean

plane satisfies all Tarski’s axioms.
Of course, one of our aims is to do similar work to

that of Michael Beeson’s – the use of Prover9 to formalize

practically everything from SST. But taking into account that

Prover9 proof object can be relatively easily converted into

working (and correct) Mizar proofs, it is important to construct

appropriate background in order to have something which can

offer a kind of help for a mathematician by the following

requirements:

• it will reflect all theorems from SST;

• it will offer relatively high readability;

• the proofs can help to catch the idea of a proof, not

necessarily will be just l’art pour l’art.

Translations from OTTER (at that time, currently Prover9)

were helpful in the process of building various complemented

lattices: Sheffer-stroke based and those needed in the Robbins

algebras [13]. Also encodings of various short axiomatizations

for Boolean algebras were easier with that tool; also in the area

of rough sets [14] some results were obtained in that way [11].

On the other hand, fuzzy sets, which are much closer to set

theory than rough sets, can be also nicely formalized [15].
We are also interested in building a Mizar model of elliptic

geometry; Japanese team did some introductory work in [10],

but it is not quite feasible now. This could help in showing

that parallel postulate is independent from the other ones,

which will solve another item from “Top 100 mathematical

theorems”, which is also an important issue. Further research

on logical reasoning systems (as in the case of Tarski’s

system formulable in first-order logic with identity, set theory

is not required) formalized by means of automated proof-

assistants can be fruitful not only in the area of pure or applied

mathematics, but also, e.g., in the area of argumentation theory,

including legal expert systems [49].
We should definitely also have in mind the usefulness of the

approach in the context of didactic use of the Mizar system.

In order to achieve this goal, the existing state of geometry

in MML should be made definitely more coherent, without

the need of the creation of new special encyclopaedic articles

which could serve better for students.

REFERENCES

[1] J. Alama, M. Kohlhase, L. Mamane, A. Naumowicz, P. Rudnicki, and
J. Urban: Licensing the Mizar Mathematical Library, Proceedings of
Mathematical Knowledge Management 2011, Lecture Notes in Artificial

Intelligence, 6824, pp. 149–163 (2011)
http://dx.doi.org/10.1007/978-3-642-22673-1_11

[2] J. Avigad, E. Dean, and J. Mumma: A formal system for Euclid’s
Elements, Review of Symbolic Logic, 2 pp. 700–768 (2009)
http://dx.doi.org/10.1017/S1755020309990098
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