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Abstract—Modern SoCs are getting increasingly 

heterogeneous with a combination of multi-core architectures 
and hardware accelerators to speed up the execution of compute-
intensive tasks at considerably lower power consumption. 
Modern FPGAs, due to their reasonable execution speed and 
comparatively lower power consumption, are strong competitors 
to the traditional GPU based accelerators. High-level Synthesis 
(HLS) simplifies FPGA programming by allowing designers to 
program FPGAs in several high-level languages e.g. C/C++, 
OpenCL and SystemC. 

This work focuses on using an HLS based methodology to 
implement a widely used classification algorithm i.e. k-nearest 
neighbor on an FPGA based platform directly from its OpenCL 
code. Multiple fairly different implementations of the algorithm 
are considered and their performance on FPGA and GPU is 
compared. It is concluded that the FPGA generally proves to be 
more power efficient as compared to the GPU. Furthermore, 
using an FPGA-specific OpenCL coding style and providing 
appropriate HLS directives can yield an FPGA implementation 
comparable to a GPU also in terms of execution time. 

Keywords—kNN; FPGA; High-Level Synthesis; Hardware 
Acceleration; low-power low-energy computation; Parallel 
Computing; OpenCL. 

I.  INTRODUCTION 
The ever increasing requirement for electronic devices to 

perform a variety of compute intensive operations has resulted 
in the evolution of advanced system-on-chip (SoC) designs 
with heterogeneous system architectures. These heterogeneous 
systems are essentially multi-core systems offering a 
substantial gain in performance not only by utilizing 
additional cores but also by embedding specialized hardware 
accelerators e.g. Graphics Processing Units (GPUs) and field 
programmable gate arrays (FPGAs) for accelerating various 
compute intensive parts of complex applications. A simplified 
overview of such a system is shown in Fig. 1.  

These systems offer substantial gains in execution time as 
well as energy efficiency [1]. Modern high performance 
computing (HPC) systems thus rely on such heterogeneous 
systems consisting of traditional processors for performing the 
sequential tasks and FPGAs used as accelerators performing 
tasks concurrently. Modern FPGAs have the ability to provide 
sufficient processing speed while consuming a fraction of the 
power consumed by high-end GPUs [2]. This is why several 
big data companies such as Microsoft, Baidu are exploring 
FPGA devices as accelerators rather than GPUs [3, 4].  

The major limitation while considering such system 
architectures is the complexity to program the FPGAs which 
traditionally requires a considerable expertise in register 
transfer level (RTL) design. This issue is addressed by an 
approach called high-level synthesis (HLS), which tends to 
reduce both the verification and design time and effort for an 
FPGA based application by allowing the designers to program 
in several higher level languages such as C, C++ and 
SystemC.  

A very promising parallel programming language which is 
built upon C/C++ and can be used to program an FPGA is the 
Open Computing Language (OpenCL). The fact that OpenCL 
is based upon C/C++, makes porting a program from C/C++ to 
OpenCL quite easy [5]. OpenCL is a programming standard 
developed by the Khronos group to develop applications being 
executed on heterogeneous platforms. OpenCL due to its 
portability holds an edge over the very similar Compute 
Unified Device Architecture (CUDA) programming 
framework, which can be used to program NVIDIA GPUs 
only. Though OpenCL is device portable, yet it does not offer 
performance portability across multiple devices. OpenCL 
program support on Xilinx FPGA devices is provided by 
SDAccelTM, which is a Xilinx development environment for 
synthesizing OpenCL kernels to be executed on Xilinx FPGA 
devices [6]. The Xilinx OpenCL high-level synthesis tool, 
namely Vivado HLS, has been used in this work to implement 
the k-nearest neighbor (kNN) algorithm onto Xilinx FPGAs.   

 
Fig. 1. Typical Heterogeneous System Architecture 

The kNN algorithm is used to find the k nearest neighbors 
of a specific point among a set of unstructured data points. It is 
widely used in a diverse range of domains and applications 
such as pattern recognition, machine learning,  computer 
vision and coding theory to name a few. The algorithm 
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unfortunately has a significantly large computation cost, since 
typically training data sets are very large [7]. The algorithm 
though is highly parallelizable and can be accelerated 
considerably by exploiting the inherent parallelism of an 
FPGA device. 

This work starts from a parallel implementation of the kNN 
algorithm from the Rodinia library [8]. Two different 
implementations of the algorithm are considered and their 
time, energy/power and cost performance are compared for 
different hardware platforms i.e. GPUs and FPGAs. We show 
that, even though GPU and FPGA have similar memory 
hierarchies, the best implementation for an FPGA is obtained 
from OpenCL code that is different from the one leading to the 
best GPU implementation. This is because the final selection 
of the k nearest neighbors is difficult to parallelize with the 
“doall” strategy implied by OpenCL, but it can still be 
efficiently pipelined on an FPGA. Furthermore, GPUs have 
higher DRAM access bandwidth as compared to an FPGA. 

The FPGA implementation of our OpenCL code has been 
obtained by utilizing the SDAccel tool chain from Xilinx, 
including tools from the Vivado® Design Suite [6, 9]. The 
algorithm has been implemented on a Virtex-7 FPGA. The 
GPUs considered for comparison are the GeForce GTX 960 
and the Quadro K4200, both by NVIDIA. 

The main contributions of this paper are: 
 An investigation of the issues encountered when 

implementing and optimizing an OpenCL code onto 
a Xilinx FPGA device. 

 A performance comparison of the FPGA and GPU 
implementation in terms of time, energy and power. 

The rest of the paper is organized as follows. Section II 
presents a brief overview of our algorithm and of the OpenCL 
programming model. A summary of the related work is 
presented in section III. Section IV describes in detail our 
adopted methodology. Section V presents the results and the 
work is concluded in section VI. 

II. OVERVIEW 
This section of the paper presents a brief overview of the kNN 
algorithm. An overview of OpenCL with a brief description of 
its platform, execution and memory model is also presented 
here. 

A. kNN Algortihm  
Given a set S of n reference (training) data points in a d-

dimensional space and a query point q, the k-nearest neighbor 
algorithm returns the k points in S that are closest to point q. 
This is illustrated for k = 3 and n = 20 in Fig. 2. The circle 
represents the query point while the diamonds represent the 
reference data points. 

The algorithm consists of the following main steps: 
1- Compute n distances between the query point q and 

the n reference points of the set S. The distance in our 
case is the squared Euclidean distance, i.e. for two bi-
dimensional points (x1,y1) and (x2,y2): ݀ = ሺݔଵ − ଶሻଶݔ + ሺݕଵ −  ଶሻଶ         ሺ1ሻݕ

2- Sort the n distances while preserving their original 
indices (as specified in S).  

3- The k nearest neighbors would be the k points from 
the set S corresponding to the k lowest distances of 
the sorted distance array. 

 
Fig. 2. Illustration of the kNN search algorithm with k = 3 

B. Overview of OpenCL 
OpenCL is an open, industry standard portable framework 

for writing parallel programs to be executed on heterogeneous 
platforms consisting of central processing units (CPUs), 
GPUs, digital signal processors (DSPs) and FPGAs [10]. 
OpenCL code can be run on a variety of supporting devices by 
making minimal changes to the host code, hence making it 
portable.  The standard is derived from ISO C99 with 
additions to support both task-parallel and data-parallel 
programming models.  

At the heart of the OpenCL platform model is the host, 
which is typically a CPU used to setup the environment for the 
OpenCL program to run on one or more devices. A device in 
OpenCL terminology is any hardware platform used to 
accelerate the compute intensive portions of the application. A 
piece of code running on the device is called a kernel. The 
OpenCL device consists of compute units (CU) each further 
divided into processing elements (PE) as shown in Fig. 3. 

 Several concurrent executions of the kernel body, called 
work-items, are grouped into work groups, which can be 
executed in parallel by multiple processing elements. The 
memory is broadly divided into host (i.e. CPU) memory and 
device (i.e. GPU or FPGA) memory. The device memory is 
also explicitly split into private memory (specific to each 
work-item), local memory (shared by all the work-items in a 
work group) and a global/constant memory shared by all the 
work groups. Global memory offers the slowest access but has 
the largest capacity while private memory is the smallest but 
the fastest among all. The memory model is also depicted in 
Fig. 3. 

The main difference between OpenCL code executed on a 
CPU/GPU and an FPGA lies in the way the code is compiled. 
For CPU/GPU, the code is compiled in a just-in-time manner 
to exploit the fixed computing architectures of the devices. 
The intrinsic flexibility of the FPGA architecture on the other 
hand allows the designer to explore several kernel 
optimizations and CU combinations. The main caveat is that 
the generation of these highly optimized compute architectures 
takes longer than what a just-in-time compilation allows. The 
OpenCL standard addresses this issue by allowing for an 
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offline compilation of OpenCL code to be implemented on 
FPGA devices [6]. 
 

 
Fig. 3. OpenCL Platform and Memory Model 

III. RELATED WORK 
The prospect of using an FPGA as an accelerator in modern 

HPC systems has already been emphasized. This portion of 
the paper highlights some related work already done in this 
regard. It also describes some previous research work done in 
accelerating the kNN algorithm. 

A performance comparison of a complex computer vision 
algorithm used for linear structure detection implemented over 
a GPU and an FPGA has been presented in [5]. The 
implementation platforms considered are an AMD Radeon 
HD6870 GPU and a Xilinx Spartan6 LX150 FPGA. The 
results show that the FPGA implementation performs better 
both in terms of power and speed as compared to the GPU. 
Unlike our case, where we use HLS to automatically generate 
RTL from an OpenCL code, the authors of this work have 
written VHDL code manually to implement the algorithm onto 
the FPGA. The complexity of writing code at RTL is 
obviously much higher than doing it for the GPU via OpenCL, 
because: (1) the number of lines of code is much higher at 
RTL, (2) verification and debugging are much slower, and (3) 
each RTL model implements one micro-architecture, while a 
single OpenCL model can generate several micro-
architectures by providing different directives to the HLS tool 
e.g. pipeline or unroll a loop, partition a memory etc. 

An accelerated kNN algorithm implemented on an FPGA-
based heterogeneous computing system was presented in [11]. 
Altera’s OpenCL compiler was used for compiling the 
OpenCL code onto the FPGA. The algorithm was 
implemented onto an Intel Core i7-3770 CPU, an AMD 
Radeon HD7950 GPU and an Altera’s StratixIV 4SGX530 
FPGA. The FPGA beats both GPU and CPU in terms of 
power and energy-per-computation consumption, but the GPU 
performs better than the FPGA in terms of execution time, 
most likely because of the higher DRAM access bandwidth of 
modern GPUs. 

A detailed survey on how to parallelize the nearest neighbor 
algorithm was presented in [12] where, the author advocates 
both the opportunity and the need to parallelize such 
algorithms. A GPU based acceleration of a brute force kNN 
algorithm using CUDA and the CUBLAS library was 
presented in [7, 13]. It obviously showed a huge speed up with 
respect to a highly optimized C++ library implementation. 

The use of FPGAs for acceleration is hence a widely 
accepted proposition. This is shown, e.g. by the decision by 
Baidu to accelerate its deep learning models for image search 
by using FPGAs [3]. Similarly, Microsoft, after years of 
research to accelerate its Bing search engine, is now also 
looking into how to accelerate deep learning models through 
FPGAs [4]. Considering the market demand, major FPGA 
manufacturers Altera and Xilinx have also recently introduced 
tools to program their respective FPGAs directly through 
OpenCL [6, 14]. One of our main objectives in this project is 
to explore how various OpenCL programming constructs are 
handled by the HLS tool and how can we extract maximum 
performance from the FPGA device.   

IV. TEST CASE IMPLEMENTATIONS 
In this paper, we compare two different OpenCL 

implementations of the kNN algorithm, and we show that the 
OpenCL code that leads to the best implementation on an 
FPGA is very different from the one that leads to the best 
GPU results.  

A. Implementation I 
The first implementation is a direct implementation of the 

most easily parallelizable part of the kNN algorithm, namely 
the distance calculation task, while both sorting and nearest 
neighbors identification are performed by the host. The 
implementation uses global memory only, and thus it is 
mainly a measure of global memory access bandwidth. The 
distance calculation for each point in the reference data set is 
completely independent of the other points making the 
algorithm extremely parallelizable. This implementation is 
illustrated in implementation I. It makes sense as an 
“acceleration” of kNN only if the dimensionality d of each 
point is high, and hence distance computation (which is 
O(d*n)) dominates over finding the k smallest distances 
(which is O(k*n)). 

 
Implementation I. Distance calculation on device & neighbors on host 

Input: A query point q and S, a set of reference points; 
Output: Indices of the k reference points with the smallest distance from q; 
Begin 
On device: 
1: for each reference point s € S do 
2:       compute all distances between q and all points s € S; 
3: end for  
On host:  
4: for i = 0 to k-1 do   
5:       print the index in S of the i-th smallest element of the distance vector; 
6: end for 
End 
B. Implementation II  

This implementation uses two separate kernels, and 
streams data between them. The first kernel is used to 
calculate the distances as in the previous case. The second 
kernel finds the k smallest distances and returns their indices 
at the end of its execution.  

This implementation is meant to utilize a streaming 
memory optimization technique offered by SDAccel, which 
automatically maps global arrays, used merely for inter-kernel 
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communication, to the on-chip block RAMs. The pseudo code 
is given in implementation II. 

 
  

Implementation II. kNN on device using multiple kernels 
Input: A query point q and S, a set of reference points; 
Output: k smallest distances with their respective indices per work-group; 
Begin 
On device: 
1: declare global distance array “dist” for inter-kernel communication; 

Kernel1: distance calculation 
2: for each reference point s € S do 
3:       declare local arrays for each point s € S; 
4:       copy each point s € S into the local memory; 
5:       compute the distances between q and points s € S and save in “dist”; 
6: end for 

Kernel2: find k smallest distances 
7: for i = 0 to k-1 do 
8        print the index in S of the i-th smallest element of the distance vector; 
9: end for    
End 
  

V. RESULTS  
We performed a comparison of our implementations on 

GPUs as well as an FPGA. The code has been optimized for 
the FPGA by using a variety of optimization options offered by 
the HLS tool from Xilinx, e.g. loop unrolling and pipelining, 
and we report the best results for each implementation on each 
platform. The experimental setup along with the results from 
our experiments is presented here. 

A. Experimental setup 
The experimental setup consists of three target devices 

shown in Table. I. The first device is an NVIDIA GeForce 
GTX960 GPU with 1024 cores and a maximum operating 
frequency of 1178MHz. The device has about 2GB GDDR5 of 
global memory, with 112GB/s of memory bandwidth. It is 
accessible from the host through a PCIe 3.0 interface with 16 
lanes. The second device is an NVIDIA Quadro K4200 GPU 
with 1344 CUDA cores and a maximum clock frequency of 
784MHz. The device has about 4GB of GDDR5 global 
memory, with 172.8GB/s of memory bandwidth. It is 
accessible from the host through a PCIe Gen2 interface with 
16 lanes. The third device is an Alpha data ADM-PCIE-7V3 
FPGA board with a Virtex-7 690t. The global memory 
consists of two DDR3 memories with 21.3GB/s of bandwidth. 
The host can access it through a PCIe Gen3 interface with 8 
lanes.   

TABLE I.  TARGET PLATFORM COMPARISON 

Device Global 
memory size 

Global Memory 
Bandwidth (GB/s) Bus interface 

GTX 960 2GB GDDR5 112.0 PCIe 3.0 x16 
K4200 4GB GDDR5 172.8 PCIe 2.0 x16 

FPGA Two 8GB 
SODIMMs 21.3 PCIe 3.0 x8 

The dataset used for experimenting with our kNN 
algorithm is from [15]. It contains locations of various 
hurricanes and is used by our algorithm to specify the k 
nearest hurricanes in the vicinity of a given query point. k is 
usually small in comparison to the number of points in the 

reference data set and we have fixed it to 5 in our experiments. 
The number of reference data points used is about 300,000. 

B. Performance Analysis 
The parallel architecture of the FPGA has been exploited 

by exposing parallelism in the kernels through several HLS 
optimization directives offered by SDAccel. The loop unroll 
attribute in SDAccel could be used to expose concurrency to 
the compiler by either fully or partially unrolling the loops in 
OpenCL kernels. However, fully unrolling loop iterations that 
access global memory, as in our case, does not ensure the best 
throughput, since only a few global memory ports are 
available. So we unroll only enough to match the available 
maximum number of global memory access ports. Throughput 
can be further improved by using the loop pipeline attribute, 
which can pipeline any explicit loop in the kernel as well as 
the work-item loop within a work group, and better match the 
limited number of memory ports.  

The work group size in the OpenCL standard can be 
specified by the (reqd_work_group_size) attribute which 
indicates the size of the problem space that can be handled by 
a single invocation of the kernel compute unit. This attribute is 
highly recommended in the case of FPGA implementation, 
because it allows performance optimization during the custom 
logic generation for the kernel, by informing the synthesis tool 
about the iteration count of the loop over work items.  

Several memory access optimizations are also offered by 
SDAccel which are critical to performance enhancements on 
an FPGA. For instance, 2-element vector data types improve 
the memory access throughput, as compared to using C 
structs, when reading in two-dimensional data points. One of 
the optimizations offered by SDAccel, namely “on-chip global 
memories”, was exploited in implementation II to achieve a 
very significant speed up in execution. This optimization 
utilizes the block RAMs in the FPGA to create memory 
buffers that are visible only to the kernels accessing them, 
while inter-kernel buffers in “standard” OpenCL are allocated 
in the external, slower, DRAM.  

The performance analysis for implementation I is 
presented in Table. II. The resource utilization in case of 
FPGA implementation is also shown. The frequency reported 
by Vivado HLS is 240MHz. The sorting in this 
implementation is done on the host. Hence, the sorting time in 
all the cases is also included as a part of the total execution 
time of the kNN algorithm. The devices in this 
implementation are used only to calculate all the distances 
between the query point and all the reference data points. This 
process is fully parallelizable with no loop dependencies. 
Work-item pipelining has been used here for FPGA 
implementation and the data is read in bursts from the global 
memory. Both the GPUs perform faster than the FPGA due to 
their higher DRAM access bandwidth. FPGA implementation 
however out-performs both the GPUs in terms of power and 
energy consumption. The power analysis for the FPGA 
implementation was done using the power estimation 
capabilities of Vivado. The GPU power on the other hand was 
estimated based on the datasheet, which from our earlier 
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experiments was very close to the one reported by GPU 
profiler tools e.g. GPU-Z. 

TABLE II.  PERFORMANCE ANALYSIS OF IMPLEMENTATION I 

Parameters/Devices FPGA GTX 960 K4200 
Device time 1.24ms 0.04ms 0.05ms 

Sort time (Host) 4ms 3ms 3ms 
Total execution time 5.24ms 3.04ms 3.05ms 

Power (Device) 0.422W 120W 108W 
Energy (Device) 0.523mJ 4.4mJ 5.6mJ 

Resource Utilization 

BRAMs 0 

N/A N/A DSPs 12 (0.33%) 
FFs 3109 (0.36%) 

LUTs 2006 (0.46%) 

The performance analysis for implementation II is given in 
Table. III. This implementation also has a clock frequency of 
240MHz. It exploits the “on-chip global memories” option, 
offered by SDAccel for streaming data between kernels. A 
global memory buffer “dist” is used for inter-kernel 
communication which gets mapped to the on-chip Block 
RAMs and is visible only to the kernels that uses it. This 
explains the increased power consumption in comparison to 
the other case, where the BRAMs were kept powered down. 

TABLE III.  PEFORMANCE ANALYSIS OF IMPLEMENTATION II 

Parameters/Devices FPGA GTX 960 K4200 
Total execution time 1.23ms 0.93s 3.11s 

Power 3.136W 120W 108W 
Energy 0.0039J 111.6J 335.88J 

Resource Utilization 

BRAMs 512 (34.83%) 

N/A N/A DSPs 12 (0.33%) 
FFs 23892(2.78%)  

LUTs 11838 (2.76%) 

This implementation is considerably faster on the FPGA 
than both the GPUs, yet it still consumes both less power and 
less total energy in comparison. This speed up occurs at the 
cost of about 7x increase in the power consumption as 
compared to the FPGA implementation of implementation I. 
The best case GPU implementation (GTX960) in this case is 
about 756x slower than the FPGA implementation, since the 
multiple kernels execute sequentially on the GPU and share 
only global memory.  

VI. CONCLUSIONS AND FUTURE WORK 
This paper explores both kernel implementation changes 

and a variety of HLS directives to optimize the synthesis of an 
OpenCL application to be implemented on an FPGA platform. 
Two fairly different implementations of the kNN classification 
algorithm have been considered as our test cases. The FPGA is 
found to offer a better power/energy performance as compared 
to the GPU in all the algorithm implementations. By carefully 
analyzing the algorithm characteristics, we managed to find an 
OpenCL implementation of kNN that also results in better 
overall execution time on an FPGA than on a GPU, and is thus 
pareto-optimal with respect to GPU implementations with 
respect to performance, power and energy. It exploits on-chip 
global memory implementation and data streaming options 

that are more readily and more frequently available on an 
FPGA than on a GPU. Future work includes using our 
findings to enhance HLS tools to improve the level of 
automation starting from a non hardware specific OpenCL 
model.  
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