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Abstract—This paper describes a new approach to
metaheuristic-based data clustering by means of Krill Herd
Algorithm (KHA). In this work, KHA is used to find centres of
the cluster groups. Moreover, the number of clusters is set up
at the beginning of the procedure, and during the subsequent
iterations of the optimization algorithm, particular solutions are
evaluated by selected validity criteria. The proposed clustering
algorithm has been numerically verified using twelve data sets
taken from the UCI Machine Learning Repository. Additionally,
all cases of clustering were compared with the most popular
method of k-means, through the Rand Index being applied as a
validity measure.

I. INTRODUCTION

E
XPLORATORY Data Analysis is essentially centred upon

tasks of clustering, classification, data reduction and

outliers detection. The procedure of clustering consists of

dividing a large data set into smaller subsets called ’clusters’.

This partition is achieved through developing a function which

assigns individual elements of the data collection into each

subset. This technique has been applied to a wide range of

problems, including various technical tasks [1], robotics [2]

and control approaches [3], to aspects of economics [4], as

well as to many agricultural issues [5].

This procedure is considered to be an unsupervised method,

therefore, the division of the data is based on information

directly discovered (derived) from the data itself. Hence, the

separation into clusters is made in such a way that the elements

within the clusters are very similar to each other, but show a

difference to that held in other clusters. [6].

In data clustering procedures, a few main groupings of

algorithms can be distinguished. The first of these are hier-

archical [7]. In this case, the process consists of phases in

which available set of clusters are merged or divided. An

example of an algorithm implementing the aforementioned

task, is the "bottom up" approach of Agglomerative Clustering

[8]. It starts from a division in which every object is a separate

cluster. In each subsequent iteration, the various groups are

combined on the basis of the adopted criteria. Finally, all tested

elements are placed within one cluster. A further example,

albeit an opposite, is the "top down" approach of Divisive

Clustering Algorithm [9]. Here, all data items start in one

cluster, and this splits recursively, as one element represents

one cluster.

A second algorithm group is that called ’centroid-based

clustering’. This is based on minimizing variance within the

clusters. Here, the best known and most commonly employed

method is ’k-means procedure’ [10].

The application of fuzzy-logic-based techniques [11] are a

still further way of completing a clustering task. In so doing,

the individual elements of a considerate data set are assigned

to more than one cluster. This feature imparts a significant

difference to this category of algorithms, when compared to

the other procedures. The most popular algorithm of this group

is ’C-fuzzy-means’ [12].

Density based methods are included within another group

of clustering procedures. One of the more recently introduced

algorithms is that referred to as the Complete Gradient Al-

gorithm [13]. It based on the nonparametric methodology of

statistical kernel estimators as used for the recognition of data

set density. This information provides the number, as well

as the shape of the proposed clusters. An interesting feature

of this algorithm is that it possibilities of adjustment to the

authentic structure of data, and, consequently, the achieved
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results are more justifiable with regard to natural point of view.
A further, but similar group of procedures of clustering

tasks are those of algorithms based on grid technique. These

methods are based on the assumption that data space can be

partitioned into a finite number of cells - the grid structure.

Subsequently, each cell density is calculated, and, after sorting

the cells according to their densities, the clusters centres are

determined. What is interesting herein is that this group of

algorithms allows for the traversal of neighbour cells. The

first algorithm in this group was introduced by Warnekar and

Krishna [14]. Nowadays, the most well-known algorithms in

this group are CLIQUE, MAFIA, ENCLUS, OptiGrid, O-

cluster and CBF. It should be noted that such algorithms can

be used for high-dimensional tasks [15].
Yet one more group of clustering algorithms is that based on

an optimization algorithm inspired by Nature [16], [17]. In this

approach, some metaheuristics are applied for the optimization

of adopted division criteria. This action enables the coming

about of great similarity of items inside the clusters, and,

simultaneously, vast diversity between clusters. The mentioned

criteria can be expressed as a specific mathematical formula,

using a variety of statistical measures. These criteria are called

’clustering indexes’, and their properties are used to assess the

quality of the assignment of individual elements of the test set

to the appropriate clusters.
Because the task of clustering is a NP-hard problem of

combinatorial optimization [18], here – in natural manner –

we apply KHA [19] as an optimization technique. This is so

as to find the best location for placement of the centre point

of cluster. Based on these position of centres, the individual

elements of the data set are then assigned to defined groups.

Completion of the thus defined clustering method is achieved

using the selected three indices separately, and the obtained

results are compared with the outcomes of k-means method

application, taking into account the Rand Index [20] as a

common evaluation criterion.

In next section, the reader will familiarize with some

general information concerning optimization tasks and KHA.

In Section III, the details of the application of the clustering

approach, as well as selected clustering validity measures

are being covered. The experimental results of our work are

discussed in Section IV. Finally, in the last section of this

paper, the reader will find some conclusions regarding the

application of the proposed clustering algorithm, as well as

intended further research and studies.

II. OPTIMISATION BASED ON KRILL HERD ALGORITHM

KHA is an iterative heuristic procedure inspired by the

natural phenomena of krill heard behaviour. This technique is

mainly used for solving optimization problems in continuous

space. Here, the solution of this problem comes about by

finding such an argument x° of space under consideration

S ⊆ RN , which satisfies the following formula

f(x°) = min
x∈S

f(x) (1)

where f(x) describes value of cost function.

The KHA originally proposed by Amir Hossein Gandomi

and Amir Hossein Alavi in the paper [19], imitates the

behaviour of the individual krill moving together as a herd.

Such herds, move accordingly to environmental factors such as

proximity to neighbours (herd density), dispersion of swarm,

food position and any other biological and environmental

phenomena.
In order to solve the optimization problem, we apply KHA

metaheuristic. Herein, particular elements xi = x1
i , . . . , x

N
i

of N dimensional solutions space in the form of P herd’s

individuals are represented. In the kth iteration, the best

solution of the optimization problem as represented by the

pth individual is given alternatively by these two equations:

x°(k) = arg max
p=1,...,P

f(xp(k)) /for maximalization task/ (2)

or

x°(k) = arg min
p=1,...,P

f(xp(k)). /for minimalization task/ (3)

The above best solution are corresponding with extremal

value of cost function f° = f(x°) given as (2) or (3).
The full KHA procedure in flow chart form is shown as

Figure 1. This algorithm starts from an initialization of all its

parameters, and positions of all P individuals are generated

randomly ❶. In next step ❷, the cost function values are

calculated for all initial P individuals using (2) or (3). The

subsequent stage ❸ is of great importance and is characterized

by KHA technique. It consists of formulas describing the

movement of particular individuals. Such motion viv-a-vis

each individual krill is determined by three main components.

They are:

• movement induced by other krill individuals,

• foraging activity,

• random diffusion.

In subsequent time units, vector of movement of ith krill in

KHA technique is based on the by Lagrangian formula:

dxi

dt
= Ni + Fi +Di, (4)

where Ni is the motion induced by other krill individuals, Fi

denotes the foraging motion and Di is the physical diffusion

of the krill individuals, respectively.
The first factor ❹ is a reflection of the social inspiration

of the swarm’s individual members. In the herd, individuals

are maintained at a high density. Hence, the velocity of each

individual is influenced by the movement of others. Thus, the

direction of movement by the αi parameter is induced by the

presence of other herd members. This parameter is determined

on the basis of the following components: local effect and

target effect. The fraction of motion is formulated as:

Nnew
i = Nmaxαi + ωnN

old
i . (5)

Here Nmax represents the maximum possible speed that can

be induced, ωn in the range [0, 1] is the inertia weight of a

particular krill and Nold
i is the motion induced in the previous

turn. The αi parameter is defined as:

αi = αlocal
i + αtarget

i , (6)
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Fig. 1: Flowchart of KHA

where αlocal
i is the local influence of the neighbours of any

particular krill, whereas αtarget
i is the target direction. The

latter is determined by the position and movement of the best

individual in a herd.
The αlocal

i parameters are calculated according to the fol-

lowing formula:

αlocal
i =

NN
∑

j=1

f̂ijX̂ij , (7)

where

X̂ij =
xj − xi

‖xj − xi‖+ ǫ
, (8)

and

f̂ij =
fi − fj

fworst − f best
. (9)

In equation (9), f in describes the fitness value (1) of any

investigated krill. Therefore fworst and f best represent, re-

spectively, the worst and the best fitness of individuals in

swarm. Additionally, NN provides the identification of the

number of reachable krill neighbours, and ǫ is a positive

number introduced to avoid singularities in the formula (8).

For determination of distance between particular krills and

their neighbours, a parameter designated as being the sensing

distance ds, is introduced. This parameter may be formulated

as:

ds,i =
1

5P

P
∑

j=1

‖xi − xj‖. (10)

Each individual incorporates its own target vector. This is

determined as follows:

αtarget
i = Cbestf̂i,bestx̂i,best, (11)

where

Cbest = 2
(

rand+
k

Kmax

)

. (12)

Herein, k, Kmax designate, respectively, the current iteration

number and the maximum number of iterations. Moreover,

rand is a random value between 0 and 1, whereas f̂i,best
describes the best value of fitness function, while x̂i,best

provides the position of the best ith krill individual form the

previous iterations.

The next main factor Fi of equation (4), is connected with

the food foraging task. This Fi is defined as:

Fi = Vfβi + ωfF
old
i , (13)

where Vf is the food foraging speed and ωf , denotes the

inertia of the movement. In this previous equation (13), the

food fitness of the ith individual is determined as follows:

βi = βfood
i + βbest

i . (14)

The aforementioned food aspect is determined by way of

its location. Therefore, the virtual centre of food concentration

is defined via KHA. This conception by the "centre of mass"

approach is inspired. Hence, the food concentration in each

iteration is calculated according to following formula:

Xfood =

∑P

i=1

1

fi
xi

∑P

i=1

1

fi

. (15)

Moreover, the food attraction for the ith krill individual is

described via:

βfood
i = Cfoodf̂i,foodX̂i,food. (16)

The food coefficient in (16), expresses the global attraction

of the food centre (15), and may be calculated as:

Cfood = 2
(

1−
k

Kmax

)

. (17)

The second part of equation (14) is as follows:

βbest
i = f̂i,bestx̂i,best. (18)

In this equation, fi,best is the best fit achieved by a given

ith krill individual so far. This is characterised by its position

x̂i,best.
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The last element of the Lagrangian equation (4) is related

to random physical diffusion ❺, notated as Di. In essence,

this component is of fully random character. This sub-part

of movement is focused upon the diversity of population. In

addition, it allows the individual krill to escape krill swarm in

a situation of local optimum. Moreover, this part of equation

(4) represents a trade-off between exploration and exploitation.

The following formula describes this aspects of a random

diffusion:

Di = Dmax
(

1−
k

Kmax

)

δ, (19)

where, Dmax is the maximum diffusion factor and δ describes

the random directional vector.

Finally, the motion process can be formally summarized.

This employs all the above effective parameters. The position

of ith krill during the interval t to t+∆t is, thus, determined

by the following formula:

xi(t+∆t) = xi(t) + ∆t
dxi

dt
. (20)

Here, it must be emphasized that parameter ∆t is very

sensitive to the speed and accuracy of optimisation task. In

this respect, the ∆t may be interpreted as being a scale factor

of krill movement. This parameter can be obtained by way of

the following equation:

∆t = Ct

N
∑

j=1

(UBj − LBj). (21)

In this equation, Ct is an empirically found constant number

from the interval [0, 2]. What is more, UBj and LBj are,

respectively, the upper and lower bounds of the jth feature

(j = 1, . . . , N) of data set X = x1, . . . , xP .

In the next stage of the KHA, the implementation of two

basic evolutionary operators is applied. Firstly, in step ❻ the

crossover function is considered. This operator is controlled by

the crossover probability of the Cr parameter. In this approach,

this operator is defined randomly. The crossover results in a

change of the mth coordinate of ith krill as shown below by

the formula:

xi,m =

{

xr,m for γ ≤ Cr
xi,m for γ > Cr

, (22)

where Cr = 0.2K̂i,best; r ∈ {1, 2, ..., i − 1, i + 1, ..., P}
denotes a random index, and γ is a random number drawn

from the interval [0, 1) generated according to the uniform

distribution. In this approach the crossover operator is calcu-

lated upon a single individual.

The last part of the main loop of the KHA employs the

mutation operator ❼. This modifies the mth coordinate of the

ith krill, doing so via the following formula:

xi,m =

{

xgbest,m + µ(xp,m − xq,m) for γ ≤ Mu
xi,m for γ > Mu

,

(23)

wherein Mu = 0.05/K̂i,best; p, q ∈ {1, 2, ..., i−1, i+1, ..., P}
and µ ∈ [0, 1).

This operation completes the evolutionary procedures. Sub-

sequently, we can now obtain individuals that are readily

utilizable within the next iteration. In so-doing, in the last

stage ❽ of the main loop, we should calculate the cost

function for all the swarm members. Herein, the algorithm’s

stop condition ❿ decides whether the next iteration or the

optimization algorithm is to be completed. The form of stop

condition could be that of a time limit, or the reaching of a

desired fitness level or a combination of these two.

More information about KHA can be found in [19]. Re-

garding KHA parameters, the tuning of the KHA is described

in publications: [21], [22] and [23]. Notably articles [24] and

[25] include other proposed modifications of the algorithm.

The KHA procedure has been verified positively in discrete

optimization tasks [26]. Furthermore, a parallel version of this

algorithm can be found in [27]. It should also be underlined

that this heuristic procedure has been applied in data base

domains [28], medical tasks [29], in mechanism and machine

theory [30], and also in neural learning process [31], e.t.c.

III. CLUSTERING AND SELECTED CLUSTERING INDICES

In this section a fusion of KHA with a variety of cluster-

ing task assessment methods is to be presented. The stated

validation methods are based on characterisation indexes.

Consider a Y as being a data set matrix with dimensions

D and M , respectively

Y = [y1, . . . , yM ]. (24)

Herein, each data set element is represented by one column

of this matrix. Moreover, the D feature describes each data

item. The goal of the clustering task is to devise the particular

division of the data set (24) into the individual C subsets,

including the assignment of individual elements y1, . . . , yM to

clusters CL1, . . . , CLC ,. In such process, as a rule, the num-

ber of clusters C is considerably smaller than the cardinality

of set Y, i.e. C ≪ M .

Individual clusters, along with their associated elements of

the set Y , are characterized by points deemed the centroid of

clusters O = O1, . . . , OC . Each of these is calculated as:

Oc =
1

#CLc

∑

yi∈CLc

yi, (25)

where #CLc denotes the number of elements assigned to the

cth cluster. In a similar way, the center of gravity for all the

investigated elements (24) is defined:

OY =
1

M

M
∑

i=1

yi. (26)

In this paper, the assignment of individual elements of the

data set Y (24), to the clusters, is made through employing

the KHA procedure. In undertaking this, krills are encoded

as vectors that contain the centroid of clusters Oc. In this

case, the number of clusters is established in advance, and the

grouping of the individual elements of the data set is made

on the basis of the rules of the nearest centroid. Thus, for
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each point yi (for i = 1, . . . ,M ) the distance to each cluster

centre Oc is calculated. In so-doing, the ith element belongs

to cluster CLc if the distance dist(yi, Oc) is the smallest of

the tested distances.

Furthermore, the division of elements of the set Y , is eval-

uated in such a way as to minimize the cost function (1). This

aspect is individually determined for each of the clustering

index. The formula pertaining to individual functions will be

described later in this work.

A. Rand Index

The Rand Index is the first in the sequence that will be

presented. This is considered to be a so-called supervised

method for validating clustering procedures. To use this index,

it is assumed that the reference distribution of membership

of individual elements of the data set Y with regard to the

pertinent cluster, is known to be similar as that in the case

of handling the data for the classification task. This index is

expressed as:

IR =
a+ d

a+ b+ c+ d
, (27)

where a is the number of elements placed in the same

reference group that in the cluster grouping, b denotes the

number of elements that are placed in the reference group and

in the different cluster sets, c defines the number of elements

placed in other reference groups and in the same cluster,

and, finally, d indicates the number of elements placed in the

different reference groups and in the different cluster’s groups.

Building upon above definition, it can be observed that IR
can yields value between 0 and 1. Furthermore, its maximum

value points out the degree of full compliance of the clustering

division result, with a reference set. In the reported studies,

this index is employed for comparing the division by way of

applying the clustering procedure that is based on KHA, with

the division arising from the structure of the reference data

(i.e. the label of classes). With this index, it is possible to

compare the obtained results with the reference data, as well

as with other clustering indices applied in the optimization

cost function.

More information about the Rand Index can be found at

[20], [32].

B. Calinski-Harabasz Index

The following indexes are designated as being unsupervised

methods for validating clustering procedures. In such, the

assessment of the quality of the division stems from the prop-

erties of the dataset and the individual clusters. Consequently,

such induces, in terms of measuring ability, can be utilized

within the evaluation function (1) at the KHA stage.

The Celinski-Harabasz criterion has its foundation within

the concept of data set variance. This index is defined as:

ICH =
VB

VW

M − C

C − 1
, (28)

where VB and VW denote overall between-cluster and within-

cluster variance respectively. These are calculated according

to the following formulas:

VB =

C
∑

c=1

#CLc‖Oc −OY ‖
2, (29)

and

VW =

C
∑

c=1

∑

yi∈CLc

‖yi −Oc‖
2, (30)

here, ‖ · ‖ is the L2 norm (Euclidean distance) between the

two vectors.

It must be underlined that high values of Celinski-Harabasz

Index designate well-defined partitions. More information

about this index can be found at [33].

C. Davies-Bouldin Index

The Davies-Bouldin Index is one of the more commonly

utilized unsupervised evaluations of clustering results criteria.

This function consists of a ratio of within-clustering and

between-clustering distances. This index is described via:

IDB =
1

C

C
∑

c=1

max
c 6=p

{Dc,p}, (31)

where Dc,p denotes within-to-between cluster distance for the

cth and pth cluster

Dc,p =
dc + dp
dc,p

. (32)

In (32) notation dp designates the average distance between

each element of the pth cluster and centre point of this group.

Moreover dc,p is the distance between the centres of the cth
and pth clusters. In this case,the smallest value of the Davies-

Bouldin Index delineates a well-defined clustering solution.

More information about this measure is obtainable in [34].

D. Silhoutte Value Index

The Silhouette Value Index (SH) is the last clustering index

to be dealt within this part of this paper. Herein, for each

ith point of data set Y , the distance between all points in

the same cluster and the separation distance presented by the

nearest neighbours, are calculated. This criteria is defined as

follow:

ISV =
1

M

C
∑

c=1

∑

yi∈CLc

b(i, c)− a(i, c)

max(a(i, c), b(i, c))
. (33)

Here, a(i, c) describes the mean distance of the ith point to

other points in the same cluster CLc, while b(i, c) represents a

minimum of average distance from the ith point in cluster pth

to points in other clusters. These values are obtained through

the following formulas:

a(i, c) =
1

#CLc

∑

yj∈CLc&j 6=i

dist(yi, yj), (34)
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and

b(i, c) = min
CLl∈C\CLc

1

#CLl

∑

yj∈CLl

dist(yi, yj). (35)

For a single ith data point, a high value of the component of

this criteria denotes that this element yi is well-matched to its

group, and, simultaneously is weakly-match to other clusters.

What is interesting, is that a low value of ISV index reveals

that the number of clusters is overestimated.

By way of formulas (33)-(35), one can observe that this

criteria yields a value between −1 and +1. Of note: a well-

defined clustering solution is represented by a value close to

1.

More information concerning the SH Clustering Index can

be found in [35], [36]. With regard to clustering quality

measures as a whole, more information is obtainable in [37],

[38].

IV. NUMERICAL RESULTS

This section is intended to inform the reader of several

numerical verification procedures that are useful in assessing

the quality of the proposed clustering methods. In order to

verify the quality of the clustering algorithm, 12 sets of data

obtained from the UCI Machine Learning Repository were

taken into consideration [39]. With regard to these, Table

I provides a characterization of all the data sets that were

applied in generating a numerical verification within this paper.

Evident in this table is that it includes names, abbreviations,

numbers of items, dimensionality, number of classes and

references to the description of the presented data sets. Herein,

synthetic data collection is placed within the first four rows.

These data sets are two-dimensional, and, therefore, they serve

as being very good explanatory examples upon which Figure

2 is outlined.

In the presented approach, the vector of cluster centre

represents the solution in state space for KHA. Thus, the

product value D·C expresses the dimensionality of a particular

optimization task.

In this work, a quite difficult task that the researcher must

undertake is to determine a suitable set of KHA parameters.

Thus, for several data sets, pilot-tests are calculated. In each

test, one parameter of the KHA optimisation procedure is

made variable. In addition, in these studies, the CH Index is

applied as a validation parameter. As a result of this research, it

is found that for almost all data set cases, the same suboptimal

sets with best parameters values are calculated. Indeed, it has

been discovered that it is only in the case of the Sonar and

Ionosphere data sets that the achieved parameters differ. The

reason for this is thought to be the higher dimension of these

datasets. The following parameters of KHA were established

after pilot-tests:

• P = 20,

• Kmax = 200,

• Nmax = 0.01,

• ωn = 0.5,

• Vf = 0.02,

• Dmax = 0.01,

• Ct = 0.5.

Each clustering test is made of only 200 iterations of the

KHA optimization procedure. For this task, three clustering

indexes CH, DB and SV are employed, and these validity

measures are applied in assessing the value of the cost function

(1) for KHA. Because of their different properties (described

in Section III), for the indices used here, the following forms

of cost functions are formulated

fCH =
1

ICH

+#CLempty, (36)

fDB = 2IDB +#CLempty, (37)

and, finally,

fSV =
1

ISH + 1.01
+ #CLempty . (38)

In the investigation presented here, it is assumed that, firstly,

a clustering procedure based on KHA is performed by way of

one selected index at a time. The result of this experiment

is the clustering of the explored data set. In the next step

of the test, the Rand Index calculated versus class labels is

employed, as this is a commonly used evaluator of clustering

performance. Thus, the obtained KHA optimization procedure

solution is compared with the reference label of the class

(cluster) which came from the data set. Additionally, for

comparison purposes, outcomes from utilizing the k-means

algorithm are also reported (with corresponding Rand Index

values). Results generated by means of aforementioned steps

can be seen in Table II. Throughout the testing runs, both

KHA-based clustering procedures, as well as the k-means

clustering algorithm were performed 30 times.

Table II consists of two parts. The first incorporates the

2nd and 3rd columns, and it contains the mean values R
and the standard deviations σR of the Rand Index that was

obtained while using the k-means clustering function. The

second part of the table lists the Rand Index results (as in the

first part). However, these were obtained by the way of follow-

ing the KHA-clustering procedure. Here, each of three sub-

parts provides the application results for Celinski-Harabasz

(RCH and σRCH
), Davies-Bouldin (RDB and σRDB

) and

Silhoutte Value (RSV and σRSV
) Indexes, respectively.

While comparing all the obtained results, it can be seen that

it is only in the case of the ION data set when Rand Index

of clustering that was performed with k-means procedure

achieves better quality then the one attained by the application

of the KHA-clustering procedure. In all other cases, the results

obtained via the KHA clustering method yield much better

evaluation notes. These cases in Table II are emphasized with

a bold font.

Based on presented results, one can observe that the

Celinski-Harabasz Index clustering validation measure proved

to be the best evaluation index applicable in metaheuristic

procedures used in clustering. However, with regard to the

other indexes, the results generated by way of the Davies-

Bouldin Index are better than that obtained via the k-means
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Fig. 2: Plots of 2 dimensional s1 (a), s2 (b), s3 (c) and s4 (d) datasets

TABLE I: Data sets used for experimental verification

Name of Data set Abreviation Number of Bibliographical

in paper elements (M ) features (D) classes (C) reference

Synthetic 1 S1 5000 2 15 [40]
Synthetic 2 S2 5000 2 6 [40]
Synthetic 3 S3 5000 2 3 [40]
Synthetic 4 S4 5000 2 6 [40]
Ionosphere ION 351 34 2 [41]
Iris Iris 150 4 3 [42]
Seeds Seeds 210 7 3 [43]
Sonar SON 208 60 2 [44]
Thyroid TH 7200 21 3 [45], [46]
Vehicle VH 846 18 4 [47]
Wisconsin Breast Cancer WBC 683 10 2 [48]
Wine Wine 178 13 3 [49]
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TABLE II: Results summary

k–means clustering KHA clustering

Data set R σR RCH σRCH
RDB σRDB

RSV σRSV

S1 0.9748 0.0093 0.9782 0.0078 0.9200 0.0138 0.9775 0.0090
S2 0.9760 0.0072 0.9839 0.0053 0.9610 0.0128 0.9664 0.0096
S3 0.9522 0.0072 0.9548 0.0053 0.9138 0.0177 0.9436 0.0093
S4 0.9454 0.0056 0.9484 0.0048 0.8942 0.0229 0.9388 0.0080
Iris 0.8458 0.0614 0.8872 0.0145 0.7846 0.0099 0.8321 0.0563

Ionosphere 0.5945 0.0004 0.5573 0.0124 0.5393 0.0239 0.5682 0.0090
Seeds 0.8573 0.0572 0.8709 0.0156 0.6234 0.0952 0.8341 0.0586
Sonar 0.5116 0.0016 0.5145 0.0078 0.5196 0.0015 0.5151 0.0022

Vehicle 0.5843 0.0359 0.6076 0.0194 0.4854 0.0342 0.5192 0.0157
WBC 0.5448 0.0040 0.5456 0.0000 0.5465 0.0002 0.5456 0.0000
Wine 0.7167 0.0135 0.7257 0.0073 0.3979 0.0378 0.6708 0.0084

Thyroid 0.5844 0.0982 0.4535 0.0339 0.8148 0.1007 0.8423 0.0757

algorithm in only three of the applications, and that of the

Silhouette Value Index, four.
Looking closely at all the results obtained by way of an

application of the KHA procedure, it can be stated that for

data collections S1, S2, S3, S4, Iris, Seeds, VH and Wine,

the employment of the Celinski-Harabasz Index as a part

of the cost function in KHA-clustering procedure gives the

best results. Similarly, for the data set SON, applying the

Davies-Bouldin Index, and, for the TH data set, using the

Silhouette Value Index, yield the best result. Furthermore,

in the situation of tests with use the WBC data collection,

clusterings incorporating all three indexes provide the same

result.

V. SUMMARY

This paper is a presentation of research describing various

clustering methods based on metaheuristic procedures and

several validation measures. Here, in optimizing the cluster

centroid locations, the biologically-inspired KHA procedure

was employed. For the evaluation of particular KHA generated

solutions, the paper assessed the quality of using Celinski-

Harabasz, Davies-Bouldin and Silhouette Value Indexes as

three clustering variants. Moreover, the Rand Index was cal-

culated so as to evaluate the quality of the derived solutions of

the analyzed clustering procedures. The proposed algorithm,

in its three versions, was also confronted via the application

of the well-known and commonly enrolled k-means method.
As a result of the study, it was established that the results

obtained via the KHA-clustering method are much better

than for that which were generated via k-means clustering

procedure. What is more, the Celinski-Harabasz Index, as well

as the KHA-clustering method, qualify for being considered

superior for clustering tasks.
Future research will be targeted on deeper analysis of new

clustering quality validation methods, as well as on applying

the new procedures of swarm intelligence to the task of

clustering.

REFERENCES

[1] P. Kulczycki, M. Charytanowicz, P. A. Kowalski, and S. Lukasik,
“The complete gradient clustering algorithm: properties in practical
applications,” 2012.

[2] P. A. Kowalski, S. Łukasik, M. Charytanowicz, and P. Kulczycki, “Data-
driven fuzzy modeling and control with kernel density based clustering
technique,” Polish Journal of Environmental Studies, vol. 17, pp. 83–87,
2008.

[3] S. Łukasik, P. Kowalski, M. Charytanowicz, and P. Kulczycki, “Fuzzy
models synthesis with kernel-density-based clustering algorithm,” in
Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08. Fifth Inter-
national Conference on, vol. 3, Oct 2008. doi: 10.1109/FSKD.2008.139
pp. 449–453.

[4] S. Breschi and F. Malerba, “The geography of innovation and economic
clustering: some introductory notes,” Industrial and corporate change,
vol. 10, no. 4, pp. 817–833, 2001.

[5] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski,
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