
Applying simulations: On the importance of the
simulation performance.

Bernd Pfitzinger∗, Tommy Baumann‡§, Dragan Macos†, Thomas Jestdt∗
∗Toll Collect GmbH, Linkstrae 4, 10785 Berlin, Germany. {bernd.pfitzinger|thomas.jestaedt}@toll-collect.de

‡Andato GmbH & Co. KG, Ehrenbergstrae 11, 98693 Ilmenau, Germany. tommy.baumann@andato.com
§Hochschule Aalen – Technik und Wirtschaft, Beethovenstrae 1, D73430 Aalen.

†Beuth Hochschule fr Technik Berlin, Luxemburger Str. 10, 13353 Berlin, Germany. dmacos@beuth-hochschule.de

Abstract—Creating new software or software-intensive systems
is still a challenge and far removed from a traditional engineering
domain. The increasing size of software deployed in typical
systems and the emergence of very large highly distributed
systems necessitates additional techniques to assure the systems
quality. Using the example of the German automatic toll system
we briefly outline a simulation driven development approach:
Using simulation models starting with the very early design
stages to verify and validate the overall dynamic system behavior
throughout the whole development process. In practice the ap-
proach depends particularly on the performance of the simulation
model: Many simulation runs are necessary while exploring the
solution space of a proposed change or while calibrating and
optimizing parameters of the simulation models. Starting with
an existing model of the German automatic toll system we look
at two different possibilities for parallelization – parallelized
optimization and the partial transformation of the simulation
model to a parallelized implementation.

I. INTRODUCTION

MOST of the critical system design problems occur in

the early design stages while specialists are specifying

the system under a high degree of uncertainty. Many studies

show that the probability of critical problems due to poor

design decisions is very high in the specification phase [1]. The

root cause is that either text-based or non-executable, model-

based specifications are utilized: We build models of complex

systems because we cannot comprehend any such system in

its entirety [2]. Such specifications cannot be validated at

the system level where the architecture and performance is

determined as an emergent property.

The typical system development process will of course try

to mitigate the consequences e.g. by shortening the step from

the design to the deployment stage. But in distributed systems

– “one in which the failure of a computer you didn’t even

know existed can render your own computer unusable” [3]

– the properties of the whole system emerge only when all

subsystems are integrated into a complete system.

Hence we propose to accompany the system development

process with an executable specification of the whole system:

At any stage during the system development process we

implement the current level of detail as a simulation model.

In that way the specification becomes executable (i.e. has

sufficient detail to be executable).

In this article we briefly touch upon the concept of sim-

ulation driven development (SDD) – the starting point of an

investigation into the performance of simulation models. When

the intention is to base the system development process on

simulation models the simulation results should be valid and

readily available at any time. At least for complex systems

both apsects necessitate a high simulation performance.

In particular the article applies two different ways of par-

allelizing simulations: The trivial parallelization of a genetic

algorithm is of use when the simulation model is used ei-

ther to explore the solution space in search of an optimal

configuration or when parameters need to be fitted to data

observed in the real world, e.g. modeling the user interaction.

The non-trivial parallelization concerns the simulation model

itself where – depending on the specific application – parts

might be run independently. Starting with a simple benchmark

model we apply the parallelization to an existing simulation

model of the German automatic toll system.

The article is split into three parts: The first section explains

the concept of simulation driven development in more detail

(see section II) whereas the second and third section cover

the simulation performance as one prerequisite for basing the

software development process on simulation models: Param-

eter optimization using a genetic algorithm and the partial

parallelization of a simulation model (sections III and IV).

All parts have the same use case in common (section III):

Applying the approach in the context of the German automatic

toll system – a large scale liability-critical distributed system

and a typical example of an electronic tolling system based

on global navigation satellite systems (GNSS) [4].

II. SIMULATION DRIVEN DEVELOPMENT

SDD is characterized by applying modeling and simulation

technologies during the whole product lifecycle: An executable

model exists at any time encapsulating the current knowledge

of the system. The benefit of SDD lies both in the early design

stages (when most of the important design decisions are made)

and the ability to verify and validate the system at any time

through executable models.

A. Design approach

In general a system specification defines the functional and

non-functional properties of a system in a formal, consistent,

and self-contained manner to enable processing. Functional

properties define the tasks of the system including information

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1125–1128

DOI: 10.15439/2016F33

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1125

user

interaction
(fleet of) on-

board units

mobile data

network

central

system

system model partner systemsbehavior model

statistical

data

Figure 1. The simulation model of the German automatic toll system encompasses the the user interaction (left), the operators’ technical systems (center)
and systems under the responsibility of partners (right).

processing in relation to data, operation and the systems

behavior.
Non-functional properties are more difficult to pin down

there is not even a consensus on the term and its use [5]. They

are used to describe the circumstances necessary to render

the required functionality, e.g. the performance requirements,

quality properties and constraints. In a sense the non-functional

requirements become either constraints (to the system devel-

opment or the system operations) or emergent properties (in

the worst case emerging only at the system level when the

user interaction is taken into account). SDD allows modeling

both the constraints and the whole system including the user

interaction and feedback loops.
Unfortunately, the specification phase is far removed from

the final acceptance testing and the transition to operations.

Many process models exist to close the gap, either by intro-

ducing more tests and documentation along the way or by

shortening the development cycle (e.g. shifting requirements

to the next cycle). To illustrate the system engineering process

we take the “V-model” [6], a highly adaptable meta-model

commissioned by the German federal government. At the core

of this model is the well-known waterfall model dating back

to 1970 with the design and development phases placed on the

left and the test phases on the right – forming the letter “V”.

While it proceeds through the typical phases it differentiates

the testing phase so that every design or development phase

also sets up its own test phase.
Executable system specifications allow the validation, anal-

ysis, evaluation, and optimization of complex distributed sys-

tems even before the first line of source code is written

– including dynamic interactions. Bottlenecks and resource

shortages owing to dynamic coupling effects can be captured

and resolved without running or implementing the real system.

On a meta-level the executable model can include the system

development process as well.

B. Applying SDD

In its current implementation we used SDD in the specifi-

cation phase of two upcoming changes to the application-level

protocols governing the interaction between the on-board-unit

(OBU) and the central systems of the German automatic toll

system in essence switching from an open-loop controller

(the OBU decides in large parts independently if and when

to connect to the central system) to a closed-loop controller

(where the control resides at any time with the central system).

The impact of SDD on the specification phase was twofold:

Performing simulations of the whole integrated system at a

scale of 1:1 allows predicting the system load for the chosen

system architecture (and in combination with a cost model

the estimation of operational costs) in effect operational risks

become visible in the very first step of the system development

process.
So far, researching the impact of architectural choices (or

the systems parametrization) is a manual task: The simulation

model needs to be altered (or at least re-configured) and

the simulation run performed and analyzed. Using a fitness-

function to grade the simulation results (e.g. the correlation

with the real-world update rates observed for a fleet-wide

update) is the first step to automate the design process:

An additional optimization algorithm is able to change the

parametrization or even the systems architecture automatically

and to search for the overall optimal solution.
An intangible benefit of SDD in our example is the emphasis

on the operational performance of any change already during

the specification phase: Using the simulation model the conse-

quences to the day-to-day performance is quantified and easily

comparable to todays (or the intended future) performance.

III. SIMULATION MODEL OF THE GERMAN TOLL SYSTEM

In practice we introduced SDD to the system development

process of Toll Collect GmbH (e.g. [7] and references therein)

the operator of the German toll system for heavy goods

vehicles (HGVs).
The automatic toll system consists of four major parts (fig-

ure 1): It uses OBUs to automatically collect the toll charges

due. Most of the time the OBU is running independently

and rarely connects to the central system via a mobile data

network connection to upload the tolls collected and possibly

download updates to its software, geo and tariff data. Using

this architecture the reliability of the system depends heavily

on the OBU its hardware, software and operational data as

well as the user interaction.

1126 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

In principle the system behavior could affect the user behav-

ior (dotted line in figure 1): E.g. when the OBU signals ’out-

of-order’ the user could be tempted to quickly power-cycle the

OBU. Particularly in the case of outages, e.g. when the central

system cannot be reached by the OBU, the OBU will reach

a point where it needs to signal the user a technical problem.

It is therefore conceivable that the user behavior changes –

either as intended by the system design (the user switches to

the manual toll system, e.g. via internet booking) or by power

cycling the OBU and thereby potentially triggering additional

system load.

Looking at figure 1 it is interesting to note the first

indications of a software-intensive system-of-systems: The

system depends not only on the user interaction – it also

includes partner systems that are operated independently (e.g.

the mobile data network) and whose inner working is not

accessible.

The model of the toll system depends on the external

stimulus of the user interaction. With an emphasis on the fleet-

wide propagation of updates we include only the temporal

behavior: The points in time when an HGV is powered on (or

off) and when a toll event is created.

Regarding the fleet-wide updates we use a genetic algorithm

to adapt the simulation results to the data observed in the

real-world system (for details and results see [8]). Parameter

optimization requires the ability to compute a large number of

results for different sets of parameters. In our case we used

two sets of 16 probabilities (i.e. the probability for a given

HGV of being active N out of 16 weeks, once for German

HGVs and again for foreign HGVs). Even using a running at a

scale of less than 1:1000 a single simulation run takes almost

one minute to complete.

IV. PARALLEL DES MODELS

For many purposes scaling is the appropriate solution – yet

close to the specification limit of a system or once processes

become non-linear, scaling is no longer an option. Simulation

performance becomes important.

A. Domain independent parallel DES models

Many approaches exist to parallelize existing serial mode

simulation models [9]. In our case, the space-parallel domain

decomposition accelerates a simulation run by executing parts

of the model in parallel. This approach is applicable to any

model and shows the greatest potential in offering scalable

performance for complex models [10], [11].

An optimistic approach to parallelization is to execute

components even if – at a later time – it becomes known,

that the execution was unnecessary or violated a causality

constraint (”time warp”, [12]). As long as excess computing

power is available the consequence is only that causality errors

need to be rolled back, i.e. each component has to be enhanced

by an additional rollback block and from time to time rollbacks

will occur. In a real-world application the expected speed-up is

limited by those parts of a domain-specific simulation model

that are intrinsically serial.

B. Domain specific parallel DES models

”Time warp” or optimistic parallelization has the advantage

of being domain-independent – it is a feature offered by

the simulation toolset as well as a programming paradigm.

However, ”artifical” rollback and commit steps need to be im-

plemented and verified by additional testing. This effort could

also be spent on an explicit, domain-specific parallelization of

the simulation model itself.

In the example of the German automatic toll system (see

figure 1) parallelism is inherent in many parts of the model

(e.g. in the user behavior, the OBU fleet). Since most of the

processing occurring in the simulation model is connected

to the OBU fleet a sizable degree of parallelism could be

achieved.

Simulation performance quickly becomes a bottleneck when

the DES model is coupled to a real-world system, i.e. in a

software-in-the-loop scenario. An example could be a server

of the central system being subjected to the TCP/IP traffic

generated by the OBU fleet.

Here the artificial concept of time – time is expressed

in terms of events occurring and jumps immediately to the

next event present in the ”future event list” – needs to be

coupled to the time passing in the real-world (system). Figure

2 depicts both concepts of time: In the real-world system time

progresses continuously (indicated by the thick arrow from left

to right) – aptly summarized as the wall-clock time. In contrast

the DES tool considers time only in the presence of events:

Each event generated in the simulation run carries a (future)

time of execution and is accordingly put into the future vents

list (FEL) for later processing. The current time in the DES

model is therefore given by the pointer to the next event up for

processing. Whenever multiple events occur at the same time

a serial-mode simulation takes the events for processing from

the future event list as if it were a queue. I. e. simultaneous

events are processed sequentially while the clock is stopped.

When a real-world system is interfaced to the simula-

tion model both possibilities break down: Even during times

without events time passes at the same rate and sequential

processing of simultaneous events will insert artificial delays,

potentially disturbing the simulation results with two notewor-

thy consequences:

• Any speed-up of a DES simulation is negated once

the real-world system is interfaced, the simulation will

proceed (at most) at wall-clock time.

• The DES simulation model introduces artificial delays,

when taking outgoing events from the FEL or inserting

incoming events into the FEL – possibly to the degree of

invalidating the simulation resuls by violating the ‘real-

time’ constraint.

V. SUMMARY

As in the test-driven development (TDD) case, testing is

not the aim of the SDD rather the “driven [...] focuses on

how TDD leads analysis, design, and programming deci-

sions” [13]. In that sense, SDD tries to put the design to

BERND PFITZINGER ET AL.: ON THE IMPORTANCE OF THE SIMULATION PERFORMANCE 1127

timeX X

event sent to

real system
event sent from

real system

future

events list

t1 t2

Figure 2. The concepts of time differ between the continuous time line in the real world and the list of (future) events at discrete points in time. Interfacing
a real-world system will couple the two concepts.

the ultimate test-case – the real-world operational context.

The simulation model – an executable specification of the

existing real-world system – is the starting point to focus

any software development on the operational consequences.

These consequences might be of a purely technical nature,

e.g. the system architecture and performance, or include non-

functional requirements and business or financial aspects. In

particular these challenges dominate environments that are rich

in legacy systems, where the on-going development is largely

faced with integration issues. SDD addresses integration of

systems as a cross-cutting concern by providing the software

developer (or requirements engineer) with an executable copy

of the real-world system.
A prerequisite for applying SDD is the performance of

the simulation model. We summarized two areas where per-

formance matters: Exploring the solution space needs many

simulation runs, albeit possibly at a small scale. Interfacing

a simulation model with a real-world system is the final

challenge – mingling simulated discrete and continuous real

time.

REFERENCES

[1] A. Aurum and C. Wohlin, in Engineering and managing software

requirements, A. Aurum and C. Wohlin, Eds. Berlin: Springer, 2005,
ch. Requirements Engineering: Setting the Context, pp. 1–15, ISBN:
978-3-540-28244-0. DOI: 10.1007/3-540-28244-0 1.

[2] ISO, ISO/IEC 19505-2:2012 Information technology – Object Manage-

ment Group Unified Modeling Language (OMG UML), Superstructure.
Berlin: Beuth Verlag, 2012.

[3] L. Lamport, Distribution, e-mail message, [accessed 16-Nov-2014],
May 1987. [Online]. Available: http : / / research . microsoft . com / en -
us/um/people/lamport/pubs/distributed-system.txt.

[4] J. Numrich, S. Ruja, and S. Vo, “Global Navigation Satellite System
based tolling: State-of-the-art”, Netnomics: Economic research and

electronic networking, vol. 13, no. 2, pp. 93–123, Jul. 2012. DOI:
10.1007/s11066-013-9073-9.

[5] M. Glinz, “On non-functional requirements”, in 15th IEEE inter-

national requirements engineering conference, (Delhi), Oct. 2007,
pp. 21–26, ISBN: 978-0-7695-2935-6. DOI: 10.1109/RE.2007.45.

[6] Verein zur Weiterentwicklung des V-Modell XT e.V. (Weit e.V.), V-

Modell XT version 2.0, [accessed 21-Jan-16], 2006. [Online]. Avail-
able: http://www.v-modell-xt.de/.

[7] B. Pfitzinger, T. Baumann, D. Macos, and T. Jestdt, “Modeling regional
reliability of 2G, 3G, and 4G mobile data networks and its effect on the
German automatic tolling system”, in 2015 48th hawaii international

conference on system sciences (hicss), Jan. 2015, pp. 5439–5445. DOI:
10.1109/HICSS.2015.640.

[8] B. Pfitzinger, T. Baumann, D. Macos, and T. Jestdt, “Using parameter
optimization to calibrate a model of user interaction”, in Proceedings

of the 2014 federated conference on computer science and information

systems, M. P. M. Ganzha L. Maciaszek, Ed., ser. Annals of Computer
Science and Information Systems, vol. 2, IEEE, Sep. 2014, pp. 1111–
1116, ISBN: 978-83-60810-58-3. DOI: 10.15439/2014F123.

[9] V.-Y. Vee and W.-J. Hsu, “Parallel discrete event simulation: A survey”,
Tech. Rep., 1999. [Online]. Available: http : / / citeseerx . ist . psu . edu /
viewdoc/summary?doi=10.1.1.41.7706.

[10] R. Righter and J. Walrand, “Distributed simulation of discrete event
systems”, Proceedings of the ieee, vol. 77, no. 1, pp. 99–113, Jan.
1989, ISSN: 0018-9219. DOI: 10.1109/5.21073.

[11] A. J. Wing, in Advances in parallel algorithms, L. Kronsj and D.
Shumsheruddin, Eds. New York: John Wiley & Sons, Inc., 1992,
ch. Discrete Event Simulation in Parallel, pp. 179–226, ISBN: 0-470-
21907-6.

[12] D. Jefferson and H. Sowizral, Fast concurrent simulation using the

time warp mechanism: Part i, local control. Santa Monica, CA: Rand
Corporation, 1982.

[13] D. Janzen and H. Saiedian, “Test-Driven Development: Concepts,
taxonomy, and future direction”, Computer, vol. 38, no. 9, pp. 43–50,
Sep. 2005, ISSN: 0018-9162. DOI: 10.1109/MC.2005.314.

1128 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

