
Data Structures for Markov Chain Transition
Matrices on Intel Xeon Phi

Beata Bylina, Joanna Potiopa
Department of Computer Science, Maria Curie-Skłodowska University,

Plac M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Email: {beatas, joannap}@hektor.umcs.lublin.pl

Abstract—We employ Intel Xeon Phi as a high-performance
coprocessor to solve Markov chains. Matrices arising from
Markov models are very sparse with short rows. In this paper,
the authors research two storage formats of Markov chain
transition matrices on Intel Xeon Phi. In this work CSR and
HYB (modification ELL) formats for such matrices are studied.
Numerical experiments results for transition matrices of Markov
chains from wireless networks and call-center models show that
HYB format in offload version is more effective than CSR format.
The obtained performance for HYB format is even 1.45 times
better in comparison to multi-threaded CPU (dual Intel Xeon
E5-2670) with the use of the CSR format (SpMV from the MKL
library on CPU).

I. INTRODUCTION

M
ARKOV chains are a tool for modeling various natural
complex systems as well as computer systems and

networks. Lately, they have been used to model wireless
networks [3], [5], [6] and they often appear in computational
biology [10] as well as in modeling call-centers [9].

In Markov modeling the models are very large because of
exponential explosion of the states number, which happens due
to the fact that complex systems usually consist of a certain
number of subsystems and the states’ space size of the whole
complex system is usually exponentially dependent on the
number of subsystems.

Any Markov chain can be described in terms of linear
algebra with the use of a square matrix. A transition rate matrix
Q (describing a Markov chain which models a system or
a phenomenon) has some particular properties. It is a huge one
and very sparse (with short rows). Sparse matrices are stored
in special data structures and special algorithms are used to
process these structures optimally. We can find descriptions of
many such storage schemes in the literature (e.g. [14], [4], [2]).

The problem of efficiency of the sparse matrix-vector multi-
plication operation (SpMV) on Intel Xeon Phi was considered
in [13], [12], [8]. In paper [13], the performance of the
Intel Xeon Phi coprocessor for SpMV is investigated. One
of the studied aspects in this work is CSR format for the
sparse matrices. The authors showed that this format is not
suited for Intel Xeon Phi for very sparse matrix (with short
rows) in particular. The use of OpenMP based parallelization
on Intel MIC (Intel Many Integrated Core Architecture) was
evaluated in [8]. An efficient implementation of SpMV on the
Intel Xeon Phi coprocessor by using a specialized ELLPACK-
based format with load balancing is described in [12]. This

implementation outperforms the implementation using CSR
format even for matrices with very short rows.

The aim of this work is to shorten the computation time for
the transition matrices from Markovian models of complex
systems on Intel Xeon Phi by way of application of two data
structures to store sparse matrices. Namely, CSR format will
be used as in the works of [13], [8] and HYB format (as
ELLPACK modification) similar as in the work [12]. HYB
format was analyzed on GPU [7] and was much more effective
than CSR for Markov chains.

Sparse matrix-vector multiplication (SpMV) operation on
Intel Xeon Phi is implemented for these formats using the
thread-level and the SIMD parallelism. Next, these SpMV’s
implementations are employed to the explicit fourth-order
Runge-Kutta method. The numerical experiments were con-
ducted for two groups of transition rate matrices, namely for
a model of a call-center and a model of a wireless network on
Intel Xeon Phi. A comparative analysis is also done with the
CSR format from the Intel MKL library (Intel Math Kernel
Library) on multithread CPU (dual Intel Xeon E5-2695).

The structure of the article is the following. Section II
gives characteristics of the sparse matrix storage, chiefly CSR
and HYB formats. Sections III and IV contain a description
of the explicit fourth-order Runge-Kutta method and some
details of its implementation on Intel Xeon Phi in particulary
sparse matrix-vector multiplication operation (SpMV). Section
V analyzes Intel Xeon Phi’s performance on this kernel for
two data structures (CSR and HYB). Section VI presents
conclusions.

II. STORAGE OF A SPARSE MATRIX

In the literature [14], a lot of ways which represent sparse
matrices and enable their effective storage and processing have
been suggested.

One of the formats to store any sparse matrices is Com-

pressed Sparse Row (CSR). The operations on matrices stored
in this format are part of Intel MKL library in version on Intel
MIC architecture [11]. In this format, the information about
A matrix, where A is a sparse matrix of m× n size and nz
nonzero elements, is stored in three one-dimentional arrays:

• data[·], of nz size stores values of nonzero elements (in
increasing order of row indices);

• col[·], of nz size stores column indices of nonzero ele-
ments (in order conforming to the data array content);
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• ptr[·], of m + 1 size, stores indices of beginnings of
successive rows in data array — that is data[ptr[i]] is the
first nonzero element of i-th row in data array, similar,
col[ptr[i]] is the column number of this element.

Hybrid format (HYB) comprises of two other formats of
sparse matrix storage in the memory disregarding its weak-
nesses and simultaneously making use of its advantages: COO
format (Coordinate format) and ELLPACK package format
(ELL).

ELLPACK [1] package format (ELL) is a sparse matrix
format which is helpful in vector architecture. It is useful for
matrices in which the number of the elements in almost every
row is the same, especially when many rows reach maximum
length in a given matrix or approach it, it becomes useless
when the number of elements in a row is dispersed, e.g. when
there are many rows which are longer than the mean. In this
format the sparse matrix is stored in two two-dimensional
arrays.

In HYB format the matrix is stored in two two-dimensional
arrays (ELL) and three one-dimensional arrays (COO):

• ell_data[·] stores values of nonzero elements as two-
dimensional rectangular array of M × MNNZ size,
where M is the number of rows in the matrix and
MNNZ denotes the mode of number of nonzero ele-
ments in a row. The rows with fewer nonzero elements
than MNNZ are aligned to the left and filled with zero
(meaningless) values in the remaining part, while the
longer rows are cut off.

• ell_indices[·] stores column indices of a matrix elements
placed appropriately in ell_data[·]. The size and the
structure of this array is the same as ell_data[·].

• coo_data[·] stores nonzero elements values, which were
cut off from ell_data[·].

• coo_col[·] stores column indices of nonzero elements
from coo_data[·] (in the same order as coo_data[·]).

• coo_row[·] stores row indices of nonzero elements from
coo_data[·] (in the same order as coo_data[·]).

III. PARALLEL RUNGE-KUTTA ALGORITHM

General form explicit fourth-order Runge-Kutta method
in parallel version is presented as Algorithm 1.

The implementation of the Algorithm 1 contains our im-
plementation of SpMV operation and vector addition. We use
the OpenMP standard and the for directives to parallelize all
operations. We use a static scheduler for the distribution of
the matrix rows and the values of vector. The SpMV operation
is a simple task to assign a row block to a single thread in
a parallel execution. The idea of vectorization is to process
all the nonzero elements in row at once. Since the Intel
Xeon Phi architecture has 32 512-bit registers, the matrices
should have at least 8 values in each row to fully utilize
the register. For one-row block we use a pragma compilator
#pragma simd which enforces vectorization of the inner
loops. This vectorization is not effective because our matrices
have got short rows — shorter than 8 elements (see table I).

Algorithm 1 The parallel algorithm which determines the tran-
sient probabilities vector, where ∗ operation denotes parallel
sparse matrix-vector multiplication and + operation denotes
parallelized and vectorized vector addition

Require: QT — transition rate matrix, pi0 — initial proba-
bility vector, h — step, t — time

Ensure: vector of transient probabilities pit in the time t
1: lk ← t/h
2: pit ← pi0
3: for k = 1 to lk do

4: k1 ← QT ∗ pit
5: k2 ← QT ∗ (pit +

h

2
k1)

6: k3 ← QT ∗ (pit +
h

2
k2)

7: k4 ← QT ∗ (pit + hk3)
8: pit = pit +

h

6
· (k1 + 2k2 + 2k3 + k4)

9: end for

10: return pit

IV. NUMERICAL EXPERIMENT

In this section we tested the time, the speedup and the
performance of the explicit fourth-order Runge-Kutta method
(RK4). The programs were implemented in C++ language and
three implementations of this algorithm were created:

• MKL-CSR version — it is a version using parallelism and
vectorization offered by the function of the Intel MKL
library in the version of Intel MIC architecture, where
the sparse matrix was stored in CSR format.

• CSR version — it is a version, where the sparse matrix
was stored in CSR format; all vector and matrix opera-
tions were implemented by the authors.

• HYB version — it is a version, where the sparse matrix
was stored in HYB format; all vector and matrix opera-
tions were implemented by the authors.

The impact of the program execution mode (native and
offload) and the various numbers of threads were tested.

For each version, the program was compiled by using the
Intel C++ compiler (icc) with a compiler flag -03, which
resulted in automatic computing vectorization, -openmp,
-mmic (enabling the cross compilation needed for a native ex-
ecution on Intel Xeon Phi). Additionally, during development,
we used the flag -vec-report2 to verify whether the RK4
kernel was successfully vectorized. In every case, alignment of
the memory data was used as vectorization support; the data
were aligned with 64 bytes limit, which was recommended
by the documentation. -mkl option was also used to allow
introducion of parallelism in MKL-CSR version. Intel MKL
library was applied to measure the elapsed time.

In the table I, the properties of matrices used during the test
are given: WF1, WF2 describe wireless networks, CC1, CC2
describe the call-center.

The matrices we tested are very sparse, however, the pattern
varies in dependence on the model (table I). Li, 1 ≤ i ≤ n,
denoted the number of nonzero elements per row. CC matries
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Fig. 1. Runtime of explicit fourth-order Runge-Kutta method on Intel Xeon
Phi for CC1, CC2, WF1 and WF2 matrices

have similar number of nonzero elements per row (3—6). WF
matrices have different number of elements per row.

TABLE I
THE PROPERTIES OF THE TESTED MATRICES

No Name n nz
nz

n
minLi maxLi

1. CC1 335421 1996701 5.95 3 6
2. CC2 937728 5588932 5.56 3 6
3. WF1 962336 4434326 4.61 1 12
4. WF2 1034273 4660479 4.51 1 11

All tested matrices have very short rows; the mean number
of elements in a row is between 4.51 and 5.95 elements. The
input arrays size is long enough and we provide enough work
for each thread.

The tests were carried out using computing node of the
following parameters:

• Platform: Intel Server Chassis R2000WTXXX, Intel
Server Board S2600WT2

• CPU: 2xIntel Xeon E5-2670 v3 (2x12 cores, 2.3 GHz)
• Memory: 128 GB DDR4 2133MT/s (8xCrucial

CT16G4RFD4213)
• Network card: FDR InfiniBand ConnectX-3 Mellanox

AXX1FDRIBIOM (FDR 56GT/S)
• Coprocessor: Intel Xeon Phi Coprocessor 7120P (16GB,

1.238 GHz, 61 cores)
• Software: Intel Parallel Studio XE 2016 Cluster Edition

for Linux (Intel C++ Compiler, Intel Math Kernel Library,
Intel OpenMP)

V. RESULTS

In this section we evaluate the time, the speedup and the
performance of our approach to the problem of the different
ways of sparse matrices storage, two execution modes for
various numbers of threads.

A. Time

Fig. 1 presents execution time of RK4 algorithm. It is
obvious that independently of the models and matrices size, the
version using MKL library routines is the slowest. In case of

our implementations offload versions are the fastest but there
is no clear difference between CSR and HYB formats. Our
implementations (in offload version) always perform about
two times faster than MKL-CSR version, for a similar number
of threads (except CC1 matrix, when execution time for 240
threads in HYB-offload version and CSR-offload is even four
times faster than MKL-CSR-offload version).

For every solution, the time for the first 60 threads decreases
most rapidly (with 1 thread per core activated). The gain with
the use of a large number of threads per core is meaningless.

We obtain the best time for each matrix for HYB-offload
version. Basing on the received charts, it seems that for MKL-
CSR version the size matrix is essential; for CC1 matrix
execution time increases with 60 threads and for the remaining
matrices with 3 times bigger size, the time increases with 180
threads. In case of our implementations, execution time is even
independent of the matrix size and model.

B. Speedup

Fig. 2 shows the speedup of RK4 method on Intel Xeon
Phi with respect to a sequential version running on one
thread of Intel Xeon Phi. The speedup for CC1 matrix gives
a bit different charts in comparison with other matrices. It
is due to a small matrix size in relation to others. For the
number of threads from 1 to 60, HYB-native and CSR-native
implementations give the lowest speedup, for other version the
results are similar.

For more than 60 threads we can see that the speedup
of the MKL-CSR version decreases. Moreover, for over 140
threads it gives the poorest results. With 60 to 240 threads
(2-4 threads per core) we can see that CSR-offload and HYB-
offload perform the best (with minimal superiority of the first
implementation).

CC1 matrix achieves maximum speedup (which is 40) for
CSR-offload version with 240 threads. The other matrices
(CC1, WF1, WF2) have similar sizes and their speedup charts
look similar. The lowest speedup is obtained for the CSR-
native and HYB-native versions with 1 to 180 threads (1-3
threads per core).

The remaining implementations give similar results. The
difference appears when we start over 180 threads (4 threads
per core). HYB-offload and CSR-offload have the best speedup
while MKL-CSR (native and offload version) clearly decrease.
The best achieved speedup is 44 for CC2 matrix in MKL-CSR-
offload version with 180 threads. For WF matrices the lowest
speedup is 39 for WF1 and almost 40 for WF2 in MKL-CSR-
offload version.

C. Performance

Fig. 3 presents the performance of RK4. Each of the figure’s
bars shows maximum performance obtained for a given stored
matrix in a given format and for the program executed in the
given mode. In comparison we also present the performance of
RK4 method on CPU where all matrix and vector operations
were realized with the use of the kernels from MKL library
(denoted MKL-CSR-CPU).
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Fig. 2. Speedup of explicit fourth-order Runge-Kutta method on Intel Xeon
Phi with respect to a sequential version running on one thread Intel Xeon Phi
for CC1, CC2, WF1 and WF2 matrices

 0

 1

 2

 3

 4

 5

CC1 CC2 WF1 WF2

Pe
rfo

rm
an

ce
 [G

Fl
op

s]

Matrix

Performance

MKL-CSR-CPU
MKL-CSR-Phi-native

MKL-CSR-Phi-offload
CSR-Phi-native

CSR-Phi-offload
HYB-Phi-native

HYB-Phi-offload
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The results analysis shows a clear difference between the
performance of our implementations as opposed to MKL-CSR
version on Intel Xeon Phi. We can also notice that inde-
pendently of the matrix size and storage format (MKL-CSR,
CSR, HYB) we obtained better performance when starting the
application in offload version. The biggest differences between
native and offload modes occurred for HYB format. In case
of our implementations we achieved the best results for every
matrix in HYB-Phi-offload version. Moreover it was from 1.9
to 2.8 times more efficient than MKL-CSR-Phi-offload version
due to the fact that our implementations is less general and
enables better control over multithreading and vectorization.

The matrices generated for call-center model achieve better
performance than the matrix from wireless network models.
Despite the size, is connected with slightly higher matrix
density and more regular pattern (tab. I).

Our implementations also have better performance in rela-
tion to MKL-CSR-CPU; with small matrix CC1 the differ-
ences become insignificant, but for the bigger matrices our
approach is clearly favourable even up to 50% for HYB-Phi-
offload version.

VI. CONCLUSION

In this article we investigated the use of two sparse matrices
format storage in context of Markov chain problems for
accelerating on the Intel Xeon Phi. Our approach exploits the
thread-level parallelism and vectorization for SpMV operation
and the thread-level parallelism and vectorization for the
vector addition.

Based on the conducted experiments, we can clearly state
that the Intel MKL library for Intel MIC architecture per-
formed worse than our own CSR and HYB implementations.

Our implementations significantly outperform the optimized
implementation routine SpMV from Intel MKL library using
the CSR format on Intel Xeon Phi. The CSR and HYB
versions are scalable to a large number of threads and they
use all the cores on Intel Xeon Phi. We achieve the best
performance for HYB format offload version.

Our implementation can still be improved. In future works
we will employ thread affinity strategies which allowe to
improve the performance and scalability of our approach.

REFERENCES

[1] ELLPACK, 2014. http://www.cs.purdue.edu/ellpack.
[2] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication

on CUDA. Technical report, NVIDIA, 2008. Tech. Report No. NVR-
2008-004.

[3] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coor-
dination function. IEEE Journal on Selected Areas in Communications,
18(3):535–547, March 2000.

[4] B. Bylina, J. Bylina, and M. Karwacki. Computational aspects of
GPU-accelerated sparse matrix-vector multiplication for solving Markov
models. Theoretical and Applied Informatics, 23(2):127–145, 2011.

[5] J. Bylina and B. Bylina. A Markovian queuing model of a WLAN
node. Communications in Computer and Information Science, 160:80–
86, 2011.

[6] J. Bylina, B. Bylina, and M. Karwacki. A Markovian model of a network
of two wireless devices. Communications in Computer and Information

Science, 291:411–420, 2012.
[7] Jarosław Bylina, Beata Bylina, and Marek Karwacki. An efficient

representation on GPU for transition rate matrices for Markov chains. In
Parallel Processing and Applied Mathematics, pages 663–672. Springer,
2013.

[8] Tim Cramer, Dirk Schmidl, Michael Klemm, and Dieter an Mey.
OpenMP programming on Intel Xeon Phi coprocessors: An early per-
formance comparison. In Proc. of the Many-core Applications Research

Community Symposium at RWTH Aachen University, pages 38–44, 2012.
[9] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: tutorial.

Review and Research Prospects, Manufact. and Service Oper. Manag.,
5:79–141, 2003.

[10] N. A. Hamilton, K. Burrage, and A. Bustamam. Fast parallel markov
clustering in bioinformatics using massively parallel computing on gpu
with cuda and ellpack-r sparse format. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 9(3):679–692, 2012.
[11] Intel. Intel Math Kernel Library (MKL). http://software.intel.com/en-

us/intel-mkl, 2014.
[12] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey.

Efficient sparse matrix-vector multiplication on x86-based many-core
processors. In Proceedings of the 27th International ACM Conference

on International Conference on Supercomputing, ICS ’13, pages 273–
282, New York, NY, USA, 2013. ACM.

[13] Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Performance
evaluation of sparse matrix multiplication kernels on Intel Xeon Phi.
CoRR, abs/1302.1078, 2013.

[14] W. J. Stewart. An Introduction to the Numerical Solution of Markov

Chains. Princeton University Press, Princeton, NJ, 1994.

668 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016


