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Abstract—Finding an optimal block size for a given sparse
matrix forms an important problem for storage formats that
partition matrices into uniformly-sized blocks. Finding a solution
to this problem can take a significant amount of time, which,
effectively, may negate the benefits that such a format brings
into sparse-matrix computations. A key for an efficient solution
is the ability to quickly iterate, for a particular block size, over
matrix nonzero blocks. This work proposes an efficient parallel
algorithm for this task and evaluate it experimentally on modern
multi-core and many-core high performance computing (HPC)
architectures.

I. INTRODUCTION

S
TORAGE formats prescribe a way how sparse matrices
are stored in a computer memory. Many designed formats

are based on partitioning of matrices into blocks where

1) blocks have a uniform size,
2) this size is not fixed for a given format and may be

chosen for each matrix individually.

We call such formats uniformly-blocking formats or, shortly,
UB formats.

Considering a particular sparse matrix A and a particular
UB format, we thus face a problem of finding an optimal block
size (whatever this means). Typically, we want to find a block
size that will provide highest performance of sparse matrix-
vector multiplication (SpMV) performed with A. Generally,
this task cannot be accomplished until the matrix is fully
assembled or at least until its structure of nonzero elements is
fully known, which implies that matrices cannot be assembled
in UB formats directly (there are usually other reasons as
well). Instead, one needs to

1) assemble A in some suitable (not-parametrized) simple
storage format,
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2) find an optimal block size for A,
3) transform A in memory from its original storage format

to a given UB format.
The second and third steps form an important problem

related to a given UB format. If the solution of this problem
takes too long, it might effectively negate the benefits that a
UB format brings into subsequent computations with A.

To find an optimal block size, there is usually no option
other than

1) to form some set of possibly-optimal block sizes,
2) to evaluate an optimization criterion for all of them.

Note that this approach generally gives a pseudooptimal block
size instead of an optimal one. For sake of simplicity, we do
not distinguish between these two cases and call them both
optimal throughout this text.

Evaluation of an optimization criterion for a given UB for-
mat, given matrix A, and a particular tested block size typically
involves gathering some information about all nonzero blocks
of A. We therefore need to examine all these nonzero blocks.
Such a procedure can be described briefly as follows: for all

nonzero blocks of A, perform some calculations that contribute

to the evaluation of an optimization criterion. Thus, in fact,
we need to iterate over nonzero blocks of A.

When an optimal block size is found, this iterative process
has to be run once again within the third step mentioned above,
i.e., during the final transformation of A to a given UB format.

This paper addresses the problem of fast iteration over
nonzero blocks of a sparse matrix. We propose an efficient
scalable parallel algorithm for a solution to this problem and
evaluate it experimentally on modern multi-core and many-
core HPC architectures, where matrices frequently emerge
in multi-threaded programs. (In distributed-memory environ-
ments, objects of our concern are “local” matrices formed by
nonzero elements mapped to particular application processes.)

II. CASE STUDY

As an illustrative case study, we work throughout this
text with the adaptive-blocking hierarchical storage format
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Algorithm 1: Transformation of A to the ABHSF

Input: A: sparse matrix
Input: S = {s1, s2, . . .}: set of possibly-optimal block sizes
Data: Mopt, M , sopt, i: auxiliary variables

1 Mopt ← 0
2 for i← 1 to |S| do
3 M ← 0
4 for each nonzero block B of size si of A do
5 find a space-optimal way W to store B in memory

considering ⌈log2 si⌉ bits for in-block indexes;
6 calculate the contribution c(B,W ) of B stored in W

to the memory footprint of A;
7 M ←M + c(B,W )
8 end
9 if i = 1 or M < Mopt then

10 sopt ← si
11 Mopt ←M
12 end
13 end
14 for each nonzero block B of size sopt of A do
15 store B in memory in the ABHSF format
16 end

(ABHSF) [1], [2]. This format partitions A into uniform
square blocks of size s and stores each block in memory in
a space-optimal way. The optimization criterion of ABHSF is
represented by the total memory footprint of A which is being
minimized. This is a very common optimization criterion for
storage formats in general (not only UB formats), since the
performance of SpMV is limited by bandwidths of memory
subsystems on modern HPC architectures [3].

Many UB formats work with in-block row and column
indexes. Optimal (space-optimal) block sizes are then typically
those that employ most or all of the available indexing bits. In
case of the ABHSF and byte-padded in-block indexes, setting
s = 256 is almost generally optimal or at least close to
being optimal [1]. (Such a choice eliminates the discussed
optimization problem, however, it does not eliminate the need
to iterate over nonzero blocks of A; this process is still required
for transformation of A into the ABHSF.)

On the other hand, if we really want to minimize the
memory footprint of A stored in the ABHSF, we need to use
the minimum possible number of bits for in-block indexes,
i.e., ⌈log2 s⌉. In such cases, any block size s can be generally
optimal. Let S = {s1, s2, . . .} denotes some set of possibly-
optimal block sizes. The transformation of A into the ABHSF
can then be written as Algorithm 1.

Algorithm 1 iterates over nonzero blocks of A exactly |S|+1
times. Therefore, we want |S| to be

1) large enough to find the best possible block size,
2) small enough to prevent long algorithm running times.

One way to get close to both these outcomes is to consider
only block sizes

S = {2k : 1 ≤ k ≤ kmax}, (1)

which implies maximum utilization of all k bits for in-
block indexes. The kmax parameter, which corresponds to |S|,

determines the upper bound for tested block sizes. In practice,
setting kmax = 10 is typically sufficient, which implies 11
iterations over nonzero blocks of A while testing block sizes
s = 2, 4, 8, . . . , 1024 within Algorithm 1.

III. NOTATION

Let A be an m × n sparse matrix, where ai,j denotes the
value of an element of A located in its ith row and jth column.
As a mathematical object, A can be written as

A =







a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n






. (2)

However, within computer programs, we typically work
only with nonzero elements of sparse matrices (or, even only
with nonzero elements from a single triangular part if a
matrix exhibits some kind of symmetry). An element of A
is determined by its value, row index, and column index; let
us write it as a triplet (i, j, ai,j). As a data structure, we can
consider A as a set of matrix nonzero elements:

A =
{

(i, j, ai,j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, ai,j 6= 0
}

. (3)

Moreover, nonzero elements stored in memory are acces-
sible in some order, which is typically prescribed by a given
storage format. If this order matters, we can consider A as a
sequence of matrix nonzero elements:

A =
(

(il, jl, ail,jl)
)nnz

l=1
, ail,jl 6= 0, (4)

where nnz denotes the number of nonzero elements of A.
In the text below, we use forms (2), (3), and (4) interchange-

ably, while preferring the particular one in dependence on the
actual context. For the sake of simplicity, we also consider
partitioning into square blocks only; the generalization for
rectangular blocks is straightforward.

Partitioning A into square blocks of size s yields an M ×
N block matrix, where M = ⌈m/s⌉ and N = ⌈n/s⌉. For
indexing block rows and columns, we use capital letters I and
J , respectively. A block is called nonzero if it contains at least
one nonzero matrix element.

A matrix element (i, j, ai,j) belongs to a block with indexes

I = ⌊(i− 1)/s⌋+ 1 and J = ⌊(j − 1)/s⌋+ 1. (5)

By using \ for integer division, we can rewrite (5) as

I = (i− 1)\s+ 1 and J = (j − 1)\s+ 1. (6)

Element’s in-block indexes can be found correspondingly
as

[

(i− 1) mod s
]

+ 1 and
[

(j − 1) mod s
]

+ 1.
Note that the calculations of block indexes and local in-

block indexes for nonzero matrix elements involve integer
division and modulo, which are relatively expensive arithmetic
operations [4]. When possibly-optimal block sizes are chosen
according to (1), both integer division and modulo can be
substituted by much faster logical shift and bitwise AND

operations.
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Algorithm 2: Iteration over nonzero blocks of A: variant 1

Input: A: sparse matrix
Input: s: block size
Data: B: nonzero elements of a single block
Data: I , J : indexes

1 for I ← 1 to ⌈m/s⌉ do
2 for J ← 1 to ⌈n/s⌉ do
3 B ← {}
4 for all (i, j, ai,j) ∈ A do
5 if (i− 1)\s+ 1 = I and (j − 1)\s+ 1 = J then
6 B ← B ∪ {(i, j, ai,j)}
7 end
8 end
9 if B 6= {} then

10 process block B with indexes I and J
11 end
12 end
13 end

IV. ALGORITHMS

Let us now analyse the problem of iteration over the nonzero
blocks of A. In the most generic case, we have, at the outset,
no knowledge which blocks of A are nonzero and which
nonzero elements of A belong to these blocks. There are
basically two ways to find this out:

1) to iterate over all blocks of A and for each block find
its nonzero elements;

2) to iterate over all nonzero elements of A, find for
each of them the corresponding block (6), and save the
information that the element belongs to this block.

Pseudocodes for these two options are provided as Al-
gorithms 2 and 3, respectively. Processing of blocks is
application-dependent; it might, e.g., represent the calculation
of blocks contributions to the optimization criterion (line 5–7
of Algorithm 1) or the storage of blocks in memory (line 15).

Algorithm 2 have low memory requirements; its auxiliary
space is

S2(A, s) = O(s2),

since, at a given time, only nonzero elements for a single block
need to be kept in memory. The drawback of this algorithm
is its high time complexity

T2(A, s) = Θ(m · n · nnz/s2).

As for Algorithm 3, its time complexity is considerably
lower, namely

T3(A, s) = Θ(m · n/s2 + nnz ).

However, the auxiliary space of Algorithm 3 is

S3(A, s) = O(m · n/s2 + nnz ),

since one needs to save the information about all nonzero el-
ements for each nonzero block. Moreover, an implementation
of this algorithm would likely require some complex dynamic
data structure, which might introduce problems with memory
fragmentation and expensive insertion/look-up operations.

Algorithm 3: Iteration over nonzero blocks of A: variant 2

Input: A: sparse matrix
Input: s: block size
Data: BI,J : nonzero elements of a block in Ith block row and

J th block column
Data: I , J : indexes

1 for I ← 1 to ⌈m/s⌉ do
2 for J ← 1 to ⌈n/s⌉ do BI,J ← {}
3 end
4 for all (i, j, ai,j) ∈ A do
5 I ← (i− 1)\s+ 1
6 J ← (j − 1)\s+ 1
7 BI,J ← BI,J ∪ {(i, j, ai,j)}
8 end
9 for I ← 1 to ⌈m/s⌉ do

10 for J ← 1 to ⌈n/s⌉ do
11 if BI,J 6= {} then
12 process block BI,J with indexes I and J
13 end
14 end
15 end

Whenever working with sparse matrices, we generally want
to avoid algorithms with Ω(nnz ) auxiliary space as much as
possible. Within many running instances of HPC programs,
matrices are the largest objects in a computer memory and
their sizes determine an extent of underlying computational
problems. Any Ω(nnz ) auxiliary space algorithm (such as
Algorithm 3) thus, in effect, considerably limits the size of
a problem being solved.

To avoid the high time complexity of Algorithm 2 as well as
the high auxiliary space of Algorithm 3, we propose another
solution for iteration over nonzero block of A that works as
follows:

1) The nonzero elements of A are reordered such that the
nonzero elements of each block are laid out consecu-
tively (grouped together) in memory. In other words,
the nonzero elements are sorted with respect to blocks.

2) A single iteration over nonzero elements is performed
while elements of each nonzero block are identified and
processed.

The pseudocode of such a solution is provided as Algo-
rithm 4. Its time complexity and auxiliary space is domi-
nated by the sorting step (line 1). Let us assume that we
use an in-place randomized quicksort with time complexity
O
(

nnz · log2(nnz )
)

and auxiliary space O
(

log2(nnz )
)

. The
overall time complexity of Algorithm 4 then will be

T4(A, s) = O
(

nnz · log2(nnz )
)

and its auxiliary space

S4(A, s) = O
(

log2(nnz )
)

as well.
Algorithm 4 reduces both the time complexity of Algo-

rithm 2 and the auxiliary space of Algorithm 3, however, at the
following price: it requires A to be provided in such a format
that facilitates reordering/sorting its nonzero elements. There is
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Algorithm 4: Iteration over nonzero blocks of A: variant 3

Input: A: sparse matrix
Input: s: block size
Data: I , I ′, J , J ′, l, l1: indexes

1

(

(il, jl, ail,jl)
)nnz

l=1
← sort A with respect to blocks

2 l1 ← 1
3 I ← (i1 − 1)\s+ 1
4 J ← (j1 − 1)\s+ 1
5 for l← 2 to nnz do

6 I ′ ← (il − 1)\s+ 1
7 J ′ ← (jl − 1)\s+ 1
8 if I ′ 6= I or J ′ 6= J then
9 process block with indexes I and J that contains

nonzero elements
(

(iq, jq, aiq ,jq )
)l−1

q=l1

10 l1 ← l
11 I ← I ′

12 J ← J ′

13 end
14 end
15 process block with indexes I and J that contains nonzero

elements
(

(iq, jq, aiq ,jq )
)nnz

q=l1

practically only one candidate—the coordinate storage format
(COO) [5], [6]; it consists of three arrays containing row
indexes, column indexes, and values of nonzero elements. At
the same time, it does not prescribe any particular ordering
for these arrays.

To require A to be initially in COO is not as restrictive in
practice as it might seem, since:

1) any sparse matrix can be easily and quickly transformed
into COO regardless of its original storage format,

2) COO is the most convenient format for assembling
sparse matrices (newly generated nonzero elements are
simply appended to the corresponding COO arrays).

A scenario where matrices are first assembled in COO and
then transformed to another, computationally more suitable,
storage format (such as some UB format) is thus perfectly
viable for HPC programs.

To sort the nonzero elements with respect to blocks, we can
define sorting keys by using the pairs of I and J block indexes
calculated by (5). For example, if we want blocks to be sorted
lexicographically, we can calculate sorting keys as I · N +
J . Again, note that choosing (1) for possibly-optimal block
sizes implies faster calculation of sorting keys and therefore,
in effect, likely faster sorting step within Algorithm 4.

A. Parallelization

Parallelization of (expensive) Algorithms 2 and 3 is straight-
forward. In Algorithm 2, we can parallelize the inner-most
loop (line 4) while synchronizing concurrent updates of B at
line 6. In Algorithm 3, we can parallelize the loops over blocks
(lines 1–2 and 9–10) as well as the loop over nonzero matrix
elements (line 4) while using thread-local I and J indexes and
synchronizing concurrent updates to BI,J at line 7.

Parallelization of Algorithm 4 is a bit more complex; we
propose its multi-threaded variant as Algorithm 5. Note that

Algorithm 5: Parallel iteration over nonzero blocks of A

Input: A: sparse matrix
Input: s: block size
Input: T : number of threads
Data: I , I ′, J , J ′, l, l1, t: thread-private indexes
Data: tb[]: thread-shared integer array of size T + 1

1

(

(il, jl, ail,jl)
)nnz

l=1
← sort A in parallel with respect to blocks

2 tb[1]← 1
3 tb[T + 1]← nnz + 1
4 for all threads do in parallel
5 t← current thread number (between 1 and T )
6 if t > 1 then

7 l←
[

nnz · (t− 1)
]

\T + 1
8 I ← (i1 − 1)\s+ 1
9 J ← (j1 − 1)\s+ 1

10 l← l + 1
11 while l ≤ nnz do

12 I ′ ← (i1 − 1)\s+ 1
13 J ′ ← (j1 − 1)\s+ 1
14 if I ′ 6= I or J ′ 6= J then break
15 l← l + 1
16 end
17 tb[t]← l
18 end
19 perform barrier to synchronize threads
20 l1 ← tb[t]
21 I ← (il1 − 1)\s+ 1
22 J ← (jl1 − 1)\s+ 1
23 for l← tb[t] + 1 to tb[t+ 1]− 1 do

24 I ′ ← (il − 1)\s+ 1
25 J ′ ← (jl − 1)\s+ 1
26 if I ′ 6= I or J ′ 6= J then
27 process block with indexes I and J that contains

nonzero elements
(

(iq, jq, aiq ,jq )
)l−1

q=l1

28 l1 ← l
29 I ← I ′

30 J ← J ′

31 end
32 end
33 process block with indexes I and J that contains nonzero

elements
(

(iq, jq, aiq ,jq )
)tb[t+1]−1

q=l1

34 end

we cannot simply parallelize the main loop of Algorithm 4
(line 5), since its uniform splitting would generally cause
threads to start with nonzero elements that are not, in se-
quence (4), first within corresponding blocks. Algorithm 5
therefore splits the load among threads such that:

1) an amortized number of nonzero elements processed by
each thread is nnz/T , where T denotes the number of
threads;

2) all nonzero elements of each particular block are pro-
cessed by a single thread only.

Such splitting is calculated at lines 2–18 of Algorithm 5 and
stored into an auxiliary array tb[]. Each thread can then process
its exclusive portion of nonzero elements independently of
other threads (lines 20–33). Threads are required to be indexed
from 1 to T ; if not, some mapping from thread IDs to such
indexing must be provided.
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Fig. 1: Strong scalability of Algorithm 5 with the do-nothing processor measured for different architectures, different matrices,
and different block sizes.

V. EXPERIMENTS

We have conducted an extensive experimental study to
evaluate Algorithm 5. Within this study, we worked with ma-
trices from the University of Florida Sparse Matrix Collection
(UFSMC) [7]. Matrices that we used are listed in Appendix;
their characteristics can be found at the UFSMC web pages1.
We tried to choose matrices emerging in a wide range of
scientific and engineering disciplines and thus having different
properties, such as:

• different types of elements—real, complex, integer, bi-
nary;

• different sizes and shapes—square, rectangular;
• different kinds of symmetries—unsymmetric, symmetric,

Hermitian;
• different numbers of nonzero elements—from 1.1 ·107 of

the kim2 matrix to 6.4 · 108 of the arabic-2005 matrix;
• different densities, i.e., relative counts nnz/(m · n), of

nonzero elements—from 5.12 · 10−7 of the nlpkkt240
matrix to 1.11 · 10−2 of the TSOPF_RS_b2328 matrix;

• different patterns of nonzero elements.

The matrices were read on the input from files downloaded
from the UFSMC. All these files stored nonzero elements of
matrices in the reverse lexicograhical order (RLO) and in the

1http://www.cise.ufl.edu/research/sparse/matrices/

same order, we stored the elements in memory in the COO
format as the first step of our benchmark program.

The measurements were performed on the following two
shared-memory HPC architectures:

1) nodes of the Salomon supercomputer operated by
IT4Innovations National Supercomputing Center in Os-
trava, Czech Republic, having two 12-core Intel Xeon
E5-2680v3 CPUs and 128 GB RAM per node;

2) Intel Xeon Phi coprocessor type 7120P with 16 GB
RAM.

Benchmark codes were written in C++ and we used the
GNU g++ compiler version 5.1.0 on Salomon and Intel icpc
compiler version 16.0.1 for Intel Xeon Phi builds.

Parallelization was implemented with OpenMP. As for sort-
ing (line 1 of Algorithm 5), we used AQsort2—an OpenMP-
based multi-threaded variant of in-place quicksort that can
work with multiple arrays, such as the arrays of the COO
storage format in our case.

A. Processors

Lines 27 and 33 of Algorithm 5 contain processing of found
nonzero blocks. Within this study, we invoked two different
block processors at these points. The first one did nothing
useful at all, which allowed us to evaluate the algorithm itself

2https://github.com/DanielLangr/AQsort
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Fig. 2: Runtime of Algorithm 5 (Overall) and its two phases (Sorting and Iteration) with the do-nothing processor, measured
for different architectures, different matrices, different block sizes, and the optimal number of threads.
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Fig. 3: Aggregated runtime of Algorithm 5 with the do-nothing processor run 10 times in a row for block sizes
s = 2, 4, 8, . . . , 1024, measured for 26 matrices from the UFSMC, different architectures and the optimal number of threads.

without any application-dependent computations; we call this
processor a do-nothing processor.3

The second processor was designed for the problem of
finding an optimal block size when storing A in the ABHSF;
we call it the ABHSF-opt processor. This processor calculated
and summed the contributions of blocks to the overall memory
footprint of A.

B. Scalability

First, we measured the strong scalability of Algorithm 5;
the results for 4 different matrices and 2 different block sizes
are shown in Fig. 1. In all cases, parallelization led to a
considerable reduction of runtime required for the iteration
over nonzero blocks of A. This runtime was dominated by the
sorting phase of the algorithm (see Section V-C for details),

3A processor that would do anything at all might be optimized away by the
compiler. We therefore designed the do-nothing processor such that it summed
the number of nonzero elements of blocks, which also allowed us to verify
that the algorithm correctly iterated over all nonzero blocks of A.

thus, consequently, the overall scalability of Algorithm 5 was
determined by the scalability of AQsort within our study. The
maximum number of threads, i.e., 24 for Salomon nodes and
122 for Intel Xeon Phi, was chosen experimentally; beyond
these points, runtime of AQsort started to grow significantly.

C. Algorithm Phases

The second experiment evaluated the contributions of the
sorting and iterations phases of Algorithm 5 to its overall run-
time; the results are presented by Fig. 2. The set of tested block
sizes was selected according to (1) while setting kmax = 10.
The sorting phase of Algorithm 5 clearly dominates the overall
algorithm runtime. The runtime of the iteration phase (with
the do-nothing processor in this case) is practically negligible.
We can also notice that larger block sizes yielded slightly
faster sorting due to lower number of distinct sorting keys
(less nonzero elements need to be swapped in memory).
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Fig. 4: Runtime of the sorting phase of Algorithm 5 for different block sizes when nonzero elements were sorted from the
RLO (Sorting from RLO) and from the ordering given by half a block size (Sorting from s/2).
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Fig. 5: Runtime of Algorithm 5 (Overall) and its two phases (Sorting and Iteration) with the do-nothing processor, measured
for different architectures, different matrices, different block sizes, and the optimal number of threads.

D. Multiple Block Sizes

Within the problem of finding an optimal block size, we
need to iterate over nonzero blocks of matrices multiple times
while testing different block sizes. In the next experiment, we
therefore run Algorithm 5 ten times in a row, while testing
block sizes s = 2, 4, 8, . . . , 1024 as proposed in Section II.
We used 26 matrices from the UFSMC (listed in Appendix)
and, for each one, measured the aggregated runtime of all
10 algorithm runs. The results are presented by Fig. 3, which
shows runtimes as a function of the number of matrix nonzero
elements.

We can observe that the relation of runtime and nnz was
roughly linear. Though, for a constant T , the time complexity
of Algorithm 5 is O

(

n · log2(n)
)

, modern implementations
of parallel quicksorts yield in practice such a linear growth
of runtime on modern multi-core and many-core architectures
(details are beyond the scope of this text).

E. Initial Ordering Effects

Fig. 2 shows the runtimes for sorting of nonzero elements of
matrices from the RLO to the block-aware ordering. However,
when we are looking for an optimal block size from S for a

given matrix, we initially need to sort its nonzero elements
from the input ordering (the RLO in our case) only once for
the tested block size s1. Then, for all other tested block sizes
sk : k > 1, the sorting algorithm takes as an input nonzero
elements sorted with respect to the block size sk−1.

Within our study, we considered block sizes sk = 2k,
which implies sk = 2 · sk−1 for k > 1. Moreover, we
defined sorting keys according to the lexicographical ordering
of blocks. Consequently, for k > 1, the nonzero elements were
on the input of Algorithm 5 partially sorted, which should
result in shorter sorting times. We performed an experiment to
verify this assumption; the results are shown in Fig. 4. They
clearly indicate that AQsort was able to take the advantage
of such partially sorted data; the amount of spared time was
significant, especially on Salomon CPU-based nodes.

F. Block Sizes Effects

Recall that in the previous text, we made an assumption
that setting block sizes sk = 2k should provide faster runs
of Algorithm 5 due to the possibility of calculation of block
indexes I and J by using cheap logical and bitwise operations.
However, if we need to test block sizes other than the powers
of 2, we cannot avoid integer division (6). To evaluate the
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Fig. 7: Matrix structure memory footprints for different matrices stored in the ABHSF and different block sizes.

difference between both cases, we measured runtimes of
Algorithm 5 and both its phases (sorting and iteration) for
several block sizes of both classes s = 2k and s 6= 2k; the
results are presented in Fig. 5.

The conclusion is obvious—the way of deriving block
indexes for the nonzero elements had a tremendous impact
on the algorithm. Its runtime grew by almost a factor of 4 and
7 on Salomon nodes and Intel Xeon Phi, respectively, when
using integer division instead of bitwise/logical operations.

G. ABHSF

Up to now, we presented measurements that used the do-

nothing processor designed to evaluate Algorithm 5 itself.
However, in practice, we iterate over nonzero blocks of sparse
matrices to do something useful and the question is how the
algorithm runtime will change in such cases. To answer this
question, we substituted the do-nothing processor with the
ABHSF-opt processor introduced in Section V-A and used
Algorithm 5 for finding optimal block sizes for all tested
matrices. The results of this experiment are presented in Fig. 6.

They show aggregated runtimes of all 10 sorting phases as
well as 10 iteration phases, and, for comparison, we show
results for both types of block processors. We can observe
that with the ABHSF-opt processor, the iteration phase took
considerably longer times in comparison with the do-nothing

processor. However, the overall runtime of the whole algorithm
was still dominated by its sorting phase.

In regard to memory footprints of sparse matrices, we can
usually focus only on matrix structure memory footprints, i.e.,
memory footprints of the information describing the structure
of nonzero elements (compression of the values of nonzero
elements pays off only for special kinds of matrices where
same values emerge many times). For illustration, we show in
Fig. 7 the relation between block sizes and the matrix structure
memory footprints of selected matrices stored in the ABHSF.
For most of the tested matrices, we have found only a single
minimum, which typically corresponded to block sizes of 8
or 16 (left side of Fig. 7 and the nlpkkt160 matrix). However,
we have also observed few “pathological” cases with different
behavior (right side of Fig. 7). For example, the minimum
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TABLE I: Matrix structure memory footprints in MB for
selected matrices stored in the COO and CSR storage formats
with 32-bit indexes and the ABHSF with optimal block sizes.

Matrix COO CSR ABHSF

arabic-2005 4882.8 2528.2 400.1
hollywood-2009 438.8 223.8 81.5
HV15R 2159.7 1087.5 135.4
nlpkkt160 907.4 485.5 116.9
nlpkkt240 3061.2 1637.4 410.3
rgg_n_2_23_s0 484.5 274.2 115.8
uk-2002 2274.4 1207.9 215.7
wikipedia-20061104 300.5 162.2 130.1

for the wikipedia-20061104 matrix was not even found within
the whole tested range s = 2, 4, 8, . . . , 1024; such a result
might indicate that the ABHSF is not a suitable format for
this matrix.

We also present in Table I the comparison of the matrix
structure memory footprints for selected matrices and 3 storage
formats—COO, the compressed sparse row (CSR) format, and
the ABHSF. CSR is likely the most commonly used format for
sparse matrices, together with its compressed sparse column

(CSC) counterpart (they are also often abbreviated as CRS and
CCS). The measurements revealed that storing sparse matrices
in the ABHSF can result in substantial memory savings.

VI. RELATED WORK

We have proposed an algorithm for the purpose of storing
matrices in a file system in the ABHSF [2, Algorithm 1]. This
algorithm served as a starting point for the development of
Algorithm 4 that was generalized for any UB format.

For examples of designed UB formats, see, e.g., [1], [5],
[8]–[21]

VII. CONCLUSIONS

The contribution of this paper is an efficient scalable parallel
algorithm for fast iteration over nonzero blocks of sparse
matrices. This algorithm is a building block of a process of
transformation of sparse matrices into UB storage formats.
We have presented an extensive experimental study with the
proposed algorithm using matrices from the UFSMC that came
from different scientific and engineering disciplines and thus
featured different characteristics. Measurements conducted on
modern multi-core and many-core HPC architectures revealed
that if the set of tested block sizes is chosen properly, the
process of finding an optimal block size takes up to tens of
seconds even for very large matrices.

The remaining question is whether or not it pays off to trans-
form matrices into UB formats. The answer to this question is
highly application-dependent. For instance, if a matrix is used
within an iterative linear solver or an eigensolver, we would
first need to know how many SpMV operations are applied to
a given matrix and how much time this operation takes. In our
future work, we want to focus on the ABHSF and undertake

a research that should tell how many SpMV-based iterations
need to be done with a given matrix to reduce the overall
application runtime when considering matrix storage in this
format.

APPENDIX

The list of sparse matrices from the UFSMC used in
the experiments: 3Dspectralwave, af_shell10, arabic-2005,
cage15, fem_hifreq_circuit, Flan_1565, Freescale1, FullChip,
GL7d19, hollywood-2009, HV15R, indochina-2004, kim2,
kron_g500-logn21, ldoor, nlpkkt160, nlpkkt200, nlpkkt260, re-
lat9, rgg_n_2_23_s0, RM07R, spal_004, TSOPF_RS_b2383,
uk-2002, wb-edu, wikipedia-20061104.
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