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Abstract— Respiration rate is a very important vital sign. 

Different methods of respiration rate measurement or estimation 

have been developed. However, especially interesting are those 

that enable remote and unobtrusive monitoring. In this study, we 

investigated the use of smart glasses for the estimation of 

respiration rate especially useful for indoors applications. Two 

methods were analyzed. The first one is based on measurements 

of respiration-related body movements using an accelerometer. 

The second one uses the thermal camera to observe temperature 

changes in the nostril region. For both methods signals were 

extracted, filtered and processed using two different respiration 

rate estimators. Both methods were validated during experiments 

with the participation of volunteers using the respiration belt as a 

reference measurement method. Results proved that for both 

methods it is possible to reliable estimate the respiration rate 

with Root Mean Square Error lower than 2 breaths per minute, 

which is sufficient for medical screening.  
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I.  INTRODUCTION 

Smart glasses are wearable devices that can extend human 
senses and capabilities of information processing. 
Additionally, the near-to-eye display could provide graphical 
information with much higher privacy than a smartphone or a 
tablet. Smart glasses can be equipped with different sensors 
(e.g. accelerometers, gyroscopes, cameras), communication 
interfaces (e.g. WiFi, Bluetooth), etc. Recently, many devices 
have been proposed on the consumer market, including 
Google Glass, Epson Moverio BT-200, Recon Jet, Lumus DK-
40, etc. [1]. Many ideas and demonstrations of potential roles 
of smart glasses in healthcare have been presented. Some 
include improved visualization of veins locations (Evena 
Medical [2]), access and visualization of data from medical 
records [3][4][5], presentation of vital signs on the display of 
smart glasses (Philips [6]), etc.  

In this paper we analyze the possible role of smart glasses 
in estimation of respiration rate. Smart glasses were previously 
used to estimate some vital signs [7][8]. Typically, the pulse 
rate was estimated using photoplethysmography [9] or 
respiration rate (and pulse rate) using data collected by an 
accelerometer or gyroscope of the Google Glass [7]. 
Additionally, for the identified patient (e.g. using face 
recognition [10] or using graphical markers like QR-code 
[11][12]) the measured vital signs or other health-related data 
can be automatically uploaded to the healthcare information 

system. The goal of this paper is also to analyze two different 
respiration rate estimators applied to short-time data collected 
using the accelerometer or the thermal camera. Respiration 
rate is typically monitored using masks with thermistors, 
analyzing ECG drifts or using clinical observations. It is 
especially important in quality of sleep analysis (e.g. for sleep 
apnea detection [13]). Some remote methods use analysis of 
video sequences recorded from the chest region [14] looking 
for respiration-related movements. Those recordings are 
typically performed using visible light cameras [15] and 
infrared cameras [16][17]. Thermal recordings were typically 
performed using cameras with good spatial resolution [18][19] 
performing respiratory rate analysis in the frequency domain. 

The rest of the paper is structured as follows: Section II 
presents the proposed methods. Results are described in 
Section III. Section IV present a discussion of results and 
concludes the paper. 

II. METHODS  

A. Measurement systems 

Respiration is important measurement of the body's most 
fundamental function. Smart glasses can use different sensors 
to measure or estimate respiration rate (for the observed 
person and for the wearer). Here, we assume that respiration 
rate can be estimated using analysis of data captured: with 
accelerometer/gyroscope sensors - for the user of smart 
glasses and with the thermal camera - for the observed person. 
Both measurement methods were implemented in the eGlasses 
prototype, developed under the eGlasses project 
(www.eglasses.eu). This experimental platform is dedicated to 
research activities, so different electronic modules can be 
changed; it is possible to print another cover using 3D printer, 
add sensors or electrodes, change the display, etc. The current 
prototype uses OMAP 4460 processor with 1GB RAM, 
1024x768 transparent display from Elvision Company, 5MPx 
camera, WiFi and Bluetooth 4 wireless interfaces, different 
sensors (accelerometer, gyroscope, magnetometer, OMRON 
D6T thermal sensor, etc.), eye-tracker and extension slots. The 
Android 4.1 OS and Linux Ubuntu OS have been already 
tested. For the goals of this paper the accelerometer and the 
thermal camera module were used. 

B. Accelerometer and respiration rate 

The used single-chip MPU-6500 (Invesense) integrates the 
3-axis accelerometer, the 3-axis gyroscope, and the onboard 
Digital Motion Processor™ (DMP) in a small, 3 mm x 3 mm x 
0.9mm package. The device can operate from 1.8V and 
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consumes 6.1mW in full operating mode (33µW in low-power 
mode). The typical offset of the accelerometer is ±60 mg and 
300 µg/√Hz of noise. The location of the chip on the base 
board (Fig. 1) enables the measurement of acceleration in x 
direction (head top to down), y direction (back of the head 
towards face) and z direction (ear-to-ear direction). 

a)  b)  

Fig. 1. a) The eGlasses prototype with the indicated location of the (side) 

base board with sensors. b) The layout of the (side) base board with the 
indicated axes of the accelerometer and gyroscope. 

It is assumed that respiration activities influence body (head) 
movements so it should be possible to estimate the respiration 
rate. Typically, the acceleration module is calculated as: 

a = a
x

2
+ a

y

2
+ a

z

2
,  (1) 

where: ax, ay, and az are the measured acceleration values for 
particular directions. 

In this work, measured signals (|a| or directional a signals) are 
resampled (to fs=11Hz) and normalized (mean removal). Next, 
filtration is used to remove noise and not-respiratory related 
signal components. The moving average is used (window size 
fs/2) and the band-pass Butterworth filter (4

th
 order) to pass 

frequencies between 6bpm and 40bpm. Finally, two 
respiratory rate estimators are applied (described later). 

C. Thermal camera and respiration rate 

The respiration rate was also analyzed using sequences of 
thermal images recorded for nostril regions. The FLIR Lepton 
thermal camera module, located in the designed front board, 
was used for thermal recordings (Fig. 2). It is characterized by 
high dynamic range (14bits), small size (<1cm

2
) and relatively 

small spatial resolution (80x60).  

The multistep procedure was used for the estimation of 
respiration rate. First, a sequence of thermal frames was 
captured during the short time period (30s windows were used 
in the experiments). Next, in this preliminary study, the 
nostrils region (a rectangle with width = nose width) was 
manually selected directly around/below the nose. Then, the 
nostril ROI was used to calculate the average pixel value 
inside that ROI. The operation was repeated for each frame 
producing a 1-D signal (time series) of infrared (thermal) 
radiation changes. Next the same filtration was used as for 
signals obtained for the accelerometer (i.e. moving average 
and Butterworth band-pass filter). 

D. Respiration rate estimators 

      Two respiration rate estimators were analyzed for 
signals obtained for the accelerometer and for the thermal 
camera. The first estimator, eRR_sp, often used in other 
studies, identifies the frequency in the frequency domain of 

the analyzed signal, for the dominating peak in the frequency 
spectrum. 

a)  b)  

Fig. 2. a) The module with cameras: visible ligth camera (top) and Lepton 
infrared camera (bottom). b) The location od the module in the eGlasses. 

The second estimator, ePR_ac, analyzes the periodicity of 
peaks locations for the autocorrelation function in time 
domain as a function of time lags. The autocorrelation for 
different time lags is calculated and the period is determined 
calculating an average time differences between detected 
peaks. As a peak detector we used a method looking for a 
local minimum and a local maximum, for which their 
difference is grater than the threshold value T:  

d=sfn(tj+1)-sfn(tj), d>T,    (2) 

where: sfn(tj+1) - filtered signal value of the local minimum at j, 
sfn(tj) - filtered signal value of the local maximum at j+l. 

The threshold value T was calculated in two phases. In the 
first phase (T= T1) as: 

T1=TK1*(max(sfn(t))-min(sfn(t))),   (3) 

where TK1 was the scaling value set to 0.33. 

Then the median of the detected peak-to-peak gradient values 
was calculated. The scaled (TK1=0.25) median value was used 
as the threshold value (T=T2) in the second pass of the 
algorithm to detect final peaks of each signal.  

The calculated frequencies for both estimators were multiplied 
by 60 to obtain results in breaths per minute (bpm, e.g. 
ePR_ac=fac*60). 

E. Experiments and validation 

The analyzed methods for the estimation of respiration rate 
were validated during experiments with the participation of 11 
volunteers (mean age: 39.73y±11.98). Subjects were asked to 
seat comfortable and not move except natural breathing. Then, 
separately, data were measured during 1min, by two devices. 
In parallel, the pressure, chest belt (Vernier RMB) was used as 
a reference. To synchronize signals subjects were asked to 
hold the breath at the beginning of data recording. Measured 
signals were analyzed manually to calculate reference 
respiration rate (RR) values. According to the RR definition 
(number of respiration events in time) the complete periods 
between successive inspirations were indicated and counted in 
30s long time windows. The RR was calculated as:  

RR=(NRR*60)/(tle-tfs),     (4) 

where: NRR – number of respiration events (inspiration to 
inspiration), tle – time of the end of the last event, tfs - time of 
the start of the first event.  
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III. RESULTS 

A. Accelerometer and respiration rate 

Table I presents results of the respiration rate estimation 
for measurements performed using the accelerometer of smart 
glasses and using the reference respiration belt. 

TABLE I.  RESULTS OF RESPIRATION RATE ESTIMATION FOR THE 

ACCELEROMETER 

   Chest Belt 
  

Accelerometer 
  

 Subject RR [bpm] eRR_sp eRR_ac eRR_sp eRR_ac 

S01 15.400 14.650 14.990 10.950 14.160 

S02 21.400 21.970 21.650 20.480 20.160 

S03 10.000 10.254 9.900 9.580 9.470 

S04 15.670 16.110 15.740 8.020 11.160 

S05 20.000 20.510 20.000 17.977 18.310 

S06 15.000 13.184 13.470 13.840 13.760 

S07 14.060 13.180 13.920 16.450 15.600 

S08 13.240 13.180 13.370 13.450 13.370 

S09 11.900 11.720 12.040 9.350 10.680 

S10 13.640 13.180 13.890 13.610 13.030 

S11 13.640 13.180 13.590 12.520 12.840 

 

The values of RMSE for particular estimators are: for the belt: 
RMSE(eRR_sp)=0.73, RMSE(eRR_ac)=0.50; for the 
accelerometer: RMSE(eRR_sp) =2.99, RMSE(eRR_ac)=1.73. 
Signal examples are presented in Fig. 3: measured signals by 
the accelerometer (subject S05) and obtained results (spectrum 
for the filtered signal, and autocorrelation as a function of time 
lags with the detected peaks). 

 

 

Fig. 3. Top: Signals from the accelerometer for subject S05. Bottom: 

Spectrum of the filterred signal and  autocorrelation signal as a function of 

time lags with indicated detected peaks. 

Table II presents results of the respiration rate estimation for 

measurements performed using the thermal camera of smart 

glasses and using the reference respiration belt. 

The values of RMSE for particular estimators are: for the belt: 

RMSE(eRR_sp)=0.55, RMSE(eRR_ac)=0.24; for the thermal 

camera: RMSE(eRR_sp) =0.68, RMSE(eRR_ac)=0.69. 

TABLE II.  RESULTS OF RESPIRATION RATE ESTIMATION FOR THE 

THERMAL CAMERA 

   Chest Belt Thermal camera 

 Subject RR [bpm] eRR_sp eRR_ac eRR_sp eRR_ac 

S01 17.900 18.281 17.863 18.281 18.140 

S02 13.000 12.188 12.893 13.711 13.448 

S03 12.188 12.188 12.480 12.188 12.581 

S04 18.200 18.281 18.425 18.281 18.571 

S05 20.955 21.328 20.526 21.328 22.609 

S06 9.600 10.664 9.936 10.664 9.936 

S07 7.200 7.620 7.430 7.610 7.090 

S08 19.809 19.805 19.873 18.281 18.699 

S09 19.158 18.281 18.828 19.805 19.141 

S10 19.711 19.805 19.623 19.805 20.526 

S11 13.220 13.711 13.220 13.711 13.200 

 

In Fig. 4a some examples of thermal images captured during 
inspiration and expiration events are presented. In Fig. 4b 
examples of the filtered signal of thermal radiation changes in 
the nostril ROI (subject S01) and obtained results (spectrum 
for the filtered signal, and autocorrelation as a function of time 
lags with the detected peaks) are presented. 

 

 

Fig. 4. Top: Thermal images for inspiration and expiration events. Bottom: 

Filtered signal, spectrum of the filterred signal and autocorrelation signal as a 
function of time lags with indicated detected peaks.  

IV. DISCUSSION AND CONCLUSIONS 

In this study we proposed the use of smart glasses for the 
estimation of respiration rate using two sensors. The first 
method was based on measurements performed with the 
accelerometer. As it could be observed in Fig. 3a respiration-
related movements are mainly (for most participants) observed 
in y direction (head backward/forward). This is probably 
related to head movement during inspiration, when the chest 
cage/lungs are filled with air causing natural head movement 
to the back. The calculated RMSE value for the eRR_ac 
estimator shows that the respiration rate can be estimated with 
relatively good accuracy. This is usually good enough for 
medical screening purposes. For most subjects the accuracy of 
the respiratory rate was up to 2bpm. However, as it could be 
observed for S04, in some cases the result is not acceptable. It 
is important to underline, that the value of respiration rate is 
always calculated for a particular time window. So manually 
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calculated RR values for the belt-based signals are a little bit

different that values automatically calculated by two estima-

tors.  This  is  also caused by analyzing different  time win-

dows. The manually calculate RR values considered only the

whole  inspiration-to-inspiration  periods.  Other  estimators

used all  samples.  Additionally, the estimator  based on the

frequency domain has limited accuracy due to the finite fre-

quency resolution. For example, taking N=330 samples and

fs=11Hz, then spectral resolution is (11/330)*60=2bpm. For

experiments with the use of the accelerometer the  eRR_sp

gave  worse  results  than  the  eRR_ac estimator  performing

operations in time domain. The experiments were performed

under optimistic conditions – subjects did not move. Further

research is required to verify the methodology in more natu-

ral conditions (head movements).

Experiments  performed  for  the  small  thermal  camera

module gave very good results. The respiration rate can be

easily and  reliably estimated  using the  described  method.

The method has of course limits related to required gradient

between values of body temperature and ambient tempera-

ture. However, when used indoors the required temperature

gradient  is  practically  usually fulfilled  (e.g.  air-condition-

ing). One of the most interesting finding is that even such a

small spatial resolution is not a problem for locating nostril

regions  and  obtaining  high  dynamics  of  signals  (ambient

temperature of the laboratory room when experiment took

place was high, 24-27C). In this work we proposed the use

of very small thermal camera with small spatial resolution

that is used for smart glasses. We also compared two differ-

ent estimators: one operating in frequency domain, the sec-

ond one in time domain. Results proved high accuracy of the

method and both estimators. However, in this study we used

manually  selected  ROI for  nostril  area.  This  can  be  per-

formed  automatically  using  automatic  face  detection  for

thermal images and detection of  nostril  regions [20].  This

will be a subject for further study. It is also important to in-

vestigate different signal quality measures that can be used

to evaluate if the measured signal (or RR value) is more or

less reliable. Such possible measures can analyze the spec-

tral purity of the periodical components (e.g. Hijorth param-

eters [21], etc.) or other similar parameters (goodness of fit

for parametric models [22], periodicity of the autocorrelation

function, etc.).

Using smart  glasses  senses  of  a  healthcare professional

could be extended providing additional knowledge about a

patient acquired during routine interviews. This is more nat-

ural method of observation because it does not influence the

patient by using (wearing) additional equipment. Addition-

ally, smart glasses can provide very good source of medical

data for self-diagnostics of the smart glasses user. However,

practical application of such methods requires comfortable

design of smart glasses, which is a task for further research.
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