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Abstract—This paper is aimed at presenting some general
construction method of the hybrid plan controller for some
task of temporal planning with preferences. This construction
is multi-stage and it begins with a description of a chosen robot
environment and its plan in some extended version of Linear
Temporal Logic. This description is later transformed to the
appropriate preferential Büchi automaton. In the same way, the
real plan performing by the robot is encoded by the similar
automaton. Finally, both automata are exploited to construct its
product automaton, which is later described in PROLOG.

Index Terms—the hybrid plan controller, temporal planning,
preferences, the robot motion environment, PROLOG, automata,
Linear Temporal Logic, Halpern-Shoham logic

I. INTRODUCTION

A Plan Controller constitutes a machine (sometimes only

abstract) suitable for controlling how different tasks are per-

formed in comparison with the initially developed plans or

schedules. The plan controller construction is often a multi-

stage activity and it begins with a description of the robot

environment and tasks in the appropriate formal language.

This description should be later translated into the appropriate

automata which encode the initial part of information in

terms of automaton states and admitted transitions between

them. Such controllers1 satisfy many different features, and –

depending on the proposed approach to the robot’s motion

representation – are usually rendered in terms of Linear

Temporal Logic (LTL), but may be also rendered in terms

of the motion description language [9] or of the control and

computation language [14].

An interesting approach to the plan controller construc-

tion was presented in [4], [20], which is based, however,

on the known idea of the environment triangulation. The

classical approach to the controller construction leads just

from a triangulation of the robot’s/agent’s environment and

the appropriate finite transition system by a representation of

this environment in terms of LTL. In the next step, the LTL-

1They are often called "hybrid controllers" as they join different automaton
types and they refer to different features and ’entities’ such as plans and the
motion environements.

formulas are represented by the appropriate Büchi automaton2.

Its construction is later complemented by the construction of

the appropriate product automaton for LTL-specification and

for the considered transition system – suitable for a grasping of

the basic dynamism in the robot’s environment. This product

automaton ensures acceptance of certain desired transitions

only, see: [4], and it forms a ’core’ of the hybrid plan controller

representation.

The method of the Büchi automaton construction alone for

a use of different planning situations was presented in [6] and

– w.r.t. formulas of some extended LTL — earlier in [21],

[22]. The applicability of the formalism of temporal logic for

specification of the robot’s motion environment is a commonly

known and widely discussed fact; see for example: [1], [2].

Indeed, such systems as Linear Temporal Logic (LTL) and

Computation Tree Logic (CTL) have a satisfying expressive

power to give a relatively detailed description of components

of robot’s motion planning such as action sequencing or

objectives, the properties of the robot’s environments. This

utility of LTL was suggestively demonstrated in [2]. The

robot’s environments specification in terms of temporal logic

constitutes the first fundamental step for planner and plan

controller construction.

We intend to extend these recent approaches in two ways:

we introduce an additional preferential component to the

considered transition system and we extend the language for

the robot’s environment specification by introducing Halpern-

Shoham logic (HS) – introduced in [7] – with single operators

〈D〉 and 〈L〉 for relations: ’during’ and ’later’ (resp.). Such a

radical restriction of HS is dictated by formal requirements of

the conversion to the automaton, which can be realized in this

case.

Motivation. Majority of approaches to plan controlling of

the robot behavior in polygonal environment – such as the

presented in [1], [2], [4], [20] – discuss this issue rather in a

form of extended outlines and without (often needed) technical

details. By contrast, some formal papers such as [21], [22],

2This useful formal tool was invented in 1962 and described in [?].
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[6] are aimed at presenting a purely meta-logical face of the

construction of automata in a language of temporal logic. In

result, there is no real coincidence between these approaches.

Moreover, no of them take into account preferential aspects

of planning, which introduce a portion of ’rationality’ to

performing tasks and, its management and controlling.
These lacks constitute a main motivation factor of this

paper investigations. The next motivation factor stems from

an additional lack of some correlation between research on

the real expressive power of temporal logic systems – such as

Halpern-Shoham logic in [18], [19] – and some engineering

tendency to exploit temporal logic systems in (almost) all

possible contexts and without restrictions.
Against this state of the art, we intend to propose such a new

preferential extension of the current approaches to the plan

controller construction for a robot in polygonal environment

which respects last arrangements about temporal logic and its

expressive power. This intention determines a choice of the

appropriate subsystems of Halpern-Shoham logic: its restric-

tion to the modal operator 〈D〉 and 〈L〉 for representation

"during’ and ’later’-relations (resp.). In fact, these operators

can be effectively transformed to the appropriate automata

in the light of recent observations from [19], [17]. Some

conceptual background of the automaton construction for

combined formulas of some multi-valued extension of HS-

logic has been presented in [13], [10].
Moreover, the authors of this paper give venture of their

enthusiasm with respect to some utility of the proposed

construction in different areas of utility of temporal logic

systems: in engineering or – for example – in business

processes and their management. Some applicability of

temporal logic systems for engineering has been recently

discussed in [12], [11], for a use of business management – in

[15], [16]. Last, but not least, expected future implementation

of the automaton construction in languages of a declarative

paradigm such as PROLOG or ASP forms some additional

motivating factor of this paper’s analysis.

Objectives of the paper. According to these motivation factors,

rendered above, objectives of this paper – in a chronological

order – are the following :

1) proposing a new preferential extension of the concept of

the hybrid plan controller– based on product automata,

2) construction of hybrid plan controller for a robot per-

forming task in a polygonal environment in the block

world,

3) an outline of the PROLOG-representation for some

fragments of the constructed plan controller.

We also associate to these main objective some additional

goal to extend the used specification language from LTL

to LTL extended by Halpern-Shoham logic with 〈D〉 and

〈L〉-operators, symb. HSD.

Organization of the paper. This paper is organized as follows.

In section 2 we present a terminological background of the

analysis. In section 3 we present the main problem of the

paper analysis and we give a general algorithm of our hybrid

controller specification. Section 4 forms the main conceptual

part of the paper, where we describe in details the steps of the

controller construction via the Büchi automaton for LTL and

for the considered transition system. In section 5 we briefly

describe the implementation area of this construction and

HS logic with operators: ABĀB̄. In section 6 we formulate

conclusions and some remarks on the future research direction.

II. PRELIMINARIES

Before moving to main paper body, we present a termino-

logical framework of this paper analysis, introducing a new

concept of preferential automata and preferential transition

system. The recalled definitions of a (finite) transition system

and a Büchi automaton are incorporated from [7].

Definition 1. . A (finite) transition system FTS is a n-tuple

FTS = (W,W0, Act, T ran,Π, Obs), where:

1) W is the finite set of states (worlds),

2) W0 ⊆W is the distinguished set of initial states,

3) Act denotes the set of possible actions,

4) Tran :W ×Act 7→W is a transition function, i.e such

a total function that returns the next stage for a given

state an an action,

5) Π denotes the set of possible observations,

6) Obs : W 7→ Π is the observability function, which

returns the observable part of the current state.

We define an execution on FTS as an infinite sequence

of states w0, w1, . . ., such that w0 ∈ W0 and wk+1 =
Tran(wk, a) for some action a ∈ Act. The observable part of

the execution will be called a trace.

Definition 2. A Büchi automaton is a tuple

A = (Σ, S, S0,→, ρ,F), where:

1) Σ is the alphabet of the automaton,

2) S is the set of states of the automaton,

3) S0 ⊆ S is the set of initial states of the automaton,

4) ρ : S × Σ 7→ 2S is the transition function of the

automaton and

5) F is the set of accepting words.

We expand this definition to a definition of preferential

Büchi automaton by specification of the set of accepting words

by introducing some degrees/parameters α’s from an interval

[0, 1]. The role of them is to measure a degree of a preference

of the accepting words from F , indexed by such an α.

Definition 3. A A Preferential Büchi automaton is a tuple A =
(Σ, S, S0,→, ρ,F , α1, α2 . . .), where:

1) Σ is the alphabet of automaton,

2) S is the set of states of automaton,

3) S0 ⊆ S is the set of initial states of automaton,

4) ρ : S × Σ 7→ 2S is the transition function of automaton

and

5) Fα is the set of accepting words with associated α-

degree preferences.
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Fig. 1. Fragment of the Büchi automaton with states s0, s1 and s2 over an
alphabet Σ.

6) α1, α2, . . . are values of functions f : 7→ Fα → [0, 1]
called preferences.

We assume that a set of α degrees is finite as they index

accepting words from set Fα. Naturally, Fα should be finite

as a a set of accepting words of a finite automaton.

For such a defined automaton we define a run of A (on an

infinite words a0, a1, a2, . . .) is an infinite sequence of such

states s0, s1, . . . ∈ S
ω that s0 ∈ S0 and si+1 ∈ ρ(si, a). We

say that a run r is accepting iff a set {s|s occurs in r infinitely

often } ∩ F 6= ∅. If F is finite, this general condition means

that there exists at least one state s that occurs in a run r

infinitely often.

Linear Temporal Logic (LTL).

Syntax. Bi-modal language of LTL is obtained from standard

propositional language (with the Boolean constant ⊤) by

adding temporal-modal operators such as: always in a past

(H), always in a future (G), eventually in the past (P),

eventually in the future (F), next and until (U ) and since (S)

– co-definable with "until". The set FOR of LTL-formulas is

given as follows:

φ := φ|¬φ|φ ∨ ψ|φUψ|φSψ|Hφ|Pφ|Fφ|Next(φ) (1)

Some of the above operators of temporal-modal types are

together co-definable as follows: Fφ = ⊤U , Pφ = ⊤Sφ and

classically: Fφ = ¬Gφ and Pφ = ¬Hφ.

Semantics. LTL is traditionally interpreted in models based on

the point-wise time-flow frames F = 〈T,<〉 and dependently

on a set of states S. In result, we consider pairs (t, s) (for

t ∈ T representing a time point and s ∈ S) as states of LTL-

models. Anyhow, we often consider a function f : T 7→ S that

associates a time-point t ∈ T with some state s ∈ S and we

deal with pairs (t, f) instead of (t, s). Hence the satisfaction

relation |= is defined as follows:

1) (t, f) |= Gφ ⇐⇒ (∀t
′

> t)t
′

|= φ, (t, f) |=
Hφ ⇐⇒ (∀t < t

′

)t
′

|= φ.

2) (t, f) |= Fφ ⇐⇒ (∃t
′

> t)t
′

|= φ, (t, f) |=
Pφ ⇐⇒ (∃t < t

′

)t
′

|= φ.

3) (t1, f) |= φSψ ⇐⇒ there is t2 < t1 such that t2, f |=
ψ and t, f |= φ for all t ∈ (t1, t2)

Fig. 2. Visual presentation of temporal interval relations of Allen

4) (t1, f) |= φUψ ⇐⇒ there is t2 > t1 such that t2, f |=
ψ and t, f |= φ for all t ∈ (t1, t2)

5) (tk, f) |= Next(φ) ⇐⇒ (tk+1, f) |= φ, k ∈ N .

Halpern-Shoham logic. HS forms a modal representation of

the following temporal relation between intervals, defined by

[7]: after" (or meets"), (later"), begins" (or start"), during",

end" and overlap". These relations are intuitive and their

visualization can be easily found in many papers, so we

omit their visual presentation, they correspond to the modal

operators: 〈A〉 for after", 〈B〉 for begins", 〈D〉 for during",

etc. The syntax of HS entities φ is defined by:

φ := p|¬φ|φ ∧ φ|〈X〉|〈X̄〉 , (2)

where p is a propositional variable and 〈X̄〉 denotes a

modal operator for the inverse relation with respect to X ∈
{A,B,D,E,O, L} If φ ∈ L(HS), M is a model, and I is

an interval in the M -domain, then the satisfaction for the HS-

operators looks as follows:

M, I |= 〈X〉φ ⇐⇒ ∃I
′

that IXI ′ and M, I
′

|= φ. (3)

Example 1. Some simple spatial-temporal requirements im-

posed on the robot’s environment E can be expressed by

formulas:

• Always if you take a block A, take B, as well:

G(take(A)→ take(B)) ,

• For any intervals: if you take A, than you also put B:

[D](HOLDS(take(A))→ HOLDS(put(B))).

III. PROBLEM FORMULATION AND A GENERAL

ALGORITHM OF THE CONTROLLER CONSTRUCTION

Assume that E is a polygonal environment of robot motion

operations. All possible admitted holes of E have to be

enclosed by a single polygonal chain. The motion of robot

is expressed as follows:

x(t) ∈ E ⊆ R2, u(t) ∈ U ⊆ R2, u(t) ∩ x(t) 6= ∅ (4)
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where x(t) is a trajectory of robot’s motion (position of a robot

in a time t) in E and u(t) is a control input. Non-emptiness of

the above intersection u(t) and x(t) ensures that a controller

detects the robot’s trajectory. In such a framework, the goal

of the paper is to give an outline of a construction of a hybrid

controller that generates controllers inputs u(t) for a trajectory

x(t) and environment with a specification given by formulas

of LTL and – partially – by HS restricted to D-operator.

A general path of our controller construction looks

a follows. We begin with the environment E and its

triangulation. Secondly, we consider some transition system

FTS to describe a basic dynamism of E. The next, we specify

E in terms of LTL (φ-formula) and of some subsystem

of HS logic. In the next construction step, we transform

FTS to the appropriate Büchi automaton AFTS for it. The

similar automaton ALTL,HS is constructed for representation

of a specification of E (with a chosen point x0) in terms

of the considered temporal logic. Having these automaton,

we construct some product automaton A to ’reconcile’ the

activity of both automata. Assume that some environment E

of a robot and a formula φ ∈ L(LTL∪HSD,L) – describing

this environment or the robot motion are given. Thus, the

algorithm of the hybrid controller construction could be given

as follow – as a specified version of algorithm from [4]:

Algorithm: The Hybrid Controller Construction

Procedure: CONTROLLER(E, φ)

1) △← Triangulate(E)
2) FTS ← TriangulationToFTS(△)
3) AFTS ← FTS to Bchi Automaton

4) ALTL,HSD ← LTL ∪HSDto Bchi Automaton
5) A ← ProductAFTS ,ALTL,HSD

6) return: Controller(A,△, φ)

End procedure

IV. CONTROLLER CONSTRUCTION FOR PATH TEMPORAL

PLANNING WITH OBSERVABILITY

A. From triangulation to the FTS system

In order to propose an exact construction of our path

temporal planning controller we will represent a polygonal

environment E as a finite set of partitions. One can use many

methods of the initial polygonal environment’s decomposition,

presented in [4], [5].

The main idea of such a triangulation consists in a mapping

of each point x ∈ E to a one of the disjoint equivalence classes

determined by an equivalence relation ∼. The natural way is

to define ∼ as follows: ∀x, y ∈ E : x ∼ y ⇐⇒ x, y ∈ △, i.e

each of such an equivalence class forms a triangle, what allows

us to represent a quotient set E| ∼ as a sum of triangles.

Assume now that T : E → Q for Q = {△1, . . .△k}. Than

each T−1(△i), for i ∈ {1, 2, . . . , n} contains some states

x ∈ E and a set {T−1(△i)|△i ∈ Q, for i ∈ {1, 2, . . . , n}} of

all such triangle anti-images is a desired partition of the initial

motion environment E. In order to preserve a consideration

generality, we do not impose any special requirements on E

 

        

 

 Room 1 

 Room 2 

 Room 3 

 Corridor 

Room 1 

Room 3 

Fig. 3. An example of a triangulation of some polygonal robot environment

(concerning the temporal or spatial coverage etc.)

In this framework we can introduce a finite transition system

with preferences– FTS, modifying a definition of of FST with

observability from [4], [20] as follows:

Definition 4. We define the finite transition

system FTS with preferences as a tuple FTS =
〈Q,Q0, Act, tranFTS , P ref, P 〉, where:

1) Q is the finite set of states (triangles),

2) Q0 ⊆ Q is the set of initial robot states,

3) Act is the set of actions,

4) tranFTS : Q × Act 7→ Q is defined as a ’move’ from

△i → △j iff the cells T−1(△i) and T−1(△j) share a

common edge,

5) P is the set of objects called preferences, Pref : Q→
P is a preferential map which associates to a △1 ∈ Q
some preference pref such that pref(△1) ∈ P if P⊂
[0, 1] and Pref is a function.

Example 2. One can consider such a transition system with

preferences as a system –depicted on a Fig. 2 with a function

PREF, which satisfies a condition: PREF (△(room3)) = 1
2 .

(All triangles from a room 3 are preferable (in a sense of a

robot task as places to visit) with a degree 1
2 ).

B. From FTS system to the Büchi automaton

It easy to observe that the finite transition system FTS natu-

rally models a basic structure of the motion environment. It can

play this role independently of a way of its presentation – in

the standard form: FTS = (W,W0, Act, T ran,Π, Obs) or in

the "triangle" tuple FTS = 〈Q,Q0, Act, tranFTS , P ref, P 〉.
Moreover, their structure – as it has been said – is similar to

a structure of automata, so they seems to be a natural base

of a construction of the required automata. In essence, (finite)

automata may be considered as (finite) transition systems with

labeling functions, connected with the appropriate language

which delivers an alphabet as a required component of the

automaton structure. Due to some practice in this area –

expressed in [4], [20] – we will consider the standard repre-
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sentation of FTS as more suitable for an expected automaton

construction.

Authors of the approach from [4], [20] recommended

to an immediate use a structure of such an FTS for this

construction. We only partially make use of this advise. Of

course, we will base the automata construction on the FTS-

structure with its states as transitions as states and transitions

of the newly constructed automaton. Nevertheless, we decide

for a more"descriptive" solution: we firstly describe a robot

environment (FTS) in terms of LTL and we construct states

of desired automaton from sets of the used formulas. For that

reason, one need now a mechanism of such a description. Its

presentation will be given below.

C. From LTL and HSL,D to its Büchi automaton

The next step of our construction will consist in a

constructing of the appropriate Büchi automaton for LTL-

and HS-formulas expressing the robot’s motion environment

E and the action sequencing. This situation is, however, not

so comfortable as in the FTS-case for three purposes. First,

both LTL and HS form formal languages, so their translation

for the Büchi automaton should be more sophisticated.

Moreover, we deal with two languages: LTL and HS of a

different temporal and a modal-temporal nature. Last, but not

least, HS logic (in generality) cannot be expressed by the

Büchi automaton because of the enormous expressive power

of this logic. Fortunately – as it was already mentioned –

it was proven in [17] that the subsystem of HS with an

operator D can be represented by a finite state automaton.

Unfortunately, it is not clear whether there exists any extension

of this subsystem with the same property. Nevertheless, it

is known that a subsystem AĀBB̄ is too strong, because

ω-regular languages can be embedded in this system,

but not in the inverse direction [19]. According to these

remarks on the Büchi automaton construction in section 2, we

begin with defining of a closure of formulas of LTL and HSD.

Definition 5. Let assume that φ ∈ L(LTL). We define its

closure cl(φ) as follows:

1) φ ∈ cl(φ),¬(φ1) ∈ cl(φ), than φ1 ∈ cl(φ),

2) φ1 ∧ φ2 ∈ cl(φ) than φ1, φ2 ∈ cl(φ),

3) A(φ1, . . . , φk) ∈ cl(φ)→ Asub(φ1, . . . , φk) ∈ cl(φ) for

Asub denoting a sub-formula of A.

In the similar way we will define a closure for φ ∈ L(HSD).
For a distinction of these languages and their formulas we will

denote them as: φLTL and φDHS .

Definition 6. In accordance with the earlier statements we

define an automaton ALTL,HSD as n-tuple:

ALTL,HSD = (2cl(φLTL∪φD
HS), ρ, S

φLTL

0 , S
φD
HS

0 ,F) (5)

where (2cl(φLTL) is the set of states of the automaton as the

collection of all sums of (disjoint) sets of formulas in cl(φLTL)

and cl(φDHS), ρ is the transition and S
φLTL

0 , S
φD
HS

0 are sets

of initial states of automaton containing for φLTL and φ
D,L
HS

and F ⊆ 2cl(φLTL) ∪ 2cl(φ
D
HS) is a set of accepting words of

automaton3. (resp.).

One can expand this definition – based on [21], [22] to the

definition of a preferential automaton as follows:

Definition 7. A preferential automaton (for words of L(LTL∪
HSD,L)) is defined as n-tuple:

ALTL,HSD = (2cl(φLTL∪φ
D,L

HS
), ρ, S

φLTL∪φ
D,L

HS

0 ,Fα, α1α2, . . .)
(6)

where (2cl(φLTL∪φ
D,L

HS
) is the set of states of the automaton

as the collection of all sums of (disjoint) sets of formulas in

cl(φLTL) and cl(φDHS), ρ is the transition,

S
φLTL∪φ

D,L

HS

0 are sets of initial states of automaton contain-

ing for φLTL and φ
D,L
HS and Fα ⊆ 2cl(φLTL)∪φD

HS) is a set

of accepting words of automaton, and each of α1, α2 . . . is a

function f : Fα 7→ [0, 1].

Example 3. Let us consider φ = ¬φ1 for some φ1 as a

LTL-formula and ψ = 〈D〉ψ1 (for some ψ1) as our HSD-

formula.We show how to construct a Büchi automaton in a

case of these formulas.

Due to definition of a closure of the formula we obtain:

cl(φ) = {φ1,¬φ1} and cl(ψ) = {ψ,¬ψ, 〈D〉ψ,¬〈D〉ψ} and

thus 2cl(φ) = {∅, {φ1}, {6= φ1}, {φ1,¬φ1}} and 2cl(ψ) =
{∅, {ψ}, {¬ψ}, {ψ, 〈D〉ψ}, {ψ,¬〈D〉ψ}, {¬ψ, 〈D〉ψ},
{¬ψ,¬〈D〉ψ}}. Nψ = {¬φ1, {φ1,¬φ1}} (because these sets

contain φ) and Nψ = {{ψ1, 〈D〉ψ1}, {¬ψ1, 〈D〉ψ1} (because

these sets contain 〈D〉ψ1). Transitions ρLTL and ρHSD are

defined in such a way that sets from Nφ are initial in ρLTL
and Nψ are initial for ρHSD .

D. Product automaton AFTS ×ALTL,HSD

We have already defined the automaton AFTS , which

describes the finite transition system and the automaton

ALTL,HSD that represents the initial temporal logic-based

specification of the motion environment. There is a need to

reconcile both automata in order to construct our open-loop

hybrid controller. For this purpose, it seem to be reasonable to

restrict a spectrum of the possible transitions to these of them,

which can ensure some form of observability.

For this purpose we introduce a product automaton A =
AFTS × ALTL,HSD with a new transition →A between

pairs: (qi, wi) →A (qj , wj). We assume that this transition

holds between such pairs if and only if qi →FTS qj and

(wi;π(qj)) →LTL wj . This last condition means that the

last transition has an input that contains an action π(qj) being

an observation of the newly achieved (in sense of→FTS) state

qj .

Definition 8. Let A1 = 〈Σ1, S, S0,→A1
,Fα, α1, α2 . . .〉

and A2 = 〈Σ2, T, T0,→A2
,Fβ , β1, β2 . . .〉 are preferential

3Let us observe that defining of F as accepted words determines, somehow,
a set of final states by this way of state definition – just by formulas, what

seems to justify F as a subset of 2cl(φLTL)∪cl(φD
HS).
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automata, than their preferential product automaton is the

automaton of the form:

〈Σ1×Σ2, S×T, S0×T0,→A1×A2
,Fα×Fβ , α1, α2, β1, β2 . . .〉 ,

(7)

where→ is a product transition defined such that: (si, ti)→
(si+k, ti+k) holds for natural i ∈ I and 1 ≤ k if and only if

si →A1
si+k and ti →A2

ti+k and α1, α2, β1, β2 ∈ [0, 1] are

fuzzy values expressing preference degrees of accepting words

from Fα and Fβ (resp.)

(For simplicity, we will shortly write → instead of →A1×A2
,

when it will not lead to any confusion.)

E. Complementation of conditions for a product automaton

After the product automaton construction the design of

an open-loop hybrid controller for motion planning reduces

to the finding problem the accepting execution of this

automaton. Nevertheless, this construction requires a small

complementation. In fact, some components of A being

singletons can have no outgoing transitions. In order to

ensure a normal work of the automaton, we add the so-called

stutter extension [8] rule, which adds a self-transition on the

blocking states. More formally: for all states s ∈ domain of

A we define a new transition →A∗=→A ∪(s →A s), where

→A is the transition of the automaton A 4, earlier defined. In

such a framework it holds the following:

Theorem 1. (adopted from [6]) An execution of FTS that

satisfies the specification in terms of LTL and HS-formulas

exists iff the language of A is non empty.

We omit the proof details. For a case of LTL-specification it

can be found in[7]. For a case of HSD it follows from the

existence of the automaton accepting formulas of this logic

from [17].

V. PART II: IMPLEMENTATION

In last part of the paper we gave a theoretic outline of

the hybrid controller construction – based on some product

automaton. In addition, a description of the robot motion

environment and the robot plan have been rendered in LTL

extended by some fragment of HS-logic. In this part we intend

to illustrate these ideas by proposing a concrete construction

of such a controller. According to the earlier arrangements –

this construction will be multi-stage and it will contain the

following stages:

1) a presentation of the robot motion environment ,

2) a formal description of the environment and the plan of

the robot in terms of LTL
⋃
HSD,L ,

3) a formal description of the environment and a real plan

performing by the robot in terms of LTL
⋃
HSD,L

4In essence we consider a projection of →A for the set of s-states, because
→A works for pairs of states.
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1        3 

         

Fig. 4. The polygonal environment of the robot’s motion with 4 rooms. The
blue broken line illustrates the planned trajectory of the robot’s move from a
room no. 1 to the room no. 4. The red one illustrates the deviated trajectory
of the robot’s move.

4) a construction of the appropriate Büchi automata for

both the cases (the first one – for a desired plan, the

second one – for a real plan performing by the robot) ,

5) a construction of a product automaton built up from

automata from a point (4).

6) a PROLOG-description of the product automaton in

order to detect eventual discrepancies between a plan

and its performing by the robot .

A. The motion robot environment and its LTL
⋃
HSD,L-

specification

Let us consider a robot, say R, in some polygonal environ-

ment with 4 rooms as depicted on a picture below. Assume

that R performs a task to dislocate a black block A from a

room 1 to the room 4 and put in on a block B there and the

planned (preferred) move trajectory leads from the room 1 by

a neighborhood of the room 3 to the room 4 (the blue line

on a picture). Let also assume that our robot exchanged this

trajectory for another one (marked by a red line).

Therefore, the robot motion environment and plan

specification in LTL ∪ HSL,D may be rendered as

follows:

• Plan + Preferences:

1) Take a block A.

2) Move from R1 to R3 (more preferable) or Move from

R1 to R4 (less preferable).

3) If you are in R3, move from R3 to R4.

4) Go to the room R4).
5) Put a block A on the block B.

We can also extract the following ’behavioral’ rule for the

robot as a condition of an effective plan performing.

• Condition for the plan performing/behavioral rules:

1) Always in a future, if you take a block A, go to the

room R3.
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Finally, we should give a short description of the polygonal

robot motion environment.

• The robot environment:

1) Environments consists of 4 rooms ,

2) In a room R1, block A is initially located ,

3) In a room R4, block B is initially located ,

4) In rooms R2, R3 no blocks are located ,

5) In room R4, block A is finally located ,

6) The robot motion area is always located on the left of

a room R1 ,

7) The robot’s motion area is always located on the right

of a room R4 .

All these conditions may be regarded now in terms of

LTL
⋃
HSD,L in the corresponding way as follows:

• Plan + Preferences:

1) Take(A).
2) Move(RA1 , R3) ∨Move(RA1 , R4).
3) HOLDS(RR3 )→Move(R3, R4).
4) Put(A).
5) HOLDS(RA4 ).

• Condition for the plan performing/behavioral rules:

1) G(take(A)→ 〈L〉go(R3) .

• The robot environment:

1) R1 ∧R2 ∧R3 ∧R4,

2) RA1 ∧R
B
4 (HOLDSInit(R

A
1 )),

3) RA4 (HOLDSFin(R
A
1 )),

4) [D](R1 → Left)
5) [D](R4 → Right).

Let us return now the initial assumption that the robot

deviated from the planned path and has chosen a red line

from R1toR4 , so via R2. We can trace this deviation for the

following juxtaposition of two formal descriptions in terms

of LTL
⋃
HSD,L for both situations.

plan of the robot the real plan per-

forming

Take(A) Take(A)
Move(RA1 , R3) ∨Move(RA1 , R4) Move(RA1 , R2)
HOLDS(RR3 )→Move(R3, R4) Move(RA2 , R4)
Put(A) Put(A)
HOLDS(RA4 ) HOLDS(RA4 )

behavioral rule behavioral rule

G(take(A)→ 〈L〉go(R3) ?

B. From LTL ∪HSL to the Büchi automaton

The next stage of the plan controller construction consists

in a translation of LTL ∪ HSL-formulas to states of an

automaton which usually is not given a priori, but it must

be constructed in the appropriate way. The automaton in our

case will be constructed due to [21], [22] via such that states

are identified with subsets of closures of the LTL ∪ HSL-

formulas. In order to illustrate this procedure let us consider

              {A, TAKE(¬A)}    ⦁ r1 

{¬A}  {TAKE(¬A)} 

        ⦁ p1    ⦁ q1 

 

 

 ∅ 

 

 

        {A}    {TAKE(A)} 

        ⦁ p2    ⦁ q2 

 

{A, TAKE(A)} 

               ⦁ r2  

Fig. 5. Fragment of the Büchi automaton with states for a closure of the
LTL-formula Take(A).

                 ⦁ q0   {R3, take(A)} 

    {R3, A}      {go(R3), A}  {ۃLۄgo(R3),A}  {take(A)⟶ۃLۄgo(R3),A}

       ⦁p0  σ2        ⦁q1  σ3        ⦁ r0  σ4  ⦁ s0 

    {¬go(R3), A}  {¬go(R3), ۃLۄgo(R3),A}  

              ⦁ q2          ⦁ r1   

   σ1    ⦁ p1 {¬A, A}   

  A   

  ⦁     ⦁p2 {¬R3,A}    

 ∅ 

  ⦁     {¬go(R3), ¬A} ¬A  {R3,¬A}   ⦁q3 

  ⦁p3   {¬go(R3), ¬A} 

 

Fig. 6. Fragment of the Büchi automaton with states for a closure of the
LTL-formula Take(A) → 〈L〉go(R3).

a case of a single LTL-formula Take(A). Due to defini-

tion 5 from p. 5 a closure of a formula φ contains all of

its sub-formulas and its negations. In this case we get the

following sets of formulas: ∅, {¬A}, {A}, {TAKE(¬A)},
{A, TAKE(¬A)}, {TAKE(A)}, {A, TAKE(A)} – as de-

picted on a fig. 3.

The fragment of Büchi automaton for a more complicated

formula LTL ∪ HSL-formula take(A) → 〈L〉go(R3) was

presented on a diagram 4.

The fragment of the Büchi automaton, say A, for LTL-

formula Move(RA1 , R3) expressing the second step of the

robot’s plan is more complicated and it looks like depicted

on fig.3. The same principle determines a construction way
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    {¬R1
A
}   {R1

A
, Move(R1

A
,R3)}  {R3, Move(R1

A
,R3)} 

    p1⦁    q1⦁     r1⦁ 
 

    {R1
A
}    {Move(R1

A
,R3)}   {R1

A
, Move(R1

A
,R3)} 

    p2⦁    q2⦁     r2 ⦁ 
 ∅    {R3}    {¬Move(R1

A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

    p3 ⦁    q3 ⦁     r3 ⦁ 
 

    ⦁{¬R3}    {¬R3, ¬Move(R1
A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

    p4    q4 ⦁     r4 ⦁ 

Fig. 7. Fragment of the Büchi automaton with states for a closure of the
LTL-formula aMove(RA

1 , R3).

          ⦁ r    {A, TAKE(A)} 

   {A}   {TAKE(A)}    

                                  p ⦁    q ⦁ 

 

    {¬R1
A
}   {R1

A
, Move(R1

A
,R3)}  {R3, Move(R1

A
,R3)} 

    p1⦁    q1⦁     r1⦁ 

 

    {R1
A
}    {Move(R1

A
,R3)}   {R1

A
, Move(R1

A
,R3)} 

    p2⦁    q2⦁     r2 ⦁ 

 ∅    {R3}    {¬Move(R1
A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

    p3 ⦁    q3 ⦁     r3 ⦁ 

 

    ⦁{¬R3}    {¬R3, ¬Move(R1
A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

    p4    q4 ⦁     r4 ⦁ 

Fig. 8. Fragment of the Büchi automaton with states for a closure of the
LTL-formulas Take(A) and Move(RA

1 , R3).

of the automaton fragment for Move(RA1 , R3) – as depicted

on a Fig. 5. In addition, the fragment of automaton for both

formulas: Take(A) and Move(RA1 , R3) (taken together) is

demonstrated on a Fig. 6. Finally, a more extended fragment

of this automata for Move(RA1 , R3) and the ’behavioral rule’

of the robot Take(A) → 〈L〉go(R3) – providing the plan

performing – was presented on a Fig. 7.

It is not difficult to observe that a ’global size’ of such

automata for a complete plan of the robot and its motion

environment is very large and its complete presentation would

be difficult and non-suggestive. It is enough to observe that the

full automaton is a composition of the appropriate fragments

enriched by some ’move-lines’ (the dark line on a Fig. 7) in

order to connect the appropriate fragments of this automaton.

                 ⦁ q0   {R3, take(A)} 

    {R3, A}      {go(R3), A}  {ۃLۄgo(R3),A}  {take(A)⟶ۃLۄgo(R3),A}

       ⦁p0  σ2        ⦁q1  σ3        ⦁ r0  σ4   ⦁ s0 

    {¬go(R3), A}  {¬go(R3), ۃLۄgo(R3),A}  

 A  ⦁   ⦁ p1 {¬A, A}     ⦁ q2                       ⦁ r1   F 

    {¬R1
A
}   {R1

A
, Move(R1

A
,R3)}  {R3, Move(R1

A
,R3)} 

    p1⦁    q1⦁     r1⦁ 

 

    {R1
A
}    {Move(R1

A
,R3)}   {R1

A
, Move(R1

A
,R3)} 

    p2⦁    q2⦁     r2 ⦁ 

 ∅    {R3}    {¬Move(R1
A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

    p3 ⦁    q3 ⦁     r3 ⦁ 

 

    ⦁{¬R3}    {¬R3, ¬Move(R1
A
,R3)}  {R3, ¬Move(R1

A
,R3)} 

Fig. 9. Fragment of the Büchi automaton for Move(RA
1 , R3) and for a

fragment of a formula take(A) → 〈L〉go(R3).

 

 

 

    {¬R1
A
}   {R1

A
, Move(R1

A
,R2)}  {R2, Move(R1

A
,R2)} 

    p1⦁    q1⦁     r1⦁ 

 

    {R1
A
}    {Move(R1

A
,R2)}   {R1

A
, Move(R1

A
,R2)} 

    p2⦁    q2⦁     r2 ⦁ 

 ∅    {R2}    {¬Move(R1
A
,R2)}  {R2, ¬Move(R1

A
,R2)} 

    p3 ⦁    q3 ⦁     r3 ⦁ 

 

    ⦁{¬R2}    {¬R2, ¬Move(R1
A
,R2)}  {R2, ¬Move(R1

A
,R2)} 

    p4    q4 ⦁     r4 ⦁ 

Fig. 10. Fragment of the Büchi automaton for the real task performing for
the closure of LTL-formula Move(RA

1 , R2).

In order to detect discrepancies between the plan-automaton

(for Move(RA1 , R3) and for the ’behavioral rule’ take(A)→
〈L〉go(R3)) with the corresponding part of automaton for the

real performing of the plan, it is enough to compare both

pictures. (The different states, i.e. with different formulas

satisfied in them, are marked in a blue color.) Moreover,

the plan-automata is larger as it also contains the transition

’branch’ for the ’behavioral rule’ of the robot. This branch

cannot be added to the second automaton – due to observations

from last section.

It has emerged that a discrepancy on the level of LTL ∪
HSL-formalism can be naturally reflected by its correspond-

ing automata – as depicted on the Fig. 8. and Fig. 6.
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C. The product automaton

As it has already been mentioned – each product automa-

ton preserves some portion of information encoded by two

automata: by the plan-automata, say Aplan and by its ’rival’

for the real task performing, say Aperf . As each product

structure, the product automaton Aplan × Aperf is built up

from pairs of states of the form: (splan1 , s
perf
2 ), where each

s
plan
1 ∈ Aplan and each s

perf
2 ∈ Aperf . 5 The similar pairs

can be constructed with respect to transitions taken fromAplan

and their equivalents from Aperf (if there are)6.

The product automata – due to the earlier definition of

preferential product automaton – Aplan × Aperf must have

a general form:

〈Σ1×Σ2, S
plan×Sperf , Splan0 ×Sperf0 ,→,Fα×Fβ , α1, α2 . . .〉 .

(8)

Assuming that the choice of Move(R1, R3) is preferable with

a degree, say 2
3 and the choice of Move(R1, R4) – with a

degree 1
3 in the robot plan, the fragment of product automata

A×Apref for formulas Move(R1, R3)∨Move(R1, R4) and

Move(R1, R2) – due to definition – will have the following

algebraic representation:

Σ1 × Σ2 = L(LTL ∪HSL)× L(LTL ∪HSL) ,

Splan × Sperf =
2cl(Move(R1,R3)∨Move(R1,R4) × 2cl(Move(R1,R2) ,

S
plan
0 × Sperf0 = {∅, {R1}, {¬R1} . . .}

2 ,

Fα ×Fβ =

{R1, R3, R4,Move(R1, R3)
2

3 ,Move(R1, R4)
1

3 } ×
{R1, R2,Move(R1, R2)} ,

α1 = 2
3 , α2 = 1

3 .

The diagram presentation of the product automaton A ×
Apref is simple and much more suggestive. For example,

a diagram of the product automaton fragment for formulas

Take(A),Move(RA1 , R3) ’produced’ with Move(RA1 , R2)
would be a product of single automata from Fig.6 and Fig.

8. (Both these automata – so to speak – combined together).

The preferences imposed on some transition paths must be

only marked by the appropriate values such as 2
3 , 1

3
7.

D. PROLOG-description of the product automaton

The last step of our plan controller construction is to encode

the product automaton – earlier described in details – in a

declarative language such as PROLOG. An idea of encoding

is simple: a ’status’ and localization of automaton states will

be described by such predicates as: final(x), initial(x), but

the transitions between them may be rendered by 3-argument

predicates arc(x,y,z).

5It is not completely correct, because we should pedantically state that

s
plan
1 belongs to some set Splan of states of Aplan, but we will omit this

distinction for a simplicity and some suggestiveness of analysis.
6Of course, both automata Aplan and Aperf are defined over the same

alphabet Σ = L(LTL ∪HSL,D).
7Naturally, these paths (with associated values) could by also distinguished

among other ones in other way on a diagram representation of the automaton.

In this framework the PROLOG-description of the frag-

ment of Aplan-automaton for two formulas: Take(A) ∪
Move(RA1 , R3) may be as follows:

initial(0).

final(r3). final(r1). final(r2).

final(r3). final(r4). final(q4).

arc(0,p1). arc(0,p2). arc(0,p3).
arc(0,p4).
arc(p1,q2). arc(p2,p2). arc(p2,q2).

arc(p2,q3). arc(p3,q2). arc(p3,q3).

arc(p4,q3).

arc(q1,q1). arc(q2,q1). arc(q2,r1).

arc(q2,r2). arc(q3,r3). arc(q3,r4).

arc(q3,q4).

arc(r1,r1). arc(r2,r1). arc(r3,r3).

arc(r4,r4).

arc(0, p). arc(p,q). arc(q,r). arc(q,q2).

In the similar way one can encode the fragment of the

second automaton Apref for Move(RA1 , R3). Since each state

is determined by a set of formulas satisfied in it and most of

states of this automaton is determined by formulas different

from the earlier ones, one should denote the corresponding

states – when needed – by capital letters: R1, R2, Q1, Q2 etc.

In order to encode them in PROLOG we will represent them

by ′stateR′
1,

′ stateR′
2 etc.8 Thus the PROLOG-description

of the required fragment of Apref looks as follows:

initial(0).

final(r3). final(r1). final(r2).

final(r3). final(r4). final(q4).

arc(0,p1). arc(0,p2). arc(0,P3).
arc(0,P4).
arc(p1,Q2). arc(p2, stateP2).

arc(p2,stateQ2). arc(p2,stateQ3).

arc(stateP3,stateQ2).

arc(stateP3,stateQ3).

arc(stateP4,stateQ3).

arc(stateQ1,stateQ1).

arc(stateQ2,stateQ1).

arc(stateQ2,stateR1).

arc(stateQ2,stateR2).

arc(stateQ3,stateR3).

arc(stateQ3,stateR4).

arc(stateQ3,stateQ4).

arc(stateR1,stateR1).

arc(stateR2,stateR1).

arc(stateR3,stateR3).

arc(stateR4,stateR4).

In order to better elucidate differences between both

PROLOG-encodings, let us write in the lines which

differentiate both codes:

8This encoding follows from the fact that capital letters in PROLOG are
variables.
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arc(stateQ1,stateQ1).

arc(stateQ2,stateQ1).

arc(stateQ2,stateR1).

arc(stateQ2,stateR2).

arc(stateQ3,stateR3). arc(stateQ3,R4).

arc(stateQ3,statesQ4).

arc(tateR1,stateR1). arc(stateR2,stateR1).

arc(stateR3,stateR3).

arc(stateR4,stateR4).

In addition, the third line of this first code for Aplan

is partially incompatible with the corresponding line of the

second code. The lack of the last line of the first code in the

second code is accidental, since it follows from the automaton

construction for Move(RA1 , R2) only, but the "branch" for

Take(A) could be also added to this fragment of Apref .

Nevertheless, the branch for Take(A) → 〈L〉go(R3) cannot

be added to is as the robot did not respect this ’behavioral

rule’ in its real task performing what it is reflected by Apref .

It remains to enrich these PROLOG–descriptions by

some preferential component – as it it has been made with

respect to automata. Due to our convention – preferences

are denoted by rational numbers from a fuzzy set [0, 1]
and they are associated to paths/arcs between automaton

states. For simplicity of the PROLOG-representation, we

can assume that they can be associated to final states of such

paths/arcs. Assume, however, that we do not know how they

are associated to concrete formulas or states, but we only

known that each of formula can take one of values from

the set {0, 12 ,
2
3 , 1}. If we define the automaton branches for

a Take(A)-formula by PROLOG lists, say X and Y, we

also need to add a piece of information about possible fuzzy

values that can be considered:

X ins 0, 12 ,
2
3 , 1, and Y ins 0, 12 ,

2
3 , 1.

These coding examples do not exhaust the list of possible

ways of PROLOG-encoding, but they are used for illustration

and can be extended and specified in many ways.

VI. CONCLUSIONS

It has just been demonstrated how the hybrid plan controller

can be constructed beginning with a formal description of the

robot motion environment. As it could be observed – we were

mostly interested in a theoretic side of a construction of such

a controller, putting aside its real robotic materialization. This

issue could constitute a subject of further research direction.

Anyhow, it has emerged that the initial discrepancy between

a plan and its real performing by a robot can be encoded

at each stage of the controller construction without losing of

any portion of information. In fact, the same discrepancy at

the stage of the LTL-description can be transformed to the

stage of the automaton construction and – finally – could be

visible at the stage of its PROLOG-representation, too. One

could venture a thesis that attempts with other languages of a

declarative paradigm give the similar results.

Naturally, the preferential extension of automata and the

whole construction of the plan controller that we have just

proposed forms a kind of an ’external’ extension. In fact, we

have not introduced any explicit preferential language to LTL

extended by HS-language with 〈D〉 and 〈L〉. It seems that this

task could be feasible in some preferential extension of HS or

LTL.
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