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Abstract—3D Electrical Capacitance Tomography provides a
lot of challenging computational issues that have been reported
in the past by many researchers. Image reconstruction using de-
terministic methods requires execution of many basic operations
of linear algebra. Due to significant sizes of matrices used in ECT
for image reconstruction and the fact that best image quality is
achieved by using algorithms of which significant part is FEM
and which are hard to parallelize or distribute. In order to solve
these issues a new set of algorithms had to be developed.

I. INTRODUCTION

E
LECTRICAL Capacitance Tomography (ECT) is a rela-

tively new imaging technique that can be used for non-

invasive visualization in industrial applications in 2D, 3D

and even 4D dynamic mode. ECT is performing the task of

imaging of materials with a contrast in dielectric permittivity

by measuring capacitance from a set of electrodes (Fig. 1).

Among other non-invasive imaging techniques, ECT is char-

acterized by much higher temporal resolution than Magnetic

Resonance Imaging, Computed Tomography etc.

Unfortunately to achieve best image quality in 3D image

reconstruction complex algorithms have to be used, especially

ones that use large sensitivity matrices, Finite Element Method

as well as neural networks approach [3].

In this article the authors have focused on accelerating non-

linear image reconstruction algorithms, that are based on Finite

Element Method and use sparse matrices to store data. We

show that it is indeed possible to parallelize such algorithm and

achieve significant speed-up, as well as develop them in such

a way, to be able to use them in a distributed, heterogeneous

computational system.

A. Image reconstruction in ECT

The scheme of image synthesis in Electrical Capacitance

Tomography is called image reconstruction. It is based on

solving the so called inverse problem, in which the spatial

distribution of electric permittivity from the measured values

of capacitance C is approximated. We can distinguish two

types of image reconstruction algorithms. Firstly there are

linear algorithms, which, because of higher temporal resolu-

tion, are used for monitoring fast-varying industrial process

applications, like oil-gas flows in pipelines [1] or gravitational

flows and discharging of silo [9] and non-linear algorithms,

which allow reconstructing images with higher quality. After-

wards, reconstructed images can be analysed using either state

of the art algorithmic approach, such as fuzzy-logic based

classification [1] or by using a novel method of applying

crowdsourcing [2], in order to determine, for example, flow

characteristics.

II. NON-LINEAR RECONSTRUCTION ALGORITHMS

Non-linear three-dimensional image reconstruction in 3D

capacitance tomography is a complex numerical problem, sat-

urated with linear algebra transformations. During this iterative

calculation process a set of parameters is determined, that

is necessary for proper reconstruction of three-dimensional

tomographic image optimization. The general idea of the

algorithm is presented in Figure 2. One of the three key stages

of the iterative process of reconstruction is a forward problem

involving setting up a simulated vector based on a given spatial

distribution of dielectric permittivity. The accuracy of the for-

ward problem solution has a significant impact on the quality

and speed of image reconstruction, and depends on the method

of its determination. Most often forward problem is determined

numerically using the Finite Element Method (FEM) based on

a numerical model of a capacitance sensor. The authors have

focused primarily on developing methods for accelerating the

Fig. 1. Object and 3D reconstruction obtained using Electrical Capacitance
Tomography
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calculations using algorithms developed specifically for use

with sparse matrices (CULA library, CUSP). This made it

possible to develop proprietary paralel computing algorithms

(as a set of functions and procedures), dedicated to specific

processing of tomographic data. Developed methods allow

reconstructing three-dimensional images by using relatively

fast methods of solving sparse matrix equations (AMG method

- Algebraic Multi Grid, the Jacobi method and the Conjugate

Gradient algorithm), which are computed on graphic proces-

sors.

Fig. 2. General non-linear reconstruction algorithm in ECT

A. Finite Element Method

Image reconstruction algorithms using the Finite Element

Method are often used in 3D Electrical Capacitance Tomog-

raphy because of the possibility of obtaining a more accu-

rate solution to the forward problem than linear algorithms,

which in turn can improve spatial resolution of resulting 3D

images. A major drawback of this method, however, is its

large computational complexity. The authors have developed a

number of proprietary software algorithms, which are designed

to significantly reduce the time of image reconstruction using

the Finite Element Method, through the implementation of

parallel computing for sparse matrices and calculations in a

heterogeneous and distributed environments.
Main idea of the developed algorithm is to obtain the solu-

tion (electric field distribution) given in the form of equation:

ϕ = Y −1F (1)

where:
ϕ - is a sought distribution of the electric field - represented

by the spatial distribution of nodal potential - partial solution

of the forward problem in capacitance tomography;

Y - is a transformation matrix, built according to the

geometric dependencies of sensor model mesh and Neumann

boundary conditions;

F - is the extortion vector, defining the given Dirichlet

boundary conditions

The first step of the algorithm is to pre-process the input

data and store it as a set of sparse matrices. Then, in order to

obtain Y, matrix decomposition is performed as described by

the equation:

Y = AT
BA (2)

where:

A - shape functions gradients matrix

B - matrix of normalized mesh volumes

A
T - transposed shape functions gradients matrix

The next step of the algorithm is processing of the input data

matrix and selecting the rows corresponding to each electrode

- known potential in nodes describing the electrode. Then

the matrix is preconditioned using either Jacobi or Algebraic

Multi-Grid method. This makes it possible to solve the equa-

tion (1) using a Conjugate Gradients Method. Once this is

done the resulting matrix is supplemented with data from the

Dirichlet boundary conditions. The last step of the algorithm

is to determine the vector of simulated measurements using

Gauss’ law described by the formula:

Ceg =

∫∫∫
Ω
ε (x, y, z) grad [ϕ(x, y, z)]dΩ

ϕe − ϕg

(3)

where:

Ceg – Capacitance between electrodes e and g

ε(x,y,z) – distribution of electric permitivity

ϕ(x,y,z) – distributon of potential

ϕe – electric potential on electrode e

ϕg – electric potential on electrode g

x,y,z – cartesian coordinates

B. Computations using sparse matrices

The operation of multiplying three matrices, represented

by the formula (2), is an integral part of the Finite Element

Method for 3D ECT. This action, however, is characterized by

high computational complexity. Moreover, the stiffness matri-

ces Y, generated by numerical models of 3D ECT sensors, are

too large to fit entirely in RAM of graphics cards. However,

the number of non-zero elements is relatively small in relation

to the dimensions. Thus, it is possible to treat them as sparse

matrices to reduce memory usage.

There are many formats for storing sparse matrices. Among

them the most common formats are CSC (Compressed Sparse

Column) and CSR (Compressed Sparse Row). The authors

decided to use CSR format because it allows, in most cases,

for optimal access to the data stored in GPU memory. Reading

and writing data is usually done in a row-major manner, which

is optimal for most architectures of CPUs and GPUs. Saving

sparse matrix in the CSR format is, for the same reason,

not optimal for multiplication, as there needs to be a way of

quickly accessing the columns of the matrix without causing
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uncoalesced reads/writes from GPU memory. This situation

arises when data must be read in a manner that does not

comply with optimal memory access for specific hardware

and cannot be obtained in one transaction. The impact of this

phenomenon on the speed of computations is highly dependent

on the hardware architecture of the GPU, however, it is always

significant.

In order to significantly reduce this problem the authors have

introduced a hybrid format, called Hybrid Compressed Sparse

Row-Column (H-CSRC), comprised of both the records of

CSR and CSC. Depending on the needs, data can be accessed

in either row or column-major manner, while minimizing

memory operation and maintaining compatibility with other

algorithms.

Multiplication of three sparse matrices has been imple-

mented as a single operation. This approach allows for optimal

use of local and private memory on the GPU, in order to

increase the speed of calculations. In this algorithm, it is

necessary to use the local memory, shared by thread groups,

to minimize the number of global memory accesses.

In 3D ECT it is particularly important to optimize each of

the algorithms for the speed of execution. Hence the authors

have developed a special version of three matrix multiplication

algorithm, which takes into account all the specific properties

of the matrix calculations in the 3D ECT, as defined by

equation (2). There are three main properties of the input data,

specific to the ECT, that allow for further optimizations:

• Items in the matrix B have a non-zero values on the main

diagonal only. In addition, they repeat in sets of three,

which is due to the specificity of the input data.

• The output array is symmetrical along its main diagonal,

which, using proper element indexing, can reduce the

number of operations almost by half.

• Due to the nature of the calculations, the amount of output

elements and their position, does not change during the

execution of the program, assuming the immutability of

input data distribution. Hence this can be determined

before the execution of the program and put into the

algorithm as a map of elements to instantly skip the input

matrix elements, which are known a priori to not produce

results.

C. Parallelization

The first variant of image reconstruction algorithm using

the Finite Element Method is the reconstruction in the local

system. As it constitutes a platform for further modifications it

was necessary to design and implement a solution, that would

be also applicable in multi-GPU [4], as well as distributed

systems. To ensure efficient 3D image reconstruction the

proposed algorithm includes data caching solutions. This issue

is particularly important in the case of heterogeneous systems.

In most 3D ECT systems measurement data is collected

with higher frequency than it can be reconstructed. Moreover,

because of the asynchronous nature of the developed solution,

based on the commissioning of tasks to local GPUs using

CUDA technology, as well as remote computing nodes, delays

can accumulate, therefore there is a need for their elimination

by buffering systems. All the algorithms have been designed,

implemented and optimized from the start as a solution suited

to multi-GPU and distributed systems. Due to the specific

nature of the computations the most optimal solution is to

start a separate thread for each GPU in the system, that are

synchronised when reading the results.

Fig. 3. Algorithm for calculating solution to forward problem using multiple
GPUs

All the algorithms, developed by the authors, were designed

to function in systems with multiple GPUs. Thus a natural di-

rection for obtaining a further acceleration of computations is

to perform non-linear 3D image reconstruction in a distributed

system, which tends to have a higher degree of heterogeneity

than the local systems.
The main idea of the developed algorithm is, that each

GPU inside the compute calculates the solution to forward

problem for one or more electrodes, by assigning to each

GPU calculations specific to the selected electrode of the

system, where all the GPU compute the result of a single

image reconstruction (Fig. 3). This approach allows for more

precise control of tasks allocation. This in turn enables its use

in distributed systems with a high degree of heterogeneity.

This solution also allows for potential reduction in overall

system response time, since all nodes perform calculation for

a single output image. Therefore, the task of caching is greatly

simplified, and the image can be displayed on the screen

without introducing delays larger than the reconstruction time

for a single image. The disadvantage of this solution is,

however, that it limits the scalability of a distributed system,

since the total number of graphics processors cannot be greater

than the number of electrodes.
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TABLE I
COMPONENTS OF TEST SYSTEMS

Processor HPC Hal: Intel i7-930 (4 cores, 8 threads)

HPC Dave: Intel i7-920 (4 cores, 8 threads)

RAM HPC Hal: 12 GB (6x2 GB) DDR3 1833 MHz

HPC Dave: 8 GB (4x2 GB) DDR3 1833 MHz

GPU accelerators HPC Hal: NVIDIA Tesla S1070 + Tesla C2070

HPC Dave: 2x GTX 570

Operating systems Windows 7 64-bit

III. RESULTS

The research conducted on ECT algorithms [6] has shown

that, although, dynamic development of GPU computing per-

formance and its recent application for image reconstruction in

ECT has significantly improved calculations time, in modern

systems a single GPU is not enough to perform many tasks [7].

As a result multiple GPUs have to be used to accelerate

calculations [5]. Thus, the authors are proposing a distributed,

multi-node, multi-GPU heterogeneous system with a software

layer that will allow use of multiple computers with fast GPUs

to perform calculations across network connection [5]. The

developed system, based on the proprietary KISDC networking

platform [8], is designed to fully exploit parallel performance

of all devices that the nodes are equipped with. Such ar-

chitecture is very scalable and makes it possible to increase

computation performance by adding new network nodes. Re-

construction algorithm verification tests were conducted using

real measurement data, recorded during the research under

Ministry of Education grant number 4664/B/T02/2010/38,

using semi-industrial installation. Due to the nature of calcula-

tions using the graphics processors, the stability of execution

times is lower than for algorithms executed on the CPU.

Therefore, all of the results shown in this paper represent

the worst case scenario - the lowest number of reconstructed

images per second, achieved during testing.
All the results achieved with GPUs were compared with the

performance of algorithms executed on the CPU, implemented

using optimized BLAS libraries (Basic Linear Algebra Sub-

programs), compiled with Intel compiler and optimized for the

tested CPU architecture.

A. Non-linear algorithms - local system

Reconstruction tests using non-linear algorithms and mul-

tiple graphics processors at the same time were carried out

using NVIDIA Tesla C2070 card and NVIDIA Tesla S1070-

400 computing server, which has four graphics cores (Table I ).

Verification of developed solutions in this case was performed

for 1, 2, and 4 GPUs. The division of tasks between the

graphics processors was done by creating a new thread for

each GPU. As a result, it was possible to separate the control

flow of the application from computations, thus allowing

for asynchronous commission of tasks to the GPUs. Tests

were performed for 10 iterations of non-linear reconstruction

algorithm. The test results are presented as the number of

images obtained per second.

TABLE II
RESULTS OF NON-LINEAR IMAGE RECONSTRUCTION [IMAGES/SECOND]

Elements in 4 GPUs 2 GPUs GPU CPU (BLAS)

image vector

8488 0.035 0.024 0.015 0.003

20499 0.021 0.012 0.007 0.002

60896 0.007 0.004 0.002 0.001

87172 0.005 0.003 0.002 <0.001

157264 0.003 0.002 0.001 <0.001

All the tests were performed using the developed task

division algorithm, by assigning each GPU calculations for a

specific set of electrodes (Fig. 3). Moreover, verification was

conducted using an optimized version of this algorithm, which

enables asymmetric division of compute jobs between the

units. Based on the known efficiency parameters, each GPU

was assigned with solving the forward problem for appropriate

number of electrodes. For example, by using two GPUs - Tesla

C2070 card and a single GPU from Tesla S1070 accelerator,

the C2070 card computes solution for 18 electrodes, and

the S1070 GPU for the remaining 14. The results for this

configuration are shown in Table II and in Figure 4.

Fig. 4. Speed of non-linear reconstruction

As can be seen from Table II and Fig. 4, the use of multiple

GPUs allowed to accelerate a non-linear image reconstruction

by up to seventeen times for the two graphics processors and

28-fold in the case of four GPU compared to calculations using

traditional algorithms executed on a CPU.

B. Non-linear algorithms - distributed system

Image reconstruction tests in distributed environment were

performed using two HPC nodes code named: Dave and Hal.

Their full specification is shown in Table I. In this case

verification was performed for a total of 6 GPUs - four in

HPC Hal (Tesla C2070 + Tesla S1070) and two in HPC

Dave (2x Nvidia GTX 570). As it was in the case with

computations in the local system all the tests were performed

using task allocation based on number of electrodes. The data

was sent between the nodes using KISDC networking layer,

developed specifically by the authors for use in distributed
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TABLE III
RESULTS OF DISTRIBUTED NON-LINEAR IMAGE RECONSTRUCTION

[IMAGES/SECOND]

Elements in Local system Distributed system Speed-up

image vector 4 GPUs 4+2 GPUs

8488 0.0349 0.0381 1.09

20499 0.0210 0.0198 0.94

60896 0.0074 0.0086 1.16

87172 0.0053 0.0059 1.12

157264 0.0028 0.0034 1.20

image reconstruction in 3D ECT. All the results for these tests

are presented in Table III and in Figure 5.

Using the distributed system for image reconstruction pur-

poses the authors were able to speed-up the computations

compared to local system by up to 20%. There was however

one exception - for the image vector size of 20499. In this case

the computations on a distributed system were slower than

in local environment. This was caused by a combination of

overheads resulting from synchronisation and network delays.

Moreover, because of the specifics of GPU computations it is

common to come across a combination of input data sizes and

algorithm logic that will cause overall slow-down in specific

cases. Nevertheless, the authors are sure that further work on

the developed algorithms will result in even better results in

the future.

Fig. 5. Speed of non-linear reconstruction

IV. CONCLUSION

As a part of the research authors have developed a flexible,

distributed computing system, intended for tomographic image

reconstruction process. For both the linear and non-linear

reconstruction algorithms parallel architecture developed by

the authors is designed in such a way that it can be scaled to

any number of computing nodes, assuming that the network

medium is not a limiting factor. Performance tests have shown

that the practical application of parallel algorithms executed

on GPU allows for a 28-fold increase in the rate of performing

calculations in the case of non-linear algorithms, compared to

the optimized, sequential versions of algorithms.
Further research will also address challenges of calculations

in heterogeneous and distributed environments. This work will

be aimed at reducing delays, and therefore the response time of

the system, due to the transmission of data over the network,

as well as overall optimizations to increase the stability of

the proposed solution. In addition, the authors are carrying

out further work on the system, and the concept of complete

reconstruction, utilizing both linear and non-linear algorithms,

on the remote nodes. Ultimately, this will enable the transfer of

all calculations to remote servers, connected to the data acqui-

sition system over the Internet, thereby allowing monitoring

and control of the industrial processes using smartphones or

other mobile devices.
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General-Purpose Computing on Graphics Processing Units for Accel-
eration of Basic Linear Algebra Operations and Principal Components
Analysis Method,” Man-Machine Interactions 3, Advances in Intelligent

Systems and Computing Volume 242, Springer International Publishing,
2014, pp. 519–527.

[8] Majchrowicz, M., Kapusta, P., Jackowska-Strumiłło, L., Sankowski, D.,
“Analysis of Application of Distributed Multi-Node, Multi-GPU Hetero-
geneous System for Acceleration of Image Reconstruction in Electrical
Capacitance Tomography,” Image Processing & Communications, vol.

20, Issue 3, 2015, pp. 5–14.
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