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Abstract—The paper concerns automatic recognition of emo-
tion induced by music (MER, Music Emotion Recognition).
Comparison of different sparse coding schemes in a task of MER
is the main contribution of the paper. We consider a domain-
specific categorization of emotions, called Geneva Emotional
Music Scale (GEMS), which focuses on induced emotions rather
than expressed emotions. We were able to find only one dataset,
namely Emotify, in which data are annotated with GEMS
categories, this set was used in our experiments. Our main
goal was to compare different sparse coding approaches in a
task of learning features useful for predicting musically induced
emotions, taking into account categories present in the GEMS.
We compared five sparse coding methods and concluded that
sparse autoencoders outperform other approaches.

I. INTRODUCTION

M
USIC information retrieval has been gaining an in-

creased amount of attention in machine learning com-

munity over the past decade due to the increasing popularity of

new musical services and a huge amount of music data avail-

able on the internet, annotated using imperfect systems such

as community tagging and description supplied by producers.

With the increasing amount of files, automated music analysis

and content-based retrieval becomes increasingly relevant.

One particular subset of music information retrieval tasks is

music emotion recognition (MER) [1]. Emotion recognition,

besides the potential use in recommendation systems and

search engines, poses an interesting theoretical problem for

artificial intelligence researchers due to its high subjectivity

and the fact human emotions are still not fully understood

by psychologists. For music emotion recognition, even the set

of emotions employed to annotate the dataset and use as a

ground truth in machine learning is still subject to discussion.

Emotional categories and scales in popular datasets are often

not domain-specific.

Another important issue in automated emotion recognition

is that emotion can often be related to musicological concepts

such as chords and tempo [2], which from a machine learn-

ing standpoint correspond to high-level features that require

specialized algorithms to extract them from the music files.

However, these algorithms can be imperfect and affect the

performance significantly. Meanwhile, current trends in deep

learning suggest that algorithms which learn to extract more

complicated features from low-level features in an unsuper-

vised manner can achieve even better results than hand-crafted

features designed for a specific domain [4]. In music informa-

tion retrieval, this kind of approach has become popular in

the context of genre recognition [5][6] and generalized auto-

tagging task [7][8], which includes simple emotional tags,

but is more focused on semantic categories such as genre,

male/female vocalist, etc.

In this paper, we describe a machine learning approach

based on aggregation of sparse vectors constructed from the

low-level description of a sound file and apply it to Emotify,

a publicly available MER dataset. It is different from usual

emotion recognition datasets in that it uses Geneva Emotional

Music Scale, an emotional scale designed specifically for

music-induced emotion. We compare different sparse coding

approaches in order to find out whether these methods can

reliably learn features useful for recognition of musically

induced emotion, especially the highly subjective and hard

to define emotional categories present in GEMS, for which

the usually employed emotional scale with Valence-Arousal

dimensions does not account.

The paper is organized as follows: Section II summarizes

literature related to our paper. Section III describes GEMS

emotion categorization and the dataset we used in our exper-

iments. Section IV describes different sparse coding methods

which can be used interchangeably in our approach. Section V

explains our representation of music files, create using sparse

vector pooling, and the rationale behind it. In Section VI, we

report the results of our experiments on the Emotify dataset.

II. RELATED WORK

Music emotion recognition is an important part of auto-

mated music information retrieval and as such, it has been

covered extensively in existing literature. Typically, an MER

task in artificial intelligence research takes one of two forms:

a multi-class annotation task in which each song in a dataset

is annotated with a subset of a predefined set of tags [9][10],

or a regression task multiple continuous values representing

different dimensions of perceived emotion are assigned to a

song [11][12]. In the case of multi-class annotation, there is

no single consistent system of emotional categories. The set

of tags can be based on one of existing emotion categorization
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systems in psychology [13] [14]. However, these are not

domain-specific and can be imperfect for describing music.

A common concept in work focusing on dimensional scales

is the Valence-Arousal space [15], in which only two con-

tinuous dimensions are considered. Valence differentiates be-

tween positive and negative emotions while Arousal describes

the intensity of perceived emotion. E.g., music described as

"energetic" or "joyful" could be placed on the V-A scale in

the high valence, high arousal area while music described as

"calm" will be in the low arousal, middle valence area. It

should be noted that the concept of placing specific emotions

on the V-A scale was not designed specifically for describing

emotions concerning music. Another criticism of this scale

is that its two dimensions are insufficient to describe more

complex emotions and discern pairs of emotions such as fear

and anger (both of which are negative emotions with high

arousal). The question whether V-A scale should be extended

with a third dimension is an important subject of discussion

among both MIR researchers and psychologists [16].

An important aspect of music emotion is the differentiation

between induced and expressed emotions. Since one of the

basic purposes of music is influencing the listener’s mood, that

differentiation should be a subject of interest when researching

emotion modelling. A domain-specific emotion categorization

system called Geneva Emotional Music Scale which takes

the distinction between induced and expressed emotion into

account was proposed in [17]. We describe it in more detail

in section III, along with Emotify, the first MER dataset

annotated with GEMS categories. The dataset was researched

from a machine learning viewpoint in [18], which examined

the performance of available features from multiple existing

MATLAB toolboxes in combination with SVR algorithm.

However, more complicated approaches such as stochastic

process modelling or codebook methods have not been applied

to GEMS-annotated data yet.

Among existing music information retrieval approaches, we

chose to examine codebook methods. Codebook methods rely

on building a dictionary of discernible patterns appearing

in sample data on a short time-scale and then expressing

the contents of a music file using contents of the dictio-

nary. In recent years, papers concerning codebook methods

reported good results in music information retrieval tasks

[5][8] using the Restricted Boltzmann Machine algorithm [19].

In [8], results on the state of the art level were achieved

in generalized music auto-tagging using temporal pooling

of sparse vectors to represent a music file. We apply the

same pooling approach to music emotion modelling. The

authors established that sparse RBM can learn features better

than sparse coding methods used for codebook generation

in the past. Another promising coding method that, unlike

RBM, has not been tested extensively in this context is an

autoencoder neural network. Autoencoders without sparsity

constraints have been tested as an emotion recognition method

in [20], using a separate network for each modelled emo-

tion. They have been applied to chord recognition [21] with

good results. Hence, in our experiments we test autoencoder

with a sparsity inducing loss function as an alternative to

RBM.

III. GEMS EMOTION RECOGNITION

Geneva Emotional Music Scale is a categorical model of

emotion designed specifically for the music domain, based

on psychological research [17]. GEMS authors propose a

hierarchy with three levels, with three general categories on the

top level, nine emotions in the middle and 45 specific emotions

at the bottom. The emotional categories were created using

surveys concerning music-induced emotion. It is important to

note that the difference between emotions expressed by music

and induced by music is relevant to the choice of terms.

Surveys explicitly asked separate questions about emotions

participants felt and emotions they perceived in music.
In [22], nine emotions from the middle level of GEMS hier-

archy were chosen to annotate the Emotify dataset, consiting

of 400 songs from 4 genres. These middle-level categories

are: amazement, solemnity, tenderness, nostalgia, calmness,

power, joyful activation, tension, and sadness. The annotations

were gathered using a Facebook game Emotify, and thus can

represent the task of modelling a community consensus. For

each song, annotations in the form of vectors consisting of

zeroes (emotion not felt) and ones (emotion felt) were gathered

from multiple subjects. Overall annotation of a song can be

calculated as a mean of the annotation vectors corresponding

to it, resulting in a vector of 9 continuous values ranging

from 0 to 1, where zero means a complete agreement that

the song does not evoke a particular feeling and one complete

agreement that it evokes said feeling.
The dataset was analysed from a machine learning view-

point in [18]. Authors compared three different sets of auto-

matically extracted features and a set of manually annotated

musicological features. First analysed feature set was features

designed for music description available in MIRtoolbox, a

MATLAB toolbox for music information retrieval. The second

one used Mel-frequency Cepstral Coefficients (MFCC) [23]

and statistical functionals applied to them such as mean,

variance, skewness, etc. Third feature set consisted of har-

monic features proposed by the authors used in combination

with MIRtoolbox features. The authors concluded that while

certain emotions can be modelled with decent accuracy, the

performance of machine learning is heavily limited by the

issue of subjectivity. The most subjective emotional categories

identified by the authors were amazement, solemnity, and

tension.

IV. SPARSE REPRESENTATION OF DATA

Sparse coding is the idea of approximating data drawn

from a multidimensional space by representing it in another

space in a way that encourages sparsity, i.e. a vector in the

output space should consist mostly of zeroes. In its simplest

form, the problem of approximating a vector y with its sparse

representation x in a base D (called a dictionary), can be

defined as:

x∗ = argmin
x

‖x‖0 s.t. ‖y −Dx‖ < λ (1)
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where λ is a parameter dictating the desired accuracy of

reconstruction and ‖x‖0 is the number of non-zero elements of

vector x. However, this optimization problem is NP-hard and

assumes a linear transformation between two spaces, which

can sometimes be insufficient to create sparse representations

for complex data. Below we describe approaches practically

applicable to the problem of sparse representation for any

given set of data.

A. K-means Clustering

K-means clustering [24] is a well-known unsupervised

learning algorithm in which a dataset is divided into clusters,

and each cluster is represented by a single point in the data

space, which is the centroid of the cluster. The algorithm

assigns any vector in the dataset to the cluster represented

by a point closest to it. This enables us to treat K-means

clustering as a very restrictive form of sparse coding. A vector

y in the original data space assigned to n-th cluster can be

represented by a vector x in which every component except

n-th is 0, and the n-th component is 1. The dimensionality

of x is equal to the number of clusters. Note that this is

equivalent to minimizing ‖y−Dx‖ with constraints ‖x‖0 = 1
and ‖x‖1 = 1, where the dictionary D is a matrix which n-th

column is the centroid of the n-th cluster.

For any vector which is not present in the dataset used for

dictionary training, its sparse representation can be calculated

by simply choosing the centroid closest to it, and creating

a vector of zeros with n-th component being one, where n

is the closest centroid. This allows us to express the popular

Bag-of-Words model [3] as a specific case of our approach,

which will be explained in section IV. This model is known for

its simplicity and efficiency regarding the dictionary building

process.

B. L1 Regularized Least Squares

A basic way of solving the sparse representation problem

in polynomial time is to use L1 norm regularization:

x∗ = argmin
x

‖y −Dx‖ + λ‖x‖1 (2)

L1 norm is known to encourage sparsity [25] and there has

been a significant amount of research dedicated to fast solvers

for both L1 regularized least squares and its nonnegative

variant. Nonlinearity is possible to achieve using the kernel

trick [26], the problem then becomes:

x∗ = argmin
x

‖Φ(y)− Φ(D)x‖ + λ‖x‖1 (3)

where Φ denotes a mapping function from the original data

space to a space of larger dimensionality, implicitly defined

by a kernel function K(a, b) which replaces dot product.

Variants of regularized least squares are commonly used in

sparse coding problems. They can achieve better reconstruc-

tion than a K-means based dictionary approach, at the cost of

more complicated dictionary building process. Another issue

is that the encoding of a vector is not explicitly given and

requires solving (2), which is the main disadvantage of this

approach.

C. Sparse Autoencoder

Autoencoders [27] are a type of neural networks developed

mostly for use in deep learning. In its basic form, an au-

toencoder is simply a standard feedforward neural network

in which the number of input neurons is equal to the number

of output neurons. The network is trained using a backpropa-

gation algorithm [28], in which the network is given a matrix

of training vectors X and a matrix desired outputs Y . In

the case of autoencoders Y = X , meaning the objective of

learning is to create an encoding in hidden layer that enables

the network to reconstruct later input vectors with maximum

possible accuracy.

Without additional modifications to a standard loss func-

tion used in backpropagation (e.g. mean squared error), data

compression is achieved by using a hidden layer with a

low number of neurons, relatively to the number of input

neurons. However, it is possible to encourage sparsity [29]

by modifying the loss function for hidden layer. Denoting a

loss function in relation to data matrix X and desired output

matrix Y as L(X,Y ), the new loss function minimized by the

backpropagation algorithm becomes:

L′(X,Y ) = L(X,Y ) + λ
∑

i

(ρ log
ρ

ρ̂i
+ (1 − ρ) log

1− ρ

1− ρ̂i
)

(4)

where ρ is a parameter indicating the desired average activa-

tions in the hidden layer, and ρ̂i is the average activation of i-th

neuron in that layer over the whole dataset. This encourages

neuron activations in hidden layer to be ’sparse’ in the sense

that only a few neurons relevant to recognizing a particular

data pattern are ’active’ in response to a given input, i.e.

they should exhibit significantly higher activations than all

the others. However, the vector of hidden layer outputs is not

sparse in a strict sense, as most of the ’inactive’ neuron outputs

are not equal to 0, and it is nearly impossible to achieve zero

activations through backpropagation. We will explain why this

is not an issue in our model when discussing the representation

of music by pooling sparse vectors.

D. Sparse RBM

Restricted Boltzmann Machine [19] is a stochastic neural

network model consisting of a set of visible units and a set of

hidden units. These layers are fully connected to each other,

however, there are no connections inside a layer. Assuming

Gaussian visible nodes and binary hidden nodes (which is

sufficient to model real-valued inputs) a configuration of

network (x, h), where x is the vector of visible values and

y is the vector of hidden values, is associated with an energy

function:

E(x, h) =
1

2σ2
xTx−

1

σ2
xTWh− aTx− bTh (5)

where W is the weight matrix, a and b are bias terms.

σ is a scaling parameter. This energy function is inversely

proportional to the log-likelihood of observing a particular
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configuration. Probability distribution of x(i), the value of i-

th visible neuron, assuming a hidden layer configuration h is

Gaussian with mean ai + wT
i h and standard deviation σ:

p(x(i)|h) = N (ai + wT
i h, σ

2) (6)

where wi denotes the i-th row of W and ai the i-th component

of bias vector a. Probability for j-th hidden layer unit being

active is given by:

p(h(j)|x) = sig(
1

σ2
(bj + wjx)) (7)

where bj is the j-th component of bias vector b, wj is the

j-th column of W and sig is the logistic sigmoid function.

Given these definitions, a model of (W,a, b) can be learned

by maximizing the log-likelihood of visible values x using the

contrastive divergence learning [30].

A penalty term can be added to the objective function to

encourage sparsity. Given a sequence of training vectors in

which i-th vector is xi, the penalty term is:

penalty = λ
∑

j

(ρ−
1

m

∑

i

E(h(j)|xi)) (8)

where ρ is the desired average activation of hidden layer and

λ is a scaling parameter.

Encoding of a given input vector can be calculated using

equation (7), which is similar to coding in autoencoder net-

works. Restricted Boltzmann Machines are known for their

efficiency in building deep neural network architectures, how-

ever, these deep networks are usually fine-tuned after the initial

learning, using backpropagation. In our approach, this fine-

tuning in a supervised manner is not possible.

V. MUSIC REPRESENTATION BY POOLING SPARSE

VECTORS

We apply a method of representing music files described in

[8], in which a machine learning scheme based on the sparse

representation of data was employed to great success. Pro-

posed approach achieved state-of-art results in the generalized

music annotation task, in which the goal is to select a subset

from a set of predefined tags for each music file in the dataset.

These tags included genre tags, simple categorical emotion

tags and other descriptive tags such as ’female vocalist’. It is

important to note that emotion recognition does not necessarily

rely on the same features of music as genre recognition.

For emotion recognition, it is significantly more important

to take rhythmic, tempo and harmonic features into account.

For example, the differentiation between major and minor

chords, while not very important when differentiating between

classical and rock music, becomes crucial when attempting

to differentiate sad and happy songs due to strong cultural

associations between major-minor scales and emotions of

happiness-sadness.

In our approach, firstly we calculate the spectrogram of a

music file, using log scale for frequency. A sequence of vectors

is built in which every vector represents a spectrogram patch

of l consecutive frames of the spectrogram, with maximum

overlap between patches (i.e. for a window length l a vector

xi in the sequence contains frames from i to i+ l−1, then the

next vector xi+1 contains frames from i+1 to i+ l). This way,

each vector represents a f× l patch of the spectrogram, where

f is the number of frequency bins. Overall, a spectrogram of

t time-frames with f bins results in a sequence of t − l + 1
vectors with fl components each.

For each vector in the resulting sequence, a sparse repre-

sentation is calculated. We aggregate the information from

the sequence of sparse vectors via pooling, two methods of

pooling are considered: max pooling and average pooling.

In max pooling, a sequence of n-dimensional vectors is

aggregated to a single n-dimensional vector by choosing the

maximum value of i-th dimension among all vectors in the

sequence as the i-th component of the resulting vector. In

average pooling, we simply sum vectors in the sequence and

divide the result by the number of vectors. For both pooling

methods, the length of resulting vector representing the music

file will be equal to the size of sparse representation vector. It

is possible to use one of the methods over the entire file, or

to mix them by first splitting the sequence of vectors into

fragments of length m, use one type of pooling over the

fragment, resulting in a sequence that is m times shorter, and

then aggregate that sequence using the second type of pooling.

The process is shown in Fig. 1.

The intuitive rationale behind using pooling for a sequence

of sparse vectors is that every dimension in sparse repre-

sentation corresponds to a particular pattern which can be

found in the data used in the process of dictionary building or

learning the encoding neural network. With this interpretation,

we should understand max pooling as a method to find out

whether a particular pattern appeared in a given part of a

song at all. If maximal value of i-th element over multiple

vectors in a sequence is low, there was no vector that could

be reconstructed using i-th dictionary element or a vector that

would result in a strong activation of i-th neuron. Similarly,

average pooling gives the information of a particular dictio-

nary element (or a pattern detected by the neural network)

appearing consistently over the course of the entire song.

One useful property of max pooling is that it eliminates

the drawback of autoencoders possibly creating non-sparse

representation of data in the strict sense. The notion of ’sparse’

vectors in which most neurons are ’inactive’, while not precise,

is not a problem here because the low activation values of

’inactive’ neurons are mostly lost in the process of pooling

regardless of whether or not they equal 0.

VI. EXPERIMENTS ON EMOTIFY DATASET

The main goal of our experiments was to compare the

performance of different sparse coding methods in creating

features for emotion regression task (subsection VI-B). Addi-

tionally we tested the influence of the pooling window size

on the result (subsection VI-C. Our third experiment shows

the spectrogram patterns recognized by sparse coding meth-

ods (subsection VI-D. At the beginning we present what is

common across all performed experiments. The used tools and

56 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



Fig. 1. Representation of a music file by pooling sparse vectors

the learning of sparse representation as well as the regression

algorithm is presented in subsection VI-A.

A. Common conditions of the experiments

All performed experiments were performed using MAT-

LAB/Octave toolboxes: MIR Toolbox [31] for spectrogram

extraction from music files, Sparse Representation Toolbox

[32] for the L1 regularized least squares implementation and

DeeBNet [33] for the implementation of autoencoder and

sparse RBM.

Sparse Representation Learning

Representation of music files we used in our experiments was

based on spectrograms. Spectrogram of each file in the dataset

was extracted using 50 ms frames with 25 ms overlap, using

mel scale with f = 40 bins for frequency axis. The resulting

values were logarithmized. Spectrogram patches were l = 10
frames long. This means vectors of length fl = 400 were used

as an input for sparse coding algorithms.

We report the results for sparse representation size of

k = 200 to emphasize tested methods’ capabilities to build

compact representations of musical files. In comparison, the

best-performing feature set in previous research on the Emotify

dataset consisted of 6535 features [18]. Testing sparse repre-

sentation sizes 200, 500 and 1000 we found that increasing

the vector size beyond 200 does not improve the performance

significantly. For efficiency, both dictionary building and neu-

ral network training were performed on a randomly selected

set of 40000 spectrogram patches from the whole dataset.

For kernelized version of L1-regularized least squares algo-

rithm, we use radial basis function kernel defined as:

K(x, y) = exp(−γ‖x− y‖2) (9)

Scaling parameter λ, which governs the weight of sparsity

constraints relatively to reconstruction accuracy, is present in

all methods except K-means. For this parameter we consid-

ered values of {0.01, 0.1, 1, 10, 100}. For parameter ρ, the

desired average activation of neurons in sparse autoencoder

and sparse RBM, values {0.01, 0.05, 0.1, 0.2, 0.5} were con-

sidered. These parameters were optimized using grid search,

and we report the best results.

Regression algorithm

We approached music emotion recognition as a regression

problem: the input was the representation of the file calculated

by pooling sparse vectors, i.e. a vector with 200 elements, and

the value we were attempting to predict was a real number

within [0,1] range, corresponding to the level of agreement

that the music file evokes a certain emotion in the listener, as

described in section III. A separate Support Vector Regression

(SVR) [34] model was trained for each emotion. SVR is a

model in which data is fit by a hyperplane, however, due to

the possibility of using kernel trick one can accommodate for

non-linear data. In our experiments we found that radial basis

function kernel, defined as in (9), performs the best.

B. Experiment 1: Performance of different sparse coding

methods

Obtained results are collected in Table 1. In order to

compare them with [18], which is the only MER paper that

reported results of research on Emotify dataset so far, we use

the same performance measure, namely Pearson’s correlation

coefficient R. We compare proposed sparse coding methods to

the results achieved using a feature set consisting of features

available in MIRToolbox and harmonic features based on

chord detection and interval detection.
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TABLE I
SPARSE CODING METHODS COMPARED WITH A HIGHER-LEVEL FEATURE SET (PERFORMANCE MEASURED BY PEARSON’S R)

K-means L1 Least Squares Kernel L1LS Autoencoder Sparse RBM MIRtoolbox+Harmonic [18]

Amazement 0.27 0.20 0.18 0.29 0.21 0.16

Solemnity 0.41 0.43 0.36 0.50 0.48 0.43

Tenderness 0.30 0.46 0.38 0.54 0.49 0.57

Nostalgia 0.47 0.40 0.37 0.50 0.40 0.45

Calmness 0.47 0.47 0.45 0.56 0.53 0.50

Power 0.47 0.46 0.44 0.53 0.50 0.56

Joyful activation 0.48 0.50 0.50 0.53 0.54 0.66

Tension 0.32 0.47 0.26 0.48 0.43 0.46

Sadness 0.30 0.32 0.27 0.33 0.27 0.42

Average 0.39 0.43 0.37 0.47 0.43 0.47

For pooling, we first use max pooling over fragments of

music file corresponding to 100 spectrogram patches (around

3 seconds), and then average pooling over the resulting se-

quence. Results were measured using 10-fold cross-validation.

It can be seen that on average, a sparse coding based

approach can achieve performance comparable to that of hand-

crafted features. However, autoencoder-based music represen-

tation outperforms hand-crafted features features in modeling

highly subjective emotions, such as amazement and solemnity.

At the same time, the results are significantly worse for

"simple" emotions highly correlated with occurrence of major

and minor chords, i.e. joyful activation and sadness.

Out of all examined methods, only autoencoders achieved

this level of performance. The addition of radial basis function

kernel to the L1 least squares not only did not improve the

results, but worsened them. Sparse RBM performs better than

most approaches, but does not achieve the performance of a

sparse autoencoder. Interestingly, K-means based approach,

equivalent to the simple bag of words model, achieves per-

formance comparable to autoencoder. However, it does so

only for specific emotions, while being significantly worse for

others.

Under-performing in terms of recognizing joyful activation

and sadness can be interpreted as a sign of difficulty in learning

harmonic features. While an unsupervised dictionary learning

method can recognize a pattern corresponding to a particular

chord, it may be hard to generalize them to the concept of

major and minor chords, and further to key detection for the

entire song.

C. Experiment 2: Influence of pooling window size on the

results

Using previous parameters and choosing autoencoder as the

best performing method of sparse coding, we performed a

second experiments with the goal of estimating the influence

of selected pooling window size on the prediction of specific

emotions. Usually, in music information retrieval, model pa-

rameters such as window sizes for any type of operation are

constant and tuned for best overall performance. However,

with a specific set of differing emotions, it is interesting to

Fig. 2. Performance depending on pooling window size

see how recognition of each emotion is affected by the time-

frame considered.

As in the experiment 1, we use max pooling over small

windows first, and average pooling over the resulting sequence

of vectors afterwards. We consider pooling window sizes of

{1, 20, 40, 60, 80, 100, 120, 140, 160}. Note that window size

equal to one is equivalent to average pooling over the entire

file, which is commonly used in dictionary learning. Similarly

to the main experiment, results are measured using 10-fold

cross-validation.

Fig. 2 shows the changes in performance for different

window sizes of max pooling. It can be seen that peaks in

performance appear at different window sizes for different

emotions. For detection of joyful activation and sadness small

window sizes seem optimal, while detection of tension can be

improved with sizes close to 140 vectors.

D. Experiment 3: Encoding patterns

Since our sparse representations are built from spectrogram

patches and spectrogram is a visual representation of how

sound evolves, it is possible to visualize spectrogram patterns

which sparse coding methods recognize. In case of autoen-

coder neural network, a response of a hidden layer neuron

depends on the vector of input-hidden weights associated
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with that particular neuron. For each neuron in the hidden

layer, there are 400 weights, each corresponding to one input

neuron. Since a vector given as an input to the neural network

represents a 40 × 10 spectrogram patch, we use the same

40 × 10 dimensions to visualize the input weights. We want

to see if the response patterns are possible to interpret by a

human observer and relate to concepts existing in music. For

visualization of encoding patterns, we learned an autoencoder

network with the best-performing set of parameters found in

previous experiments: λ = 10, ρ = 0.1.

Fig. 3 shows sample response patterns of single neurons in

the encoding layer, with the highest weight values coloured red

and lowest coloured blue. Neuron should respond with a high

activation to spectrogram patches similar to these patterns.

We found certain types of response patterns appearing

consistently in unsupervised training of autoencoders. In Fig.

3, leftmost pattern shows high weights in distinct narrow

frequency bands, responding in high activation when the

amplitude is high in these bands. Patterns like this respond

well to specific music intervals, which makes them useful in

extracting harmonic features. A combination of them could

approximate chord detection. Second leftmost pattern shows

an example of high weights in a wider frequency band, in

this case responding to high amplitude in low frequency bins.

Neurons responding to patterns like this for different wide

bands can enable detection of overall amount high, mid and

low tones, which in turn could be used e.g. in recognizing

songs with a heavy bass line. Third pattern shows small

weights for inputs corresponding to initial frames and high

weights for inputs corresponding to latter frames in the low

frequency band, indicating the neuron will respond with high

activation to an onset of a musical phrase. Rightmost pattern

can detect increases in amplitude separated by a specific

interval of time, which gives the possibility of beat frequency

detection.

We can see that through unsupervised training, autoencoders

could learn features that are interpretable using concepts

related to high-level features of music.

VII. CONCLUSIONS AND FUTURE WORK

We applied a machine learning approach based on pooling

of sparse vectors built from spectrograms of sound files to

Emotify, first publicly available music emotion recognition

dataset annotated with Geneva Emotional Music Scale cate-

gories. We compared 5 sparse coding methods and measured

their performance in the task of predicting a community

consensus concerning emotions induced by a music piece. We

found out that sparse autoencoders significantly outperform

other approaches.

The results show that a sparse coding approach based on au-

toencoders can achieve satisfying performance in recognizing

certain very subjective emotions hard to detect using higher

level features. On the other hand even the best sparse coding

method applied to this problem cannot outperform harmonic

features in recognizing joyful activation and sadness. However,

the results show that performance is significantly affected

Fig. 3. Encoding patterns: input weights of four sample encoding layer
neurons

by the choice of the size of pooling window and it appears

that different window sizes are optimal for detecting different

emotions. These results suggest that analysing sound using

fixed and constant time scales is a significant limiting factor

in predicting music-induced emotions.

The main limitation of our research was the dataset, which

unfortunately is the only one so far using the GEMS system

for emotion classification. Generalizations based on our results

should be confirmed on other datasets, possibly including more

varied music types.

Future research in the area of induced emotion modelling

can focus on a number subjects. First, a thorough examination

of properties of the sparse autoencoder in the context of music

emotion recognition can be useful. Second possible area of

research is developing methods that can simultaneously con-

sider multiple time-scales since there is no optimal selection of

time windows for pooling, and maximizing average prediction

performance does not guarantee maximizing performance for

every emotion. Finally, building new datasets annotated with

domain-specific emotional models such as GEMS should be a

subject of interest.
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