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Abstract—The paper analyzes existing approaches for approx-
imate string matching based on linear search with Levenshtein
distance, AllScan and CPMerge algorithms using cosine, Jaccard
and Dice distance measures. The methods are presented and
compared to our approach that improves indexing time using
Locally Sensitive Hashing. Advantages and drawbacks of the
methods are identified based on theoretical considerations as well
as empirical evaluations on real-life dictionaries.
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I. INTRODUCTION

A
N APPROXIMATE string matching is a task of finding

a specific word in a given dictionary, that is similar to

the word provided by the user to at least a certain degree.

This task is encountered in a wide spectrum of applications,

especially for calculating similarity between texts [1]. One of

the examples is misspelling detection in a written text and

recommendation for a correct word. This solution is used

in most interfaces where a user enters a text, e.g.: in web

search engines, while she or he enters a query, or in mobile

phones, while typing messages. Among other examples, there

is plagiarism detection [2], [3] or spam filtering [4], that checks

whether a text contains words intentionally modified in order

to evade naive spam filters, e.g. vulgar words with added dots

instead of some letters in internet posts.

The typical approaches for approximate string matching use

some kind of edit distance, such as Levenshtein distance [5].

The two words are matched, if an edit distance between them

is below a specified threshold. A useful algorithm should then

return a number (possibly all) of words from a predefined

dictionary that approximately match a given (input) word in a

reasonable time.

In this paper we compare four different approaches to ac-

complish this, reporting their processing time as well as quality

of matched words returned: linear search with Levenshtein

distance, AllScan and CPMerge algorithms proposed in [6],

and an approach based on Locality Sensitive Hashing. We

identify their advantages and drawbacks.

The paper is constructed as follows. Section II describes

Levenshtein, AllScan and CPMerge algorithms. Section III

presents the approach based on Locally Sensitive Hashing.

The experiments and the results of their evaluation in the

approximate string matching task are provided in Section IV.

Finally, Section V contains conclusions and an idea of further

improvements.

II. APPROXIMATE STRING MATCHING ALGORITHMS

At the very beginning we define basic symbols we use to

describe the algorithms:

1) Σ - an alphabet, a finite set of symbols (letters)

2) Σ∗ - a set of all possible words over Σ (e.g. a, b, ..., aa,

ab, ...)

3) V ⊂ Σ∗ - a finite size dictionary

4) sim(x, y) - a similarity function between words x and

y – f : Σ∗ × Σ∗ → [0, 1]
5) α ∈ [0, 1] - similarity threshold

6) |x| - length of word x

7) |X | - the number of elements in set X

In general, a search for similar words, can be defined as

constructing a set Yx,α of certain words y from dictionary V ,

for which the similarity to a given word x is greater or equal

to α:

Yx,α = {y ∈ V |sim(x, y) ≥ α}. (1)

A. Linear search with Levenshtein distance

The most popular approaches for approximate string match-

ing use edit distance. In general, an edit distance measures two

strings dissimilarity by counting how many edit operations are

required to change one word into the other. Levenshtein dis-

tance considers three single character modifications: insertion,

deletion and substitution [7]. Each of them has an equal cost

of 1.
Formally, Levenshtein distance lev(x, y) between two

words x and y of lengths |x| and |y|, is equal to levx,y(|x|, |y|),
where levx,y(i, j) is a discrete function of two non-negative

arguments defined as:

levx,y(i, j) = min











levx,y(i − 1, j) + 1

levx,y(i, j − 1) + 1

levx,y(i − 1, j − 1) + 1(xi 6=yj)

, (2)

if min(i, j) 6= 0,

levx,y(i, j) = max(i, j), ifmin(i, j) = 0.

For example, the distance between words written and writes

equals 2, because we need two modifications to transform first
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string into the second one:

written → writen (deletion of t)

writen → writes (substitution of s for n)

In order to make use of (1) explicitly, a Levenshtein-derived

similarity measure can be defined:

simlev(x, y) =
max(|x|, |y|) − lev(x, y)

max(|x|, |y|)
. (3)

Because we need to browse the whole dictionary, the

complexity of this algorithm is O(n) where n denotes number

of objects in the dictionary in term of dictionary size. This is

the main main disadvantage of this straightforward approach.

On the other hand, this method provides all matching words in

the result, so that no one similar word is ever missed. Another

useful property it has is that there is no need for preprocessing

of the dictionary, that may require additional computations and

storage space, which will be the case for methods described

next. The approach finds many modifications e.g.: Damerau-

Levenshtein distance [8] or others [9], [10], but the complexity

usually remains linear. Thus, in experiments we use the basic

Levenshtein implementation as a baseline.

B. Shingle word representation

The rest of compared algorithms for approximate string

matching do not use edit distance to compare strings in their

raw form. Instead, they all incorporate a preprocessing step,

called shingling [11], which converts a string into a set of n-

grams. The similarity of two strings are then determined indi-

rectly by computing the similarity between the corresponding

sets of n-grams.

In our experiments, we split words into letter tri-

grams and call them features that represent a particu-

lar word. For example, a word rotation is represented

by a set {$$r, $ro, rot, ota, tat, ati, tio,

ion, on$, n$$}, where $ sign denotes ’no letter’.

It should be noticed that such a tri-gram representation is

chosen arbitrarily and can be further improved [12]. However,

to compare the approaches of approximate string matching we

decided to stick to one fixed representation.

There is a number of similarity measures between feature

sets than can be used for shingle-based strings representation.

One of the most popular is cosine similarity, defined by (4).

simcos(x, y) = cos(X,Y ) =
|X ∩ Y |
√

|X ||Y |
, (4)

where X and Y are feature sets (containing |X | and |Y |
elements) of x and y respectively .

Other measures, like Jaccard or Dice distance, can also be

successfully applied here [13]. They are defined by (5) and

(6) respectively.

simjacc(x, y) = jaccard(X,Y ) =
|X ∩ Y |

|X ∪ Y |
(5)

simdice(x, y) = dice(X,Y ) =
2|X ∩ Y |

|X |+ |Y |
(6)

To provide an illustrative example let us assume two

words: x = rotation and y = aviation. We then

have X = {$$r, $ro, rot, ota, tat, ati,

tio, ion, on$, n$$} and Y = {$$a, $av, avi,

via, iat, ati, tio, ion, on$, n$$}. Hence

|X | = 10, |Y | = 10. The cosine similarity of these words

is equal to cos(X,Y ) = 5√
10∗10 = 0.5. Jaccard and Dice

distances are as follows: jaccard(X,Y ) = 5
15 = 0.33,

dice(X,Y ) = 2∗5
10+10 = 0.5

C. AllScan algorithm

The AllScan algorithm first shingles word x obtaining

a feature set X . All words in the vocabulary must also be

shingled accordingly in a preprocessing phase. Then, AllScan

computes lower and upper bounds for length of word y

potentially similar to x to at least α. For cosine similarity,

this bounds are determined by inequality:

⌈

α2|X |
⌉

≤ |Y | ≤

⌊

|X |

α2

⌋

. (7)

Inequality (7) comes from (1) and (4), after observing that

for minimal length of y we have |X ∩ Y | = |Y |, while for

maximal length of y, it is |X ∩ Y | = |X |.
To give an example, if we assume α = 0.7 and x =

rotation, |X | = 10. Therefore Y set size must be between

5 and 20, because |Y | ≥
⌈

0.72 ∗ 10
⌉

≥ 5 and |Y | ≤
⌈

10
0.72

⌉

≤
20

Additionally, there is a minimum overlap τ value defined

for each possible word length from (7). The τ means minimal

value of the same letter trigrams, which have to occur in both

strings to exceed the similarity threshold value α. For cosine

similarity, it is therefore:

τ =
⌈

α
√

|X ||Y |
⌉

. (8)

Let us assume α = 0.7 and words rotation and

aviation (|X | = |Y | = 10). Equation (8) gives 7. Hence

the feature sets of the words have to contain at least seven

shingles in common to be similar in 0.7. They have only four

such shingles, so they do not satisfy the minimal overlap value.

Based on obtained |Y | and τ values, the algorithm retrieves

all words from the dictionary that satisfy a given matching

criterion, i.e. it returns all the words, similarities of which

exceed the threshold.

The main advantage of this approach is the retrieval of all

matching words (that satisfy given similarity measure), but

the problem is its performance. Although the search space is

reduced due to y length bounds calculation, the overall com-

plexity of AllScan algorithm is still O(n) in term of dictionary

size, both preprocessing the dictionary and searching.

D. CPMerge

CPMerge algorithm [6] extends AllScan by reduction of

the dictionary that is searched during single retrieval. The

improvement limits the size of the dictionary, removing

words which certainly are not a result. It uses Property 1 to

528 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



determine which words are candidates to be in a result set.

The result set is much smaller than the whole dictionary and

it causes significant speedup.

Property 1 Let there be a set X (of size |X |) of word

x n-grams and a set (of any size) Y of word y n-grams.

Consider any subset Z ⊆ X of size (|X | − τ + 1). If

|X ∩ Y | ≥ τ , then Z ∩ Y 6= ∅.

Assume x = rotation (|X | = 10) and word y with

length 6 (|Y | = 8). If α = 0.5 then τ = 5 (from (8)). Hence,

|Z| must be 6 and if |X ∩ Y | ≥ 5 then Z ∩ Y must have at

least one element.

As previous algorithms, CPMerge returns all matching

words as a result. It is faster than AllScan algorithm, due to

described improvements, but its complexity is still O(n). Full

explanation is available in [6].

III. LSH-BASED APPROACH

To improve the efficiency of dictionary indexing we propose

an approach based on special type of constructing the hash

indexes. The idea is to construct such an index that works in

opposite way to MD5 signature [14]. If the source strings differ

slightly, the output hash would be also modified slightly. One

way to create such hash function can be based on Locality-

Sensitive Hashing [15] used to reduce dimensionality of high-

dimensional data. It can be used in many applications where

nearest neighbors need to be effectively computed [16], such as

in tasks of entity resolution, fingerprint comparison or finding

similar documents.

The algorithm takes data and computes a hash, which is

a lower-dimensional representation of a given input. The result

must preserve similarity, i.e. if words are similar then their

hashes must be similar as well. In contrast to conventional

hashing functions, LSH tries to maximize probability of a col-

lision for similar items.
The main goal of incorporating LSH idea to approximate

string matching is to significantly improve time performance.

The LSH-based approach to this task consists of three phases:

1) Shingling (described above)

2) Min-Hashing – converts large sets to short signatures,

while preserving similarity

3) Locality-Sensitive Hashing – places similar words into

the same bucket

Firstly, an empty set C of shingles is created. During

shingling of each word from the dictionary, shingles are added

to collection C, so that after this step C is a sorted set of all

shingles that occur in the shingled dictionary. Every trigram

has a corresponding unique number (index of the shingle

in C).
Secondly, we take the indices of a word shingles and store

them in a vector. This vector representation is an input for

Min-Hash algorithm, which calculates the signature. It should

be noticed that different strategies can be used here [17]. We

used the most popular version of Min-Hash algorithm.

Min-Hash internally creates occurrence matrix (of size

#shingles × #words) filled with ones at positions where

a given string contains a specific shingle. An example of such

a matrix is shown in Table I. Then, rows of the matrix are

permuted n times and at every permutation, for each word

(each column) an index of the first row containing 1 is saved.

In result, each word has a signature, which is a vector of these

indices.

TABLE I
SAMPLE OCCURRENCE MATRIX

the those these
$$t 1 1 1
$th 1 1 1
the 1 0 1
he$ 1 0 0
e$$ 1 0 0
tho 0 1 0
hos 0 1 0
ose 0 1 0
se$ 0 1 1
e$$ 0 1 1
hes 0 0 1
ese 0 0 1

In the third step, we partition these signatures into b bands.

Every band is hashed, using locality sensitive hashing, into

one of k buckets. In this case, hash function is of the form:

f : Z
⌊n

b
⌋ → Z

We chose n = 100, b = 20 and we want each bucket

contains about one hundred hashes, so k must be dict_size
100 .

Candidate words are in buckets, which contain at least one

hash from word typed by user. Then, a similarity between

given hash and all hashes in bucket is calculated. If the

similarity exceeds the threshold, a string associated with the

hash is added to the result list.

The complexity of LSH searching is sub-linear, better than

that of previous approaches, although worse than O(1). In

contrast to previously described algorithms, LSH has a big

disadvantage – it does not guarantee that all matching words

are in the result set. Bigger dictionary can cause worse

results [18].

IV. EXPERIMENTS

In our experiments, we measured processing time depending

on various settings of the compared algorithms. In the case

of LSH algorithm, we also measured the quality of obtained

results in terms of recall and precision.

In every test, we randomly choose words from polish

dictionary for games containing over 2,700,000 words, taking

into account words with length less or equal to 15. The

dictionary is available online [19].
The processing times were measured ten times. Averages of

them are reported below.

A. The time of constructing the search structure

At the very beginning, we tested the time of building search-

ing structures needed for algorithms and how it depends on the

number of words in a dictionary. The time for Levenshtein and

CPMerge algorithms are the same as in the case of AllScan,

because data preparation process is exactly the same.
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Fig. 1. Building time depending on the number of words

As we can see in Fig. 1, the time grows linearly in relation

to the number of words with LSH having bigger coefficient.

B. Searching time

1) Dictionary size: The second test measured the search

time of algorithms depending on the number of words in

the dictionary. In this experiment we assumed the following

values:

distance (allscan, cpmerge) = cosine

length of a given word (|x|) = 10

similarity threshold (α) = 0.7
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Fig. 2. Searching time depending on the number of words

Fig. 2 shows that the fastest algorithm is CPMerge. How-

ever, its search time grows squarely, what in comparison to

LSH sub-linear growth allows us to state that LSH should be

faster for big data.
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Fig. 3. Searching time depending on the length of a given word

2) Length of given words: To evaluate search time in

the function of the length of given words we assumed the

following values:

algorithm = cpmerge

number of words (V ) = 100 000

similarity threshold (α) = 0.7

We measured the results for all three distance metrics.

Fig. 3 shows that processing time is the smallest for Jaccard

distance, as the range of candidate words is the narrowest.

All times grows linearly. Subtle deviations are caused by the

number of candidate words changing stepwise in relation to

word length.

3) Similarity threshold value: To evaluate search time

depending on similarity threshold and distance metric we

assumed:

searching algorithm = cpmerge

number of words (V ) = 100 000

length of given words (|x|) = 15

As can be seen in Fig. 4, time falls in relation to similarity.

This is because the number of candidate words is decreasing.

The algorithm is the fastest for Jaccard distance due to the

same reason as above, i.e. the smallest set of candidate words.

C. Number of words found

In this experiment we tested the impact of α similarity

threshold on the number of returned similar strings. CPMerge

algorithm had the following settings:

number of words (|V |) = 100 000

length of given words (|x|) = 10

Every given word had a typo in order to search for similar,

but not identical, word.
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Fig. 5 shows that the number of found words falls exponen-

tially in relation to assumed similarity threshold. As previously

noticed, Jaccard distance returns the smallest set of candidates.

D. Recall and precision of LSH algorithm

We used the following measures for evaluating the qual-

ity of the approximate string matching of LSH algorithm:

recall = found&relevant

relevant
and precision = found&relevant

found
.

Recall indicates what fraction of all matching words is re-

turned in the result. Precision indicates what is the fraction of

correct matches in the result set. In this task it is beneficial to

maximize both recall and precision, therefore we also show

their balanced harmonic mean, i.e. F-measure: F1 = 2∗P∗R
P+R

.

1) Dictionary size impact: We assumed:

number of hash functions (n) = 100

number of bands (b) = 20

similarity threshold (α) = 0.7

number of buckets (k) = number_of_words

100

TABLE II
LSH RECALL AND PRECISION DEPENDING ON DICTIONARY SIZE

100 1000 10000 100000
relevant 89 93 93 105
found 76 69 48 48
precision 1 1 1 1
recall 0.85 0.74 0.52 0.46

2) Similarity threshold impact: We assumed the following

values:

number of words (V ) = 100 000

number of hash functions (n) = 100

number of bands (b) = 20

number of buckets (k) = 1000

TABLE III
LSH RECALL AND PRECISION DEPENDING ON SIMILARITY THRESHOLD

0.4 0.5 0.6 0.7
relevant 10911 1806 261 103
found 453 189 91 46
precision 1 1 1 1
recall 0.04 0.10 0.35 0.45

Table III shows that recall for low threshold is very low,

which means LSH algorithm, in this configuration, is almost

useless.

E. Wikipedia editors misspellings correction

In the following two tests we used a list of misspellings

made by Wikipedia editors [20].

1) Comparison of algorithms: We set: number of words

(V ) = 1922

number of misspellings = 2455

similarity threshold (α) = 0.5

distance (cpmerge) = cosine

number of hash functions (lsh: n) = 100

number of bands (lsh: b) = 20

number of buckets (lsh: k) = 19

TABLE IV
COMPARED ALGORITHMS AT WIKI TYPOS CORRECTION TASK

Levenshtein AllScan & CPMerge LSH
recall 0.89 0.89 0.74
precision 0.56 0.48 0.64
F-measure 0.69 0.63 0.69

Allscan results are the same like results of CPMerge algo-

rithm, because they differ only in the processing time.
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2) Similarity threshold impact on CPMerge: The setting

were:

searching algorithm = CPMerge

distance (cpmerge) = cosine

number of words (V ) = 1922

number of misspellings = 2455

TABLE V
CPMERGE AT WIKI TYPOS CORRECTION TASK DEPENDING ON

SIMILARITY MEASURE

0.2 0.3 0.4 0.5 0.6 0.7
recall 0.99 0.98 0.94 0.89 0.81 0.67
precision 0.03 0.12 0.29 0.48 0.64 0.63
F-measure 0.06 0.21 0.44 0.63 0.71 0.65

V. CONCLUSIONS

The most straightforward approach to approximate string

matching is to incorporate some edit distance, like Leven-

shtein. Nevertheless, searching time of this method is the

highest, because it has to browse the whole dictionary. O(n)
complexity disqualifies this approach for big dictionaries.

AllScan and CPMerge reduces the size of the set of words to

process, so they are faster than Levenshtein-based approach.

However, their processing time still very much depends on

dictionary size. All three methods have a significant advantage

– they correctly (depending on similarity measure in use)

return all words similar to a given string within assumed

margins.
On the other hand, LSH provides results in acceptable time,

but it degrades recall value. This is the main disadvantage of

the algorithm, which causes that many similar words are not

in the returned list.
We wish to have a solution, that is fast and that provides re-

call on very high level. To reach this goal we propose and test

an initial solution that employs feed-forward neural network

as indexer. The network takes a word as input and returns its

index in the dictionary. With constant searching time, recall

above 97% and high precision, this method can potentially beat

all algorithms compared in this article in the task of approxi-

mate string matching. The idea extending the approach based

on feedforward network is to use a denoising autoencoder. The

approach based on on auto-associative network reconstructs

its input given at the output layer through a bottleneck hidden

layer, while the input additionally contains some noise, i.e.

misspelled words in this case. In this approach, we would

learn a network using one exact word and some words with

typos and expect a correct word to be reconstructed.
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