
Energy-efficient FPGA Implementation of the k-
Nearest Neighbors Algorithm Using OpenCL

Fahad Bin Muslim, Alexandros Demian, Liang Ma,
Luciano Lavagno

Department of Electronics and Telecommunication
Politecnico di Torino, ITALY

Affaq Qamar
Department of Electrical Engineering
Abasyn University, Peshawar Pakistan

Abstract—Modern SoCs are getting increasingly

heterogeneous with a combination of multi-core architectures
and hardware accelerators to speed up the execution of compute-
intensive tasks at considerably lower power consumption.
Modern FPGAs, due to their reasonable execution speed and
comparatively lower power consumption, are strong competitors
to the traditional GPU based accelerators. High-level Synthesis
(HLS) simplifies FPGA programming by allowing designers to
program FPGAs in several high-level languages e.g. C/C++,
OpenCL and SystemC.

This work focuses on using an HLS based methodology to
implement a widely used classification algorithm i.e. k-nearest
neighbor on an FPGA based platform directly from its OpenCL
code. Multiple fairly different implementations of the algorithm
are considered and their performance on FPGA and GPU is
compared. It is concluded that the FPGA generally proves to be
more power efficient as compared to the GPU. Furthermore,
using an FPGA-specific OpenCL coding style and providing
appropriate HLS directives can yield an FPGA implementation
comparable to a GPU also in terms of execution time.

Keywords—kNN; FPGA; High-Level Synthesis; Hardware
Acceleration; low-power low-energy computation; Parallel
Computing; OpenCL.

I. INTRODUCTION
The ever increasing requirement for electronic devices to

perform a variety of compute intensive operations has resulted
in the evolution of advanced system-on-chip (SoC) designs
with heterogeneous system architectures. These heterogeneous
systems are essentially multi-core systems offering a
substantial gain in performance not only by utilizing
additional cores but also by embedding specialized hardware
accelerators e.g. Graphics Processing Units (GPUs) and field
programmable gate arrays (FPGAs) for accelerating various
compute intensive parts of complex applications. A simplified
overview of such a system is shown in Fig. 1.

These systems offer substantial gains in execution time as
well as energy efficiency [1]. Modern high performance
computing (HPC) systems thus rely on such heterogeneous
systems consisting of traditional processors for performing the
sequential tasks and FPGAs used as accelerators performing
tasks concurrently. Modern FPGAs have the ability to provide
sufficient processing speed while consuming a fraction of the
power consumed by high-end GPUs [2]. This is why several
big data companies such as Microsoft, Baidu are exploring
FPGA devices as accelerators rather than GPUs [3, 4].

The major limitation while considering such system
architectures is the complexity to program the FPGAs which
traditionally requires a considerable expertise in register
transfer level (RTL) design. This issue is addressed by an
approach called high-level synthesis (HLS), which tends to
reduce both the verification and design time and effort for an
FPGA based application by allowing the designers to program
in several higher level languages such as C, C++ and
SystemC.

A very promising parallel programming language which is
built upon C/C++ and can be used to program an FPGA is the
Open Computing Language (OpenCL). The fact that OpenCL
is based upon C/C++, makes porting a program from C/C++ to
OpenCL quite easy [5]. OpenCL is a programming standard
developed by the Khronos group to develop applications being
executed on heterogeneous platforms. OpenCL due to its
portability holds an edge over the very similar Compute
Unified Device Architecture (CUDA) programming
framework, which can be used to program NVIDIA GPUs
only. Though OpenCL is device portable, yet it does not offer
performance portability across multiple devices. OpenCL
program support on Xilinx FPGA devices is provided by
SDAccelTM, which is a Xilinx development environment for
synthesizing OpenCL kernels to be executed on Xilinx FPGA
devices [6]. The Xilinx OpenCL high-level synthesis tool,
namely Vivado HLS, has been used in this work to implement
the k-nearest neighbor (kNN) algorithm onto Xilinx FPGAs.

Fig. 1. Typical Heterogeneous System Architecture

The kNN algorithm is used to find the k nearest neighbors
of a specific point among a set of unstructured data points. It is
widely used in a diverse range of domains and applications
such as pattern recognition, machine learning, computer
vision and coding theory to name a few. The algorithm

GPU/FPGA GPU/FPGA

CPU CPU

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 141–145

DOI: 10.15439/2016F327

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 141

unfortunately has a significantly large computation cost, since
typically training data sets are very large [7]. The algorithm
though is highly parallelizable and can be accelerated
considerably by exploiting the inherent parallelism of an
FPGA device.

This work starts from a parallel implementation of the kNN
algorithm from the Rodinia library [8]. Two different
implementations of the algorithm are considered and their
time, energy/power and cost performance are compared for
different hardware platforms i.e. GPUs and FPGAs. We show
that, even though GPU and FPGA have similar memory
hierarchies, the best implementation for an FPGA is obtained
from OpenCL code that is different from the one leading to the
best GPU implementation. This is because the final selection
of the k nearest neighbors is difficult to parallelize with the
“doall” strategy implied by OpenCL, but it can still be
efficiently pipelined on an FPGA. Furthermore, GPUs have
higher DRAM access bandwidth as compared to an FPGA.

The FPGA implementation of our OpenCL code has been
obtained by utilizing the SDAccel tool chain from Xilinx,
including tools from the Vivado® Design Suite [6, 9]. The
algorithm has been implemented on a Virtex-7 FPGA. The
GPUs considered for comparison are the GeForce GTX 960
and the Quadro K4200, both by NVIDIA.

The main contributions of this paper are:
 An investigation of the issues encountered when

implementing and optimizing an OpenCL code onto
a Xilinx FPGA device.

 A performance comparison of the FPGA and GPU
implementation in terms of time, energy and power.

The rest of the paper is organized as follows. Section II
presents a brief overview of our algorithm and of the OpenCL
programming model. A summary of the related work is
presented in section III. Section IV describes in detail our
adopted methodology. Section V presents the results and the
work is concluded in section VI.

II. OVERVIEW
This section of the paper presents a brief overview of the kNN
algorithm. An overview of OpenCL with a brief description of
its platform, execution and memory model is also presented
here.

A. kNN Algortihm
Given a set S of n reference (training) data points in a d-

dimensional space and a query point q, the k-nearest neighbor
algorithm returns the k points in S that are closest to point q.
This is illustrated for k = 3 and n = 20 in Fig. 2. The circle
represents the query point while the diamonds represent the
reference data points.

The algorithm consists of the following main steps:
1- Compute n distances between the query point q and

the n reference points of the set S. The distance in our
case is the squared Euclidean distance, i.e. for two bi-
dimensional points (x1,y1) and (x2,y2): ݀ = ሺݔଵ − ଶሻଶݔ + ሺݕଵ − ଶሻଶ ሺ1ሻݕ

2- Sort the n distances while preserving their original
indices (as specified in S).

3- The k nearest neighbors would be the k points from
the set S corresponding to the k lowest distances of
the sorted distance array.

Fig. 2. Illustration of the kNN search algorithm with k = 3

B. Overview of OpenCL
OpenCL is an open, industry standard portable framework

for writing parallel programs to be executed on heterogeneous
platforms consisting of central processing units (CPUs),
GPUs, digital signal processors (DSPs) and FPGAs [10].
OpenCL code can be run on a variety of supporting devices by
making minimal changes to the host code, hence making it
portable. The standard is derived from ISO C99 with
additions to support both task-parallel and data-parallel
programming models.

At the heart of the OpenCL platform model is the host,
which is typically a CPU used to setup the environment for the
OpenCL program to run on one or more devices. A device in
OpenCL terminology is any hardware platform used to
accelerate the compute intensive portions of the application. A
piece of code running on the device is called a kernel. The
OpenCL device consists of compute units (CU) each further
divided into processing elements (PE) as shown in Fig. 3.

 Several concurrent executions of the kernel body, called
work-items, are grouped into work groups, which can be
executed in parallel by multiple processing elements. The
memory is broadly divided into host (i.e. CPU) memory and
device (i.e. GPU or FPGA) memory. The device memory is
also explicitly split into private memory (specific to each
work-item), local memory (shared by all the work-items in a
work group) and a global/constant memory shared by all the
work groups. Global memory offers the slowest access but has
the largest capacity while private memory is the smallest but
the fastest among all. The memory model is also depicted in
Fig. 3.

The main difference between OpenCL code executed on a
CPU/GPU and an FPGA lies in the way the code is compiled.
For CPU/GPU, the code is compiled in a just-in-time manner
to exploit the fixed computing architectures of the devices.
The intrinsic flexibility of the FPGA architecture on the other
hand allows the designer to explore several kernel
optimizations and CU combinations. The main caveat is that
the generation of these highly optimized compute architectures
takes longer than what a just-in-time compilation allows. The
OpenCL standard addresses this issue by allowing for an

142 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

offline compilation of OpenCL code to be implemented on
FPGA devices [6].

Fig. 3. OpenCL Platform and Memory Model

III. RELATED WORK
The prospect of using an FPGA as an accelerator in modern

HPC systems has already been emphasized. This portion of
the paper highlights some related work already done in this
regard. It also describes some previous research work done in
accelerating the kNN algorithm.

A performance comparison of a complex computer vision
algorithm used for linear structure detection implemented over
a GPU and an FPGA has been presented in [5]. The
implementation platforms considered are an AMD Radeon
HD6870 GPU and a Xilinx Spartan6 LX150 FPGA. The
results show that the FPGA implementation performs better
both in terms of power and speed as compared to the GPU.
Unlike our case, where we use HLS to automatically generate
RTL from an OpenCL code, the authors of this work have
written VHDL code manually to implement the algorithm onto
the FPGA. The complexity of writing code at RTL is
obviously much higher than doing it for the GPU via OpenCL,
because: (1) the number of lines of code is much higher at
RTL, (2) verification and debugging are much slower, and (3)
each RTL model implements one micro-architecture, while a
single OpenCL model can generate several micro-
architectures by providing different directives to the HLS tool
e.g. pipeline or unroll a loop, partition a memory etc.

An accelerated kNN algorithm implemented on an FPGA-
based heterogeneous computing system was presented in [11].
Altera’s OpenCL compiler was used for compiling the
OpenCL code onto the FPGA. The algorithm was
implemented onto an Intel Core i7-3770 CPU, an AMD
Radeon HD7950 GPU and an Altera’s StratixIV 4SGX530
FPGA. The FPGA beats both GPU and CPU in terms of
power and energy-per-computation consumption, but the GPU
performs better than the FPGA in terms of execution time,
most likely because of the higher DRAM access bandwidth of
modern GPUs.

A detailed survey on how to parallelize the nearest neighbor
algorithm was presented in [12] where, the author advocates
both the opportunity and the need to parallelize such
algorithms. A GPU based acceleration of a brute force kNN
algorithm using CUDA and the CUBLAS library was
presented in [7, 13]. It obviously showed a huge speed up with
respect to a highly optimized C++ library implementation.

The use of FPGAs for acceleration is hence a widely
accepted proposition. This is shown, e.g. by the decision by
Baidu to accelerate its deep learning models for image search
by using FPGAs [3]. Similarly, Microsoft, after years of
research to accelerate its Bing search engine, is now also
looking into how to accelerate deep learning models through
FPGAs [4]. Considering the market demand, major FPGA
manufacturers Altera and Xilinx have also recently introduced
tools to program their respective FPGAs directly through
OpenCL [6, 14]. One of our main objectives in this project is
to explore how various OpenCL programming constructs are
handled by the HLS tool and how can we extract maximum
performance from the FPGA device.

IV. TEST CASE IMPLEMENTATIONS
In this paper, we compare two different OpenCL

implementations of the kNN algorithm, and we show that the
OpenCL code that leads to the best implementation on an
FPGA is very different from the one that leads to the best
GPU results.

A. Implementation I
The first implementation is a direct implementation of the

most easily parallelizable part of the kNN algorithm, namely
the distance calculation task, while both sorting and nearest
neighbors identification are performed by the host. The
implementation uses global memory only, and thus it is
mainly a measure of global memory access bandwidth. The
distance calculation for each point in the reference data set is
completely independent of the other points making the
algorithm extremely parallelizable. This implementation is
illustrated in implementation I. It makes sense as an
“acceleration” of kNN only if the dimensionality d of each
point is high, and hence distance computation (which is
O(d*n)) dominates over finding the k smallest distances
(which is O(k*n)).

Implementation I. Distance calculation on device & neighbors on host

Input: A query point q and S, a set of reference points;
Output: Indices of the k reference points with the smallest distance from q;
Begin
On device:
1: for each reference point s € S do
2: compute all distances between q and all points s € S;
3: end for
On host:
4: for i = 0 to k-1 do
5: print the index in S of the i-th smallest element of the distance vector;
6: end for
End
B. Implementation II

This implementation uses two separate kernels, and
streams data between them. The first kernel is used to
calculate the distances as in the previous case. The second
kernel finds the k smallest distances and returns their indices
at the end of its execution.

This implementation is meant to utilize a streaming
memory optimization technique offered by SDAccel, which
automatically maps global arrays, used merely for inter-kernel

CPU

Host

Kernel
CU

CU

CU

PE PE
PE PE

Device

Host Memory

Global/Constant
Memory

Local Memory

Private Memory

FAHAD MUSLIM ET AL.: ENERGY-EFFICIENT FPGA IMPLEMENTATION OF THE K-NEAREST NEIGHBORS ALGORITHM USING OPENCL 143

communication, to the on-chip block RAMs. The pseudo code
is given in implementation II.

Implementation II. kNN on device using multiple kernels
Input: A query point q and S, a set of reference points;
Output: k smallest distances with their respective indices per work-group;
Begin
On device:
1: declare global distance array “dist” for inter-kernel communication;

Kernel1: distance calculation
2: for each reference point s € S do
3: declare local arrays for each point s € S;
4: copy each point s € S into the local memory;
5: compute the distances between q and points s € S and save in “dist”;
6: end for

Kernel2: find k smallest distances
7: for i = 0 to k-1 do
8 print the index in S of the i-th smallest element of the distance vector;
9: end for
End

V. RESULTS
We performed a comparison of our implementations on

GPUs as well as an FPGA. The code has been optimized for
the FPGA by using a variety of optimization options offered by
the HLS tool from Xilinx, e.g. loop unrolling and pipelining,
and we report the best results for each implementation on each
platform. The experimental setup along with the results from
our experiments is presented here.

A. Experimental setup
The experimental setup consists of three target devices

shown in Table. I. The first device is an NVIDIA GeForce
GTX960 GPU with 1024 cores and a maximum operating
frequency of 1178MHz. The device has about 2GB GDDR5 of
global memory, with 112GB/s of memory bandwidth. It is
accessible from the host through a PCIe 3.0 interface with 16
lanes. The second device is an NVIDIA Quadro K4200 GPU
with 1344 CUDA cores and a maximum clock frequency of
784MHz. The device has about 4GB of GDDR5 global
memory, with 172.8GB/s of memory bandwidth. It is
accessible from the host through a PCIe Gen2 interface with
16 lanes. The third device is an Alpha data ADM-PCIE-7V3
FPGA board with a Virtex-7 690t. The global memory
consists of two DDR3 memories with 21.3GB/s of bandwidth.
The host can access it through a PCIe Gen3 interface with 8
lanes.

TABLE I. TARGET PLATFORM COMPARISON

Device Global
memory size

Global Memory
Bandwidth (GB/s) Bus interface

GTX 960 2GB GDDR5 112.0 PCIe 3.0 x16
K4200 4GB GDDR5 172.8 PCIe 2.0 x16

FPGA Two 8GB
SODIMMs 21.3 PCIe 3.0 x8

The dataset used for experimenting with our kNN
algorithm is from [15]. It contains locations of various
hurricanes and is used by our algorithm to specify the k
nearest hurricanes in the vicinity of a given query point. k is
usually small in comparison to the number of points in the

reference data set and we have fixed it to 5 in our experiments.
The number of reference data points used is about 300,000.

B. Performance Analysis
The parallel architecture of the FPGA has been exploited

by exposing parallelism in the kernels through several HLS
optimization directives offered by SDAccel. The loop unroll
attribute in SDAccel could be used to expose concurrency to
the compiler by either fully or partially unrolling the loops in
OpenCL kernels. However, fully unrolling loop iterations that
access global memory, as in our case, does not ensure the best
throughput, since only a few global memory ports are
available. So we unroll only enough to match the available
maximum number of global memory access ports. Throughput
can be further improved by using the loop pipeline attribute,
which can pipeline any explicit loop in the kernel as well as
the work-item loop within a work group, and better match the
limited number of memory ports.

The work group size in the OpenCL standard can be
specified by the (reqd_work_group_size) attribute which
indicates the size of the problem space that can be handled by
a single invocation of the kernel compute unit. This attribute is
highly recommended in the case of FPGA implementation,
because it allows performance optimization during the custom
logic generation for the kernel, by informing the synthesis tool
about the iteration count of the loop over work items.

Several memory access optimizations are also offered by
SDAccel which are critical to performance enhancements on
an FPGA. For instance, 2-element vector data types improve
the memory access throughput, as compared to using C
structs, when reading in two-dimensional data points. One of
the optimizations offered by SDAccel, namely “on-chip global
memories”, was exploited in implementation II to achieve a
very significant speed up in execution. This optimization
utilizes the block RAMs in the FPGA to create memory
buffers that are visible only to the kernels accessing them,
while inter-kernel buffers in “standard” OpenCL are allocated
in the external, slower, DRAM.

The performance analysis for implementation I is
presented in Table. II. The resource utilization in case of
FPGA implementation is also shown. The frequency reported
by Vivado HLS is 240MHz. The sorting in this
implementation is done on the host. Hence, the sorting time in
all the cases is also included as a part of the total execution
time of the kNN algorithm. The devices in this
implementation are used only to calculate all the distances
between the query point and all the reference data points. This
process is fully parallelizable with no loop dependencies.
Work-item pipelining has been used here for FPGA
implementation and the data is read in bursts from the global
memory. Both the GPUs perform faster than the FPGA due to
their higher DRAM access bandwidth. FPGA implementation
however out-performs both the GPUs in terms of power and
energy consumption. The power analysis for the FPGA
implementation was done using the power estimation
capabilities of Vivado. The GPU power on the other hand was
estimated based on the datasheet, which from our earlier

144 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

experiments was very close to the one reported by GPU
profiler tools e.g. GPU-Z.

TABLE II. PERFORMANCE ANALYSIS OF IMPLEMENTATION I

Parameters/Devices FPGA GTX 960 K4200
Device time 1.24ms 0.04ms 0.05ms

Sort time (Host) 4ms 3ms 3ms
Total execution time 5.24ms 3.04ms 3.05ms

Power (Device) 0.422W 120W 108W
Energy (Device) 0.523mJ 4.4mJ 5.6mJ

Resource Utilization

BRAMs 0

N/A N/A DSPs 12 (0.33%)
FFs 3109 (0.36%)

LUTs 2006 (0.46%)

The performance analysis for implementation II is given in
Table. III. This implementation also has a clock frequency of
240MHz. It exploits the “on-chip global memories” option,
offered by SDAccel for streaming data between kernels. A
global memory buffer “dist” is used for inter-kernel
communication which gets mapped to the on-chip Block
RAMs and is visible only to the kernels that uses it. This
explains the increased power consumption in comparison to
the other case, where the BRAMs were kept powered down.

TABLE III. PEFORMANCE ANALYSIS OF IMPLEMENTATION II

Parameters/Devices FPGA GTX 960 K4200
Total execution time 1.23ms 0.93s 3.11s

Power 3.136W 120W 108W
Energy 0.0039J 111.6J 335.88J

Resource Utilization

BRAMs 512 (34.83%)

N/A N/A DSPs 12 (0.33%)
FFs 23892(2.78%)

LUTs 11838 (2.76%)

This implementation is considerably faster on the FPGA
than both the GPUs, yet it still consumes both less power and
less total energy in comparison. This speed up occurs at the
cost of about 7x increase in the power consumption as
compared to the FPGA implementation of implementation I.
The best case GPU implementation (GTX960) in this case is
about 756x slower than the FPGA implementation, since the
multiple kernels execute sequentially on the GPU and share
only global memory.

VI. CONCLUSIONS AND FUTURE WORK
This paper explores both kernel implementation changes

and a variety of HLS directives to optimize the synthesis of an
OpenCL application to be implemented on an FPGA platform.
Two fairly different implementations of the kNN classification
algorithm have been considered as our test cases. The FPGA is
found to offer a better power/energy performance as compared
to the GPU in all the algorithm implementations. By carefully
analyzing the algorithm characteristics, we managed to find an
OpenCL implementation of kNN that also results in better
overall execution time on an FPGA than on a GPU, and is thus
pareto-optimal with respect to GPU implementations with
respect to performance, power and energy. It exploits on-chip
global memory implementation and data streaming options

that are more readily and more frequently available on an
FPGA than on a GPU. Future work includes using our
findings to enhance HLS tools to improve the level of
automation starting from a non hardware specific OpenCL
model.

ACKNOWLEDGMENT
The authors would like to extend their gratitude to Xilinx, Inc.
for their support while carrying out this work. This work is
also supported in part by the European Commission through
the ECOSCALE project (H2020-ICT-671632).

REFERENCES
[1] Mavroidis, I., Papaefstathiou, I., Lavagno, L., Nikolopoulos, D. S.,

Koch, D., Goodacre, J., ... & Palomino, M. (2016, March). ECOSCALE:
Reconfigurable computing and runtime system for future exascale
systems. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (pp. 696-701). IEEE.

[2] Ovtcharov, K., Ruwase, O., Kim, J. Y., Fowers, J., Strauss, K., &
Chung, E. S. (2015). Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper, 2.

[3] Ouyang, J., Lin, S., Qi, W., Wang, Y., Yu, B., & Jiang, S. (2014,
August). Sda: Software-defined accelerator for largescale dnn systems.
In Hot Chips(Vol. 26).

[4] http://www.nextplatform.com/2015/08/27/microsoft-extends-fpga-reach-
from-bing-to-deep-learning/ [Accessed: 26 April 2016].

[5] Struyf, L., De Beugher, S., Van Uytsel, D. H., Kanters, F., & Goedemé,
T. (2014, January). The battle of the giants: a case study of GPU vs
FPGA optimisation for real-time image processing. In Proceedings
PECCS 2014(Vol. 1, pp. 112-119). VISIGRAPP.

[6] User Guide, “SDAccel Development Environment User Guide
v2015.1”, Xilinx, 2015.

[7] Garcia, V., Debreuve, E., Nielsen, F., & Barlaud, M. (2010, September).
K-nearest neighbor search: Fast GPU-based implementations and
application to high-dimensional feature matching. In 2010 IEEE
International Conference on Image Processing (pp. 3757-3760). IEEE,
http://dx.doi.org/10.1109/ICIP.2010.5654017.

[8] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H., &
Skadron, K. (2009, October). Rodinia: A benchmark suite for
heterogeneous computing. In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on (pp. 44-54). IEEE,
http://dx.doi.org/10.1109/IISWC.2009.5306797.

[9] User Guide, “Vivado Design Suite User Guide High-Level Synthesis
v2015.1”, Xilinx, 2015.

[10] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel
programming standard for heterogeneous computing
systems. Computing in science & engineering, 12(1-3), 66-73,
http://dx.doi.org/10.1109/MCSE.2010.69.

[11] Pu, Y., Peng, J., Huang, L., & Chen, J. (2015, May). An efficient KNN
algorithm implemented on FPGA based heterogeneous computing
system using OpenCL. In Field-Programmable Custom Computing
Machines (FCCM), 2015 IEEE 23rd Annual International Symposium
on (pp. 167-170). IEEE, http://dx.doi.org/10.1109/FCCM.2015.7.

[12] Aydin, B. E. R. K. A. Y. (2014). Parallel algorithms on nearest neighbor
search. Survey paper, Georgia State University.

[13] Garcia, V., Debreuve, E., & Barlaud, M. (2008, June). Fast k nearest
neighbor search using GPU. In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society
Conference on (pp. 1-6). IEEE,
http://dx.doi.org/10.1109/CVPRW.2008.4563100.

[14] Singh, D. (2011). Implementing FPGA design with the OpenCL
standard.Altera whitepaper.

[15] http://weather.unisys.com/hurricane/atlantic/2012/index.php [Accessed:
30 June 2016].

FAHAD MUSLIM ET AL.: ENERGY-EFFICIENT FPGA IMPLEMENTATION OF THE K-NEAREST NEIGHBORS ALGORITHM USING OPENCL 145

