
GRAD: A New Graph Drawing and Analysis
Library

Renata Vaderna, Igor Dejanović, Gordana Milosavljević
Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića, Novi Sad, Serbia

Email: vrenata, igord, grist@uns.ac.rs

Abstract—Several important choices need to be made during
the development of domain-specific languages, including the
one regarding which concrete syntax to implement. There are
several alternatives, with graphical and textual syntaxes being
the most common ones. Having in mind that the developers and
domain experts often have different preferences, supporting both
is sometimes the best option. This means that models created
using textual editors might need to be opened using separately
developed graphical editors. Graphical elements corresponding
to model elements must then be automatically created and
positioned. Doing so in an aesthetically pleasing way requires
usage of graph layout algorithms. Since implementing them is not
an easy task, most developers have to rely on existing solutions.
There are many Java libraries which have such capabilities, but
they all have certain limitations and room for improvement, some
of which are addressed in a new graph drawing and analysis
library presented in this paper.

I. INTRODUCTION

D
OMAIN-SPECIFIC languages (DSLs) are computer lan-
guages specialized to a particular domain [1]. Develop-

ment of such languages also includes the decision of how
to present the concrete syntax to the users, who can be
both developers and non-technical domain experts. There are
several alternatives, with the most popular being the textual
and graphical ones.

Each of these choices has its own advantages and disad-
vantages, so supporting both is the best solution at times. The
textual concrete syntaxes can express any formal language,
help in understanding all technical details of a DSL and
are often preferred by the developers. On the other hand,
end-users, who work in a non-technical domain, don’t find
them particularly appealing. These users generally prefer the
graphical concrete syntax, which makes it possible to design
DSL models using a completely functional graphical editor [2].
Graphical concrete syntaxes, if designed correctly, are intuitive
and easy to understand. Having all of this in mind, it can be
concluded that if a DSL needs to appeal to both developers and
non-technical end-users, both textual and graphical concrete
syntaxes should ideally be implemented. A similar conclusion
was reached in [3], where the authors discussed the positive
and negative experiences of using both the textual syntax,
described in [4] and a graphical one to define the static
structure of database applications.

Implementing both syntaxes leads to one problem: what
happens if a part of the model is specified using the textual
syntax and needs to be viewed and/or edited using the graph-
ical editor? Graphical elements corresponding to previously

described concepts need to be created automatically. These
elements have additional visual properties, including positions
which need to be calculated. This can be accomplished by
applying a layout algorithm.

Implementing even the simplest of layout algorithms that
would guarantee a somewhat pleasing arrangement of elements
requires excessive knowledge of graph theory and can be
rather time consuming. This is why the developers often
rely on existing solutions. This paper focuses on libraries for
the Java programming languages, but there are many similar
ones for other languages like C/C++ and Python. The most
popular open-source libraries offering the possibility of laying
out elements of a diagram for Java projects include JUNG
framework, JGrapX and Prefuse. All of these solutions put
emphasis on visualization, providing their own visual compo-
nents and thus strongly coupling layout capabilities with them.
This makes the integration with separately developed graphical
editors overly complex [5]. Furthermore, they only support a
small number of different classes of layout algorithms, despite
offering several algorithms belonging to the same classes.
Even though the available algorithms can be used to lay out
any diagram with acceptable results, it can be noticed that there
is room for improvement. Certain classes of layout algorithms
were designed with the goal of getting excellent results when
applied to diagrams satisfying some special conditions (e.g.
planar, straight-line, symmetric, rectangular). The mentioned
libraries implement very few of them. Also, they don’t offer a
way of automatically choosing an appropriate algorithm based
on properties of the diagram or on the wishes of the users
regarding diagram aesthetics.

In order to address the mentioned issues, we are developing
another graph drawing and analysis Java library, called GRAD
(GRaph Analysis and Drawing) [6]. GRAD’s main goals are
to:

• offer a large number of different graph drawing algo-
rithms, including some that haven’t been implemented in
Java yet

• provide a very quick and easy way to lay out elements
of any existing graphical editor

• offer algorithms for graph analysis, which can later be
used to automatically select a suitable layout algorithm

• enable the users to specify aesthetic criteria and auto-
matically choose an appropriate layout algorithm based
on their wishes

Proceedings of the Federated Conference on Computer Science
and Information Systems pp. 1597–1602

DOI: 10.15439/2016F299
ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1597

GRAD is not intended to be used as a visualization tool,
but it also provides a simple graphical editor which can be
used for familiarization with different algorithms.

The rest of the paper is structured as follows. Section 2
gives an overview of basic graph theory concepts, graph draw-
ing aesthetic criteria, and different classes of graph drawing
algorithms. Section 3 showcases some popular Java graph
drawing and analysis libraries. Section 4 presents GRAD.
Finally, section 5 concludes the paper and outlines future work.

II. GRAPH DRAWING AESTHETICS AND AN OVERVIEW OF

GRAPH LAYOUT ALGORITHMS

In the following section a short overview of the graph
aesthetic criteria and the most popular classes of graph layout
algorithms will be given. Firstly, the most important concepts
which will be referenced later will be defined.

A. Basic graph drawing theory definitions

A graph (V,E) is an ordered pair consisting of a finite
set V of vertices and a finite set E of edges, that is, pairs
(u, v) of vertices [7]. If each edge is an unordered (ordered)
pair of vertices, the graph is undirected (directed). A graph
is simple if it doesn’t contain any edges that join a vertex to
itself or more than one edge connecting the same two vertices
(multiple edges). A graph is said to be connected if there is
a path from any vertex to any other vertex in the graph. A
biconnected graph is a connected graph which has no vertices
whose removal would disconnected it. Graphs which contain
at least one cycle are called cyclic graphs, while the ones that
do not are known as acyclic. A tree is a connected acyclic
graph. Finally, a graph is planar if it can be drawn in a plane
without graph edges crossing. A planar drawing partitions the
plane into connected regions called faces.

The process of creating a drawing of a graph from the
underlying structure is known as automatic graph layout. There
is a great number of graph layout algorithms, with plenty of
researchers still working on discovering new and enhancing
existing ones. The quality of an algorithm is determined based
on its computational efficiency as well as various aesthetic
criteria. The following sections will give an overview of the
mentioned criteria and the most popular layout methods.

B. Aesthetic Criteria

Many different quality measures or aesthetic criteria have
been defined for graph drawings. Authors often optimize cer-
tain aesthetics claiming that the resulting drawing is therefore
more understandable and more visually pleasing to a human
observer. The most common criteria includes the following:
Minimization of the number of edge crosses, maximization
of the minimal angle between edges extending from a node,
minimization of the total number of bends in polyline edges,
even distribution of edges within a bounding box, appropriate
lengths of edges, neither too short nor too long, similar length
of edges, same flow of edges in directed graphs (as much as
possible),orthogonality, and symmetry [8].

Some layout methods put emphasis on one of the measures
trying to produce a drawing which, for example, has no
edge crosses (planar drawing) or is maximally symmetric,
while the other ones attempt to optimize as many as possible.
The desired aesthetic criterion or criteria can be the deciding
factor in choosing an appropriate layout algorithm. However,
certain layout algorithms which insist on a particular aesthetic
criterion might not be applicable to all graphs. Obviously, it is
not possible to produce a drawing with no edge intersections of
a graph which is not planar. Therefore, properties of the graph
which is to be laid out can also be an important indicator of
the best choice of the algorithm.

C. An Overview of Graph Layout Algorithms

There is a very large number of different classes of graph
layout algorithms and the following paragraphs will present
the most popular ones.

Tree drawing is one of the best studied areas of graph
drawing. That is not surprising since automatic generation of
drawings of trees finds many practical applications. Namely,
a tree whose vertices represent entities and whose edges
represent relationships is a typical data structure for modeling
hierarchical information. There are various approaches to
drawing trees and their detailed overview and comparison can
be found in [9].

A circular drawing of a graph is its visualization where it
is partitioned into clusters whose nodes are placed onto the
circumference of an embedding circle. Each edge is drawn as
a straight line. Simply placing nodes on a circumference of
a circle might result in a drawing which is not particularly
aesthetically pleasing due to a very large number of edge
crossings, which is why there are techniques which also
minimize this number when determining positions of the nodes
[10].

Symmetric graph drawing algorithms aim to draw a graph
with nontrivial symmetry, or, more ambitiously, with as much
symmetry as possible. Some consider symmetry as one of
the most important aesthetic criteria which clearly reveals the
structure and properties of a graph. For example, graphs in
textbooks on graph theory are normally drawn symmetrically
and a symmetric drawing is in some cases preferred over a
planar one.

Planar straight-line drawing algorithms rely on the fact that
if a graph can be drawn with no crossings using edges of
an arbitrary shape, then it can be drawn in the same way
using only straight-line segments. Convex drawings are planar
straight-line drawings where all faces are drawn as convex
polygons. In [11] the author claims that the convex drawings
of planar graphs make it possible for readers to easily and
rapidly recognize structures of the graphs, such as adjacency
of vertices.

Planar orthogonal and polyline drawing algorithms focus
on angular resolution as the most important aesthetic criterion.
Orthogonal drawings only use horizontal and vertical line
segments for edges and are, therefore, often quite visually
pleasing. A more specific type of orthogonal drawings are

1598 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

rectangular drawings, which also make sure that each face
is drawn as a rectangle. However, they have a pretty serious
limitation of only being applicable to graphs which don’t
contain a vertex whose degree is higher than four. Polyline
drawing are more general and don’t have the mentioned
disadvantage. They usually focus directly on sizes of the
angles (which should not be smaller than some fixed threshold)
and not on the type of edges.

Force-directed algorithms are among the most important
and most flexible algorithms. Unlike many previously men-
tioned ones, which can only be applied if a graph is planar
or satisfy some other specific conditions, force-directed algo-
rithms can be used to calculate layouts of all simple undirected
graphs. They only need the information contained within the
structure of the graph itself.

Graphs drawn with these algorithms tend to be aesthetically
pleasing, exhibit symmetries, and tend to produce crossing-
free layouts for planar graphs. There are many force-driven al-
gorithms, the most popular of which include the spring layout
method of Eades [12], Kamada-Kawai [13] and Fruchterman-
Reingold [14] methods.

Hierarchical drawing algorithms can be used when dealing
with directed graphs (or digraphs) which represent hierarchies.
These algorithms name uniform "flow" of edges as one of
their main goals. More precisely, the edges should either go
from left to right or top to bottom, depending on a particular
application.

III. RELATED WORK

There are quite a few libraries for graph analysis and
visualization for Java. The next section will present the most
popular ones, primarily focusing on their layout capabilities
and mentioning implemented graph analysis algorithms which
could be used to determine the best choice of the drawing
algorithm.

It is important to mention that visualization tools which
generate static drawings of graphs in a variety of output
formats will not be taken into consideration since they are not
suitable for this particular purpose. Furthermore, commercial
solutions will not be considered since our focus is on open-
source ones.

A. JUNG Framework

JUNG — the Java Universal Network/Graph Framework
[15] is an open-source software library that provides a com-
mon and extendible language for modeling, analysis, and
visualization of data that can be represented as a graph or
network. JUNG framework is licensed under the permissive
BSD license.

The current distribution of JUNG includes implementations
of a number algorithms from graph theory, data mining, and
social network analysis. However, most of them are of little
importance to this research. Only Dijktra’s shortest path and
decomposition of a graph into biconnected components can be
singled as potentially useful in the mentioned case.

JUNG framework offers implementations of several layout
algorithms, some of which are quite complex. Most im-
portantly, these include three tree layout algorithms and a
number of force-directed ones. The tree layout algorithms
include the following: an implementation of a level-based
approach, radial tree method, and the balloon method. The
radial tree method displays a tree structure in a way that
expands outwards, radially. The balloon method positions ver-
tices using associations with nested circles or "balloons". The
force-directed algorithms are the already mentioned popular
and flexible spring method, Kamada-Kawai and Fruchterman-
Reingold, as well as an algorithm based on Bernd Meyer’s
self-organizing graph methods [16]. JUNG framework also
contains a relatively basic circle layout drawing algorithm,
which simply places vertices on a circumference of a circle of
a given radius.

B. JGrapX

JGraphX is a Java Swing graph visualization library which
is also licensed under the BSD license. JGraphX provides
visualization and interaction with node-edge graphs, as well
as a decent number of algorithms for graph analysis, such
as graph traversal, forming the minimum spanning tree and
Dijkstra’s shortest path [17]. The minimum spanning tree is
defined as the set of all vertices with minimal lengths that
forms no cycles. Graph traversal includes deep-first search and
bread-first search, both of which construct spanning trees with
certain properties useful in other graph algorithms.

JGraphX provides various usable implementations of graph
drawing algorithms. Similarly to JUNG framework, these
include a tree and several force-directed layouts, but also a
hierarchical one meant to be used if a graph is too complex to
be laid out using the tree drawing algorithm. The tree layout
in question is the compact tree layout, which improves the
standard level-based approaches by trying to make the result-
ing drawing as compact as possible. Furthermore, JGraphX
provides two force-directed layout algorithms: fast organic and
organic. The fast organic method is best applied to smaller
graphs with a more regular structure, but is supposed to be
one of the faster force-directed layouts. The organic layout is
one of the most complex algorithms implemented in JGraphX
and is based on Davidson and Harel’s simulated annealing
layout [18].

JGraphX doesn’t stop there and offers a very nicely im-
plemented hierarchical layout. This implementation not only
positions the vertices, but also routes the edges.

C. Prefuse

Prefuse is a software framework for creating dynamic visu-
alization of both structured and unstructured data, that provides
theoretically-motivated abstractions for the design of a wide
range of visualization applications [19]. Like other mentioned
libraries, Prefuse is also licensed under the BSD license.

Prefuse is bundled with a library which, among other
actions, provides a host of layout and distortion techniques.

RENATA VADERNA ET AL.: GRAD: A NEW GRAPH DRAWING AND ANALYSIS LIBRARY 1599

Available layout algorithms include random, circular, grid-
based, forced-directed, and several tree ones.

The force-directed layout positions graph elements based on
a physical simulation of interactive forces acting on bodies.
The force simulator used to drive this layout can be set ex-
plicitly, allowing custom force-directed layouts to be created.

Tree layouts provided by Prefuse are previously mentioned
balloon and radial algorithms, as well as an additional node-
link tree layout, which lays out a rooted tree so that each depth
level of the tree is on a shared line.

Based on the previous overview, it can be noticed that the
mentioned libraries offer many layout algorithms which would
be a good addition to any graphical editor in need for such
features. However, all of them put heavy emphasis on data
visualization and thus strongly couple it with graph drawing
algorithms. Therefore, simply calling the desired algorithm
and retrieving the results (positions of vertices and edges
determined during the execution of the algorithm) requires an
understanding of how a library works. GRAD aims to offer a
solution to this problem.

Moreover, certain classes of graph drawing algorithms are
substantially represented in these libraries (like tree and force-
directed ones), while the other classes are barely or not present
at all. For example, no symmetric, straight-line or orthogonal
algorithms are available. Out library aims to remedy this and
offer implementations of certain algorithms, that, according to
our knowledge, have not been implemented in Java yet.

Finally, none of these libraries offer a way of automatically
choosing an appropriate layout algorithm based on properties
of the graph or according to the desired aesthetic criteria
specified by the users. Implementing both of these features is
among the goals of our solution. It can also be pointed out that
none of the libraries provide many graph analysis algorithms
which are of great significance to graph drawing.

IV. GRAD (GRAPH ANALYSIS AND DRAWING LIBRARY)

In the following section different algorithms supported by
our graph drawing and analysis library-GRAD will be shown.
Additionally, possible ways of choosing appropriate drawing
algorithms based on the properties of graphs will be discussed.
It can be noted that GRAD can be used both to transform and
existing drawing and to form a completely new one when
nothing is known about the positions of the graph’s vertices.
The later is used in our open-source Kroki tool [21] for laying
out imported class diagrams created by other modeling tools.

Like it was already mentioned, GRAD also provides a
simple graphical editor which can be used to draw graphs
we want to experiment with. This editor was used to create
all examples of laid out graphs which will be shown in the
upcoming sections.

A. Supported graph drawing algorithms

The most important objective of GRAD is to provide a
large number of different graph drawing algorithms, both those
which can only be applied if a graph has certain properties
(e.g. is planar) and those that can be applied to all graphs

Fig. 1. Resulting drawing of applying the level-based tree drawing algorithm

Fig. 2. Resulting drawing of applying the radial tree drawing algorithm

with acceptable results. GRAD ports the best algorithms from
the JUNG framework, JGraphX and Prefuse, and adds a
number of new implementations of various graph drawing
algorithms, not offered by any of the mentioned libraries.
Summarily, the current version of GRAD includes several
tree and force-directed drawing algorithms, a hierarchical, two
straight-line, a circular which minimizes the number of edge
crossings, symmetric, and a so-called box layout, which places
elements in a table-like structure. The last four algorithms are
GRAD’s original implementations. The box layout positions
a predefined number of vertices in one row, before continuing
to the next row. Due to its simplicity, it will not be discussed
in more detail.

1) Tree and hierarchical drawing algorithms: Tree drawing
algorithms included in GRAD consist of a level-based, radial,
balloon and compact tree drawing algorithms, ported from the
previously mentioned libraries. The best available implemen-
tation of a specific algorithm was selected. Fig. 1 shows the
result of applying the level-based tree drawing algorithm to
lay out a graph, while fig. 2 show the same graph laid out
using the radial algorithm.

If a graph is too complex to be laid out using a tree
layout and if it is important to emphasize the overall flow,
a hierarchical layout can be used. GRAD ports this layout
from JGraphX.

2) Force-directed graph drawing algorithms: Similarly to
tree drawing algorithms, the force-directed ones were ported
from the three mentioned libraries and the best one they had
to offer were selected. They include spring, Fruchterman-
Reingold, Kamada-Kawai and organic, and fast organic al-
gorithms ported from JGraphX. Since the final results are
relatively similar, only one of them will be shown. Fig. 3 show
drawing of a graph laid out using the organic force-directed

1600 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 3. Resulting drawing of applying organic force-directed drawing algo-
rithm

Fig. 4. Resulting drawing of applying the symmetric drawing algorithm

drawing algorithm.
Like it was already mentioned, force-directed algorithms

tend to produce satisfactory drawings in most cases. However,
the users might be looking for some specific aesthetic criteria,
so GRAD doesn’t stop here.

3) Symmetric graph drawing: Symmetric drawing algo-
rithms are among the classes of drawing algorithms that
the popular graph drawing libraries do not support. GRAD
currently offers one such algorithm, with another one being
implemented. The available symmetric layout algorithm is
based on the work of Carr and Kocay [22], which, given a
permutation (automorphism) and a graph, produces a drawing
which displays the desired symmetry. The permutations can
previously be discovered using an implementation of McKay’s
canonical graph labeling algorithm [23]. An example of a
drawing computed by GRAD’s symmetric graph drawing
algorithm is shown in fig. 4. This drawing shows a very well-
known view of the famous Peterson graph.

4) Straight-line drawings: Straight-line drawings are an-
other class of drawing algorithms which are not provided by
the most popular libraries. While not applicable to all graphs
(they have to be planar, and in some cases, 2 or 3-connected),
they can guarantee a crossing-free drawing.

The first of the provided methods is the one based on
Tutte’s or barycentric embedding [24]. Given a simple 3-
connected planar graph, Tutte’s theorem produces a crossing-
free straight-line embedding whose outer face is a convex
polygon. It is considered to be the first force-directed al-
gorithm at the same time. This method is not difficult to

Fig. 5. Drawing of a graph on which Chiba’s algorithm was applied

Fig. 6. A circular drawing of a graph

implement, but is only recommended to be used on smaller
graphs, with 100 or less vertices.

The second straight-line drawing algorithm is a much more
complex one. The implementation is based on Chiba’s linear
algorithm for convex drawing of planar graphs [11], which
firstly determines if a graph has a convex drawing and then
draws one if the mentioned condition is satisfied. An example
of this algorithm’s application is shown in fig. 5.

5) Circular drawing: Practically all libraries which deal
with graph drawing in some form, provide a circular drawing
algorithm. Most of them, however, simply position vertices on
a circumference of a circle. In addition to doing so as well,
GRAD also implements an algorithm, described in [10], which
determines the order in which vertices are placed so that the
number of edge-crossings is as small as possible. An example
is shown in 6.

It can be noticed that if, for example, vertices v0 and v7
switched places, the drawing wouldn’t be planar.

Finally, it should be stressed that GRAD allows execution
of drawing algorithms which were designed to be applied
on simple graphs even if the given one is not simple. Upon
execution of the desired algorithm in such case, GRAD detects
multiple edges and loops and routes them in order to avoid
overlapping of edges and correctly show those which connect
one vertex to itself. Furthermore, GRAD provides a very
simple way of calling any desired algorithm from a separately
developed graphical editor, thoroughly explained in [5].

B. Graph analysis algorithms and choosing the appropriate

graph drawing algorithm

Being a graph analysis library as well, GRAD provides a
wide array of different algorithms of this sort. They can be
used to reveal useful information regarding properties of a
graph, which can later influence the decision of which drawing

RENATA VADERNA ET AL.: GRAD: A NEW GRAPH DRAWING AND ANALYSIS LIBRARY 1601

algorithm to apply in the given situation. Some of these
algorithms were of great importance to the implementations
of the existing drawing algorithms and can be used to help
the implementation of additional ones. Among others, GRAD
provides several algorithms for planarity testing, algorithms
for splitting of graph into biconnected components based on
depth-first search, Hopcroft-Tarjan splitting into triconnected
components [25], different algorithms for finding cycles of
graphs and previously mentioned McKay’s graph labeling
algorithm.

By applying appropriate algorithms it can be determined if
a graph is, for example, a tree, if it has a planar straight-line
drawing or non-trivial automorphisms. Taking advantage of
this fact, GRAD provides a way of automatically invoking
an algorithm which might be best suited for the graph in
question. If a graph is a tree or a forest, a tree drawing
algorithm is used. If it is planar, convex drawing is performed.
If no special properties are detected, a force-directed layout is
applied. Also, if the graph is disjoint, an algorithm is chosen
for each component independently and these drawings are later
combined to get the final one. An example of this is a class
diagram with several disjoint groups of classes where some
represent hierarchies, while the other ones do not. This offers
users who have no special preferences a simple way to lay out
their graphs, even if they don’t know anything about graphs
and graph drawing.

Furthermore, every somewhat sophisticated drawing algo-
rithm puts emphasis on one or more aesthetic criteria. By nam-
ing the criteria, the users can basically choose the algorithm
without even knowing its name. In order to accomplish this,
a DSL for describing the desired properties of the drawing is
currently being developed.

V. CONCLUSION

This paper explained the need to automatically lay out
diagram elements, gave and overview of different classes of
graph drawing algorithms and the most popular Java libraries
offering some of them. Some difficulties one might encounter
when using layout capabilities of the mentioned libraries
within a separately developed graphical editor, as well as
certain areas of improvement were pointed out. For example,
a developer of a DSL which needs to support both textual
and graphical syntaxes might run into these issues. They were
addressed in our new graph drawing and analysis library called
GRAD.

GRAD provides a number of different graph layout algo-
rithms and a quick and easy way of using them to position
elements of a diagram in any graphical editor. In addition to
porting the best layout algorithms provided by other open-
source Java graph drawing libraries, it implements various
other ones, not offered by the other mentioned libraries. These
include symmetric and two straight-line algorithms, as well as
an enhanced version of a circular one. Additionally, GRAD
offers ways of automatically choosing appropriate algorithm
or their combination to get the best possible result. GRAD is
currently being used in our open-source Kroki tool for laying

out imported class diagrams created by other modeling tools.
These diagrams can contain over 600 classes.

Plans for future improvements of GRAD include:
• implementation of additional drawing algorithms, includ-

ing a better symmetric and one or more orthogonal ones
• labeling algorithms which address automatic placement

of text symbol labels
• a better way of letting user specify desired aesthetic

criteria by developing a DSL.

REFERENCES

[1] M. Mernik, J. Heering, and A. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[2] U. Zdun and M. Strembeck, “Architectural decisions for dsl design:
Foundational decisions in dsl development,” in Proceedings of 14th

European Conference on Pattern Languages of Programs, Germany,
2009, pp. 1–37.

[3] I.Dejanović, M. Tumbas-Živanov, G. Milosavljević, and B. Perišić,
“Comparison of textual and visual notations of dommlite domain-
specific language,” in Proceedings of the Advances in Databases and

Information Systems, 2010, pp. 20–24.
[4] I.Dejanović, G. Milosavljević, B. Perišić, and M. Tumbas-Živanov,

“Domain-specific language for defining static structure of database
applications,” Computer Science and Information Systems, vol. 7, p.
409–440, 2010. doi: 10.2298/CSIS090203002D

[5] R. Vaderna, G. Milosavljvić, and I. Dejanović, “Graph layout algorithms
and libraries: Overview and improvement,” in ICIST 2015 5th Interna-

tional Conference on Information Society and Technology Proceedings,
2015.

[6] “Graph analysis and drawing library,”
https://github.com/renatav/GraphDrawing, accessed: 2016-4-4.

[7] M. Patrignani, Handbook of Graph Drawing and Visualization. Chap-
man and Hall/CRC, 2007, ch. 1, pp. 1–42.

[8] H. Purchase, Computer Graphics and Multimedia: Applications, Prob-

lems and Solutions. Idea Group Publishing, 2004, ch. 8, pp. 110–144.
[9] A. Rusu, Handbook of Graph Drawing and Visualization. Chapman

and Hall/CRC, 2007, ch. 5, pp. 155–192.
[10] J. Six and I. Tollis, Handbook of Graph Drawing and Visualization.

Chapman and Hall/CRC, 2007, ch. 9, pp. 155–192.
[11] N. Chiba, T. Yamanouchi, and T. Nishizeki, Progress in graph theory.

Academic Press, 1984, ch. 5, pp. 153–173.
[12] P. Eades, “A heuristic for graph drawing,” Congressus Numerantium,

vol. 42, p. 149–160, 1984.
[13] T. Kamada and S. Kawai, “An algorithm for drawing general undirected

graphs,” Information Processing Letters, vol. 31, pp. 7–15, April 1989.
[14] T. Fruchterman and E. Reingold, “Graph drawing by force-directed

placement,” Software Practice and Experience, vol. 21, p. 1129 – 1164,
November 1991.

[15] “Jung framework,” http://jung.sourceforge.net, accessed: 2016-4-4.
[16] B. Meyer, “Self-organizing graphs - a neural network perspective

of graph layout,” in In Neural Computers, 393–406, ECKMILLER.
Springer, 1998, pp. 246–262.

[17] “Jgraphx,” https://github.com/jgraph/jgraphx, accessed: 2016-4-4.
[18] R. Davidson and D. Harel, “Drawing graphs nicely using simulated

annealing,” ACM Transactions on Graphics, vol. 15, pp. 301–331, 1996.
[19] “Prefuse,” http://prefuse.org, accessed: 2016-4-4.
[20] C. Buchheim, M. Juenge, and S. Leipert, “Improving walker’s algorithm

to run in linear time graph drawing,” in Proceedings of 10th International

Graph Drawing Symposium, Irvine, CA, USA, 2002.
[21] “Kroki mockup tool,” http://www.kroki-mde.net, accessed: 2016-4-4.
[22] H. Carr and W. Kocay, “An algorithm for drawing a graph symmetri-

cally,” Bulleting of the Institute of Combinatorics and its Applications,
vol. 27, pp. 19–25, 1997.

[23] B. McKay, “Practical graph isomorphism,” in Proceedings of 10th.

Manitoba Conference on Numerical Mathematics and Computing, 1980,
pp. 45–87.

[24] W. Tutte, “How to draw a graph,” in Proceedings of the London

Mathematical Society 13, 1963, p. 743–767.
[25] J. Hopcroft and R. Tarjan, “Dividing a graph into triconnected compo-

nents,” SIAM J. Computing, vol. 2, p. 135–158, 1973.

1602 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

