
Efficient parallel evaluation of block properties of
sparse matrices
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Abstract—Many storage formats for sparse matrices have been
developed. Majority of these formats can be parametrized, so
the algorithm for finding optimal parameters is crucial. For
overall efficiency, it is important to reduce the execution time
of this preprocessing. In this paper, we propose a new algorithm
for the determination of the number of nonzero blocks of the
given size in a sparse matrix. The proposed algorithm requires
relatively a small amount of auxiliary memory. Our approach is
based on the Morton reordering and bitwise manipulations. We
also present a parallel (multithreaded) version and evaluate its
performance and space complexity.

I. INTRODUCTION

C
OMPUTATIONS with sparse matrices are widespread in

scientific projects. Many storage formats for sparse ma-

trices have been developed. The most straightforward approach

is to accompany values of nonzero elements with their row and

column indexes, which forms the coordinate format (COO,

for details see Sec. I-C). If the local matrix nonzero elements

are ordered lexicographically, then row indexes in COO can

be substituted by the number of nonzero elements of each

row. Such idea is represented by the compressed sparse row

(CSR, for details see Sec. I-D) format. Due to matrix sparsity,

the memory access patterns in common formats (like COO or

CSR) are irregular and the utilization of cache suffers from low

spatial and temporal locality, hence other (so called advanced)

formats are used in practice. These advanced formats are

usually parametrized,

A. General notation

We consider a matrix A of order n × n, A = (ai,j). The

number of its nonzero elements is denoted by N . Matrix A is

considered sparse if it is worth (for performance or any other

reason) not to store this matrix in memory in a dense array.

In the following text:

• We assume that indexes of all vectors and matrices start

from zero.
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• We assume that 1≪ n ≤ N ≪ n2.

• The number of nonzero elements in submatrix B of

matrix A is denoted by η(B), so η(A) = N
• For any submatrix C, if η(C) = 0 then the submatrix C

is called zero submatrix, otherwise it is called nonzero

submatrix.

• If all elements in A have the same probability N/n2 to

be nonzero (independently on other elements) then A has

a uniform distribution of nonzero elements.

• The parameter th denotes the number of threads used for

the execution of an algorithm.

B. Banded matrices

Citing from Golub and Van Loan [1]:

Definition 1:

If all matrix elements are zero outside a diagonally bordered

band whose range is determined by constants k1 and k2:

ai,j = 0 if j < i− k1 or j > i+ k2, k1, k2 ≥ 0.

Then the quantities k1 and k2 are called the left and right half-

bandwidth, respectively. The bandwidth of the matrix (denoted

by ω(A)) is k1 + k2 + 1.

Definition 2: If ω(A)≪ n, then A is banded.

C. The Coordinate (COO) format

The coordinate (COO) format is the simplest format for

storing sparse matrices (see [2], [3]). The matrix A is repre-

sented by three linear arrays values , xpos , and ypos . The array

values[0 , . . . ,N − 1 ] stores the nonzero values of A, arrays

xpos[0 , . . . ,N − 1 ] and ypos[0 , . . . ,N − 1 ] contain column

and row indexes, respectively, of these nonzero values. The

ordering of elements in this format is not prescribed.

D. The Compressed Sparse Row (CSR) format

The most common format for storing sparse matrices is the

compressed sparse row (CSR) format (see [2]–[7]). The matrix

A stored in the CSR format is represented by three linear

arrays: values , addr , and ci . The array values[0 , . . . ,N − 1 ]
stores the nonzero elements of A, the array addr [0 , . . . ,n]
contains indexes of initial nonzero elements of rows of A. The

array ci [0 , . . . ,N − 1 ] contains column indexes of nonzero

elements of A.
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E. Hierarchical formats

Many hierarchical formats are based on the idea of par-

tition the matrix into square disjoint blocks of size 2c × 2c

rows/columns, where c ∈ N+ is a formal parameter. In the

further text, we will denote them as basic hierarchical format

(BHF), for details see [6], [8], [9]. Coordinates of the upper left

corners of these blocks are aligned to multiples of 2c. Thus,

indexes of nonzero elements are separated in two parts, indexes

of blocks and indexes inside the blocks. Every such a region

has block row and block column indexes. Let B(c) denote

the number of nonzero blocks for matrix A. The minimal

number of nonzero blocks is equal to B(c)min =
⌈

N
22c

⌉

, if all

nonzero blocks contain only nonzero elements (i.e., are 100%

dense). The maximal number of nonzero blocks is equal to

B(c)max = min
(

N,
⌈

n
2c

⌉2
)

, if each nonzero block contains

exactly one nonzero element or if the whole matrix A is

covered by nonzero blocks. This idea is for example behind

formats: COOCOO format [10], ABHSF [8], [9], multilevel

format [11], and so on. For all these formats, the optimal value

of bits for each level should be computed. For this decision,

the information about number of blocks B(c) for given c is

required.

F. Our requirements for an algorithm

Our assumptions and the requirements for an algorithm for

computation of the number of nonzero blocks are as follows:

• The algorithm should be execution efficient (even in the

multithreaded environment).

• Since, we are processing large sparse matrices, we as-

sume that the space complexity (memory footprint) of

the sparse matrix A is significant. We define an in-

place algorithm as an algorithm that needs auxiliary data

structures with space complexity strictly lower than the

number of matrix nonzero elements. By in-place compu-

tation we mean an algorithm with o(N) space complexity,

in contrast to O(N). It is the typical situation in HPC

(high performance computing) that the matrix typically

represents the largest object stored in the main memory.

Hence, the algorithm should be also space-efficient, i.e.,

space complexity of all its temporary data should be much

lower than space complexity of the matrix. When the

computation of the number of nonzero blocks of a matrix

cannot be performed in-place, then there might not be

enough free memory to make this computation at all.

• In real situation, we don’t need to compute the number

of nonzero blocks for all c from [1, . . . , ⌈log n⌉] because

some block sizes from this interval are simply too small

or too large for the given purpose. Thus, we need to

compute the number of nonzero blocks only for c from

the given interval [c min, . . . , c max ].

G. Overview of state-of-the-art

As far as we know, there are only two algorithms for the

computation of the number of nonzero blocks (e.g., in [10]),

both of them are based on sets. There are two main reasons

for such low number:

• Authors rarely present algorithms for preprocessing of

matrices, which are necessary for assessment of the

suitability of their formats for a given application [6].

We have not found a case where format authors provided

efficient parallel implementations of algorithms for the

computation of the number of nonzero blocks in non-

experimental forms.

• Register blocking formats (like SPARSITY [12] or [13]

or CARB [5], [14]) store a matrix as a set of small

dense blocks. Blocks can be linear (horizontal, vertical,

or diagonal) or rectangular, a usual range of size is from

2 to 20. Since the block-size is not limited to the power

of 2 and optimization criteria are more complex, a special

transformation algorithm is used.

• Some formats (e.g., [11], [15]–[17]) skip this computation

and use ”typically good” values of the block-size.

The idea behind the two found solutions is to evaluate the

number of blocks B(c) for all values of parameter c from

[c min, . . . , c max ] using a set. We will consider four imple-

mentations of such an algorithm using different data-structure

for implementation of the set.
1) First algorithms based on sets: All nonzero elements

are mapped to block coordinates. These block coordinates are

mapped to index i ∈ 〈0, . . . , ⌈n/2c⌉2〉 and put into set U .

Finally, the cardinality of U is determined. It is equal to the

number of blocks B(c).

Algorithm 1 Determination of the number of blocks B(c)

1: procedure NUMBEROFBLOCKS1(I ,c)
Input: In = a matrix in the CSR format

Input: c = the parameter (logarithm of block size)

Output: B = the number of blocks

2: B ← 0; d← 2c; p← ⌈n/d⌉;
3: construct the set U ;

4: U = ∅;
5: for y ← 1, In.n do

6: for j ← In.addr[y], In.addr[y + 1]− 1 do

7: x← In.ci[j];
8: i← ⌊y/d⌋ · p+ ⌊x/d⌋;
9: put the element i into U ;

10: B ← |U |;
11: return B;

The time complexity of Algorithm 1, T1(n,N), consists of

• t1 = time complexity of creating an empty set U at

codeline (4),

• t2 = N · tins = time complexity of inserting N elements

at codeline (9) into the set U ,

• t3 = time complexity of computing the cardinality of U
at codeline (10).

The time complexity depends on the data structure used for

implementing the set U . Let d = 2c and p = ⌈n/d⌉. Let us

consider four basic implementations:

1) a bit array (of size of p2 = ⌈n/d⌉2 = ⌈n/2c⌉2 bits):

Then
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• t1 is proportional to the range of indices i: t1 =
O(p2),

• t2 = N ·O(1) = O(N),
• t3 is also proportional to the range of indices i:

t3 = O(p2).

The total time complexity is T1(n,N) = O(N + p2) =
O(N + ⌈n/2c⌉2) and the space complexity is O(p2) =
O(⌈n/2c⌉2). These complexities are high (especially for

small values of c) which makes this approach inefficient.

2) A linked list:

• t1 = N ·O(1) = O(N),
• t2 = N ·O(B(c)max),
• t3 = O(B(c)max).

The total time complexity is T1(n,N) = O(N ·
B(c)max) and the space complexity is O(B(c)max).
This complexity is high which makes this approach

inefficient.

3) A balanced binary search tree:

• t1 = O(1),
• t2 is proportional to N and to the logarithm of

the size of binary representation of index i: tins =
O(2 log p) = O(log(n/2c)) = O(log n− c),

• t3 = O(B(c)max).

The total time complexity is T1(n,N) = O(B(c)max +
N(log n−c)) and the space complexity is O(B(c)max),
hence the approach is quite execution efficient, but space

inefficient (especially for small values of c).
4) A hash table of size l (we assume a closed hashing

scheme):

• t1 = O(l),
• t2 = N ·O(1) in ideal case,

• t3 = O(l).

We must carefully choose the value of parameter l to

satisfy the no-collision assumption during the insertion

of elements, this parameter should be greater than

B(c)max. Then, the total time complexity is T4(n,N) =
O(N+ l) = O(N+B(c)max) and the space complexity

is O(B(c)max), hence the approach is execution effi-

cient, but space inefficient (especially for small values

of c).

2) An improved algorithm: We can improve Algorithm 1 as

follows: The matrix A is divided into disjoint horizontal strips

whose height is equal to 2c. Then the cardinality of set U (i.e.,

the number of blocks) is determined in each strip separately.

The value of B(c)max is decreased to ⌈ n
2c ⌉ that occurs if the

whole strip is covered by nonzero regions.

Algorithm 2 Determination of the number of blocks B(c)
(improved)

1: procedure NUMBEROFBLOCKS2(In,c)
Input: In = a matrix in the CSR format

Input: c = the parameter (logarithm of block size)

Output: B = the number of blocks

2: B ← 0; old← −1;

3: d← 2c;

4: create the set U ;

5: U = ∅;
6: for y ← 1, In.n do

7: if ⌊y/d⌋ > old then

8: B ← B + |U |;
9: U = ∅;

10: old← ⌊y/d⌋;

11: for j ← In.addr[y], In.addr[y + 1]− 1 do

12: x← In.ci[j];
13: i← ⌊x/d⌋;
14: put the element i into U ;

15: B ← B + |U |;
16: return B;

The time complexity of Algorithm 2, T2(n,N), consists of:

• t1 = p · tinit = time complexity of creating empty sets at

codelines (5) and (9),

• t2 = N · tins = time complexity of inserting N elements

at codeline (14),

• t3 = p · tenum = time complexity of determining the

cardinality of the set at codelines (8) and (15).

Four basic implementations of the set data type provide the

following time complexities:

1) a bit array (of size of ⌈n/d⌉ = ⌈n/2c⌉ bits):

• tinit = O(p),
• tins = O(1),
• tenum = O(p),

T2(n,N) = O(N + p2) and the space complexity is

O(p). So, the space complexity decreased compared to

same implementation of the set data type in Algorithm

1, but the time complexity remains high, especially for

small values of c.
2) a linked list:

• tinit remain the same as in the previous case,

• tenum = tins = O(B(c)max) drops due to B(c)max

decrease.

The total time and the space complexities remain the

same compared to the same implementation of the set

data type in Algorithm 1.

3) a balanced binary search tree:

• tinit remains the same as in the previous case,

• tins = O(log p) = O(log(n/2c)) = O(log n− c).
• tenum = O(B(c)max) drops due to B(c)max de-

crease.
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The total time complexity remains the same compared

to the same implementation of the set data type in

Algorithm 1.

4) a hash table with the open hashing scheme (the size of

the hash table is equal to l). It is much easier to satisfy

the no collision assumption by insertion of elements

(with lesser value of l).

• tins is the same,

• tinit and tenum drops due to B(c)max and l decrease.

The total time complexity remains the same.

3) The summary of state-of-the-art algorithms: None of

the algorithm and implementation satisfies the requirements

describe in Sec. I-F. The improved algorithm reduces mem-

ory requirements which allows implementations to be space

efficient. On the other hand, existing algorithms are execution

inefficient (especially for small values of c). The situation

is getting worse for multithreaded execution. If each strip

is computed in parallel then every thread has independent

instance of the set and memory requirements will be th-times

higher. If single strip is computed by multiple threads then

the only one (shared) set is used, but every access is a critical

section, hence the speedup would be minimal.

II. OUR NEW APPROACH

A. Main idea

In our approach, we utilize reordering of nonzero elements

according to so-called Morton order (for details see [18]).

Morton ordering is a mapping from an i-dimensional space

onto a linear list of numbers. If we want to convert a certain

set of integer coordinates to a Morton code, we have to

interleave the binary representations of each coordinate. Here

is an example of transformation from 3D coordinates into

Morton code.

(x, y, z) = (5, 9, 1)10 = (0101, 1001, 0001)2

Interleaving the bits results in: (010 001 000 111)2 =
(1095)10-th cell along the co called Z-curve. For the determi-

nation of the number of blocks, we use the following lemma.

Lemma 1: Morton codes for all elements inside the block

of size 2c that is aligned to multiple of 2c are the same except

2 · c least significant bits.

The proof of Lemma 1 is obvious (based on the construction

of Morton code). Hence, we can design an algorithm based

on this lemma: in a sorted sequence of nonzero elements, we

count differences in Morton codes of two adjacent items (more

exactly: the positions of highest bit set in the result of logical

XOR of two adjacent items). We call this algorithm Morton-

based (see Algorithm 3).

Algorithm 3 Determination of the number of blocks B(c)
(new)

1: procedure NUMBEROFBLOCKS3(In,c)
Input: A = a matrix in the COO format

Input: c = the parameter (logarithm of block size)

Output: B = the number of blocks

2: for j ← 1, c max do

3: number [j]← 1;

4: add to every nonzero element its Morton code;

5: sort nonzero elements on its Morton code;

6: old ← A[0].Morton;

7: for i← 1, N do

8: new ← A[i].Morton;

9: diff ← XOR(new , old);
10: old ← new ;

11: k ← round up(Highest1(diff )/2);
12: ⊲ Highest1 = the index of the position of the

highest bit set

13: for j ← 1, k do

14: number [j]← number [j] + 1;

15: return number [];

The time complexity of Algorithm 3, T3(n,N), consists of:

• t1 = N = time complexity of generating Morton codes

at codeline (4),

• t2 = N logN = time complexity of sorting. We assume

the sorting algorithm with complexity O(i log i) for a

array of length i.
• t3 = N · c max = time complexity of for-cycle at

codeline (7) mainly inner loop at codeline (13).

Overall time complexity is T3(n,N) = N(c max + logN),
so this algorithm is efficient, but requires additional space for

Morton codes proportional to N . To avoid this, we propose

two solutions:

1) Morton codes are not stored explicitly. They can over-

write COO storage format (arrays xpos and ypos). After

determination of the number of blocks, the coordinates

(original values in these arrays) will be restored from

Morton codes.

2) Computation of Morton code can be included in a com-

pare function of sorting algorithm at codeline (5) in

Algorithm 3.

B. Example of algorithm usage

Let us assume a very small example of a sparse matrix

with n = 8 and N = 12. Instead of the values of the

matrix elements, we deal only with binary flags indicating

the existence of nonzero elements.
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M
(0) =

























1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

























The steps of the new algorithm are as follows:

Step 1: (codeline 4) For each nonzero element, the Morton code

is computed. Morton codes (for elements in lexico-

graphic order) = { 000000, 010101, 000011, 010110,

001100, 001111, 011010, 110011, 101000, 111100,

101011, 111111 }.
Step 2: (codeline 5) The whole sequence is sorted according to

Morton codes.

Step 3: (codeline 7-14) We count difference in Morton codes of

adjacent items. Morton codes (for elements the highest

different bit set is marked) ={ 000000, 000011, 001100,

001111, 010101, 010110, 011010, 101000, 101011,

110011, 111100, 111111 }. The counters (in variable

numbers) are increased according to the position of the

highest bit set (e.g., 000011⇒ increase numbers[1 ] by

one, 001100 ⇒ increase numbers[1 ] and numbers[2 ]
by 1, etc.).

Step 4: (codeline 15) After traversing the example sequence,

the counters are set to B(c = 1) = numbers[1 ] = 7,

B(2) = 4, B(3) = 1.

C. Parallelization

1) SW technologies: The OpenMP API specification [19] is

defined by a collection of compiler directives, library routines

and environment variables extending the C, C++ and Fortran

languages. These can be used to create portable parallel

programs utilizing shared memory. The core of OpenMP is

the so called fork-join model execution model. An application

employing OpenMP usually begins as a single thread program

and during execution uses multiple threads or even other

devices to perform parallel tasks.
The OpenMP API provides a relaxed-consistency, shared

memory model. All threads have access to the memory and

each may have its own temporary view of the memory (which

represents cache or other local storage used for caching).

Each thread also have access to thread private memory, which

cannot be accessed by any other thread. A single access to a

variable is not guaranteed to be atomic with respect to other

accesses of that variable, since it may be implemented with

multiple load or store instructions. If multiple threads write

without synchronization to the same memory unit, the data

race occurs.
2) Multithreaded execution: The parallel (multithreaded)

version of the algorithm is represented by Alg. 4. We simply

make all steps (described in Sec. II-B) parallel:

Step 1 (Computation of Morton codes): The parallelization of

this step is straightforward.

Step 2 (Sorting of Morton codes): The parallelization of this

step is straightforward by using any parallel in-place sort

(e.g., sort method from std::algorithm [20] or

AQsort [21])

Step 3 (Counting the differences): The whole sequence of

sorted Morton codes is partitioned into th disjoint

chunks of consecutive elements. Each chunk contains

approximately the same number of elements. Each

thread counts the differences in the assigned chunk inde-

pendently. After this computation, local (thread private)

instances of l number [] are summed up to the global

values (number []).

Algorithm 4 Determination of the number of blocks B(c)
(new, parallel version)

1: procedure NUMBEROFBLOCKS4(In,c)
Input: A = a matrix in the COO format

Input: c = the parameter (logarithm of block size)

Output: B = the number of blocks

2: parallel add to every nonzero element its Morton

code;

3: parallel sort nonzero elements on its Morton code;

4: len = N/th;

5: start of parallel block

6: tid = get tid of current thread();
7: if tid = 0 then

8: old ← A[0].Morton;

9: start ← 1;

10: for j ← 1, c max do

11: l number [j]← 1;

12: else

13: old ← A[tid · len− 1].Morton;

14: start ← tid · len;

15: for j ← 1, c max do

16: l number [j]← 0;

17: for i← start , (tid+ 1) · len− 1 do

18: new ← A[i].Morton;

19: diff ← XOR(new , old);
20: old ← new ;

21: k ← round up(Highest1(diff )/2);
22: for j ← 1, k do

23: l number [j]← l number [j] + 1;

24: end of parallel block

25: parallel reduction(+) of l number into number ;

26: return number [];

D. Modification of algorithm suitable for the CSR format

Our algorithms (see Alg. 3 and 4) require the input storage

format that allows to reorder/sort its nonzero elements. Hence,

we use the COO format. This format is used in HPC, but the

CSR format is more frequent (see for example [22], [23]). For

the CSR format, we propose the following modification.

Step 1 The whole matrix is partitioned into 2D disjoint regions

(=chunks of consecutive rows). Starting row of each
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region are aligned to multiple of 2c max .

Step 2 For each region all nonzero elements in this region

are extracted and their Morton codes are stored into

a temporary array. These regions are proceeded by

Alg. 3.

Step 3 The results for all regions are summed up to the global

values.

The parallelization of this algorithm is easy: each region can be

computed independently by a different thread. For good load

balancing in OpenMP API even for matrices with non-uniform

distribution (e.g., for banded matrices), so-called dynamic

scheduling strategy is used.

Matrix abbr n N avg per row

circuitM5 m1 5.56 · 10
6

5.95 · 10
7 10.7

nlpkkt120 m2 3.54 · 10
6

5.02 · 10
7 14.1

ldoor m3 9.52 · 10
5

2.37 · 10
7 24.9

TSOPF_RS_b2383 m4 3.81 · 10
4

1.62 · 10
7 42.5

mouse_gene m5 4.51 · 10
4

1.45 · 10
7 32.1

t2em m6 9.25 · 10
5

4.59 · 10
6 5.0

bmw7st_1 m7 1.41 · 10
5

3.74 · 10
6 26.5

amazon0312 m8 4.01 · 10
5

3.20 · 10
6 8.0

thread m9 2.97 · 10
4

2.25 · 10
6 75.8

gupta2 m10 6.21 · 10
4

2.16 · 10
6 34.8

TABLE I: Characteristics of the testing matrices and their

abbrevation in the further text.

III. EVALUATION OF THE RESULTS

A. Testing matrices

We have used 10 testing matrices from various application

domains from the University of Florida Sparse Matrix Col-

lection [24]. Table I shows the characteristics of the testing

matrices.

B. Used HW and SW

The execution times were measured on a server with fol-

lowing HW and SW parameters:

• 2 × CPU Intel Xeon Processor E5-2620 v2 (15MB L3

cache per CPU),

• CPU cores: 6 per CPU, 12 in total,

• Memory size: 32 GB RAM, total max. memory band-

width: 51.2 GB/s,

• Peak single precision floating point performance 0.48

Tflops (using base clocks),

• OS Linux, C++ compiler (g++) version 4.8.3 with

switches -O3 -march=native -mavx -fopenmp.

We measure elapsed wall clock times using OpenMP function

omp_get_wtime().

C. Evaluation of results

1) Comparison of sequential algorithms: Tables II and III

show the comparison of measured times for different algo-

rithms for the determination of the number of blocks. From

this table, we can conclude that our Morton-based algorithm is

always faster for larger matrices. The reason is the following:

the time complexity of classical algorithm is O(n2+N), hence

for smaller matrices (with small order) both components are

Matrix CL(th = 1) CL(th = 12) NEW(th = 1) NEW(th = 12)
m1 2834 265.9 3.56 0.348

m2 1149 107.8 3.19 0.267

m3 82.8 7.88 1.28 0.107

m4 0.313 0.053 0.959 0.243

m5 0.523 0.044 1.19 0.103

m6 77.3 7.22 0.209 0.018

m7 1.49 0.124 0.204 0.017

m8 14.2 1.26 0.284 0.024

m9 0.091 0.008 0.132 0.012

m10 0.284 0.024 0.142 0.020

TABLE II: Measured times in seconds for the determination

of the number of blocks (c max = 8): CL denotes the

classical improved algorithm, NEW denotes the Morton-based

algorithm.

Matrix CL(th = 1) CL(th = 12) NEW(th = 1) NEW(th = 12)
m1 2839 414 4.38 1.52

m2 1151 168 4.19 0.476

m3 83.4 11.7 1.67 0.212

m4 0.562 0.566 0.563 0.565

m5 0.742 0.746 0.743 0.749

m6 77.4 11.5 0.273 0.041

m7 1.41 0.670 0.259 0.135

m8 14.4 2.39 0.388 0.130

m9 0.128 0.128 0.157 0.157

m10 0.309 0.325 0.154 0.154

TABLE III: Measured times in seconds for the determination

of the number of blocks (c max = 16): CL denotes the

classical (improved) algorithm, NEW denotes the Morton-

based algorithm.

approximately the same and algorithm is execution-efficient.

On the other hand, for larger matrices in the complexity of

the classical algorithm the component n2 become dominant

and algorithm is execution-inefficient. For small matrices the

initial overhead of the Morton-based algorithm is significant.

For larger matrices, this overhead become negligible and this

algorithm is execution-efficient.
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Fig. 1: Speedups for classical (improved) algorithm with

c max = 8.
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Fig. 2: Speedups for classical (improved) algorithm with

c max = 16.
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Fig. 3: Speedups for Morton-based algorithm with c max = 8.

2) Comparison of parallel algorithms: Tables II and III

show the comparison of measured times for different algo-

rithms for the determination of the number of blocks. From

Fig. 1, 2, 3, and 4 we can conclude that both algorithms scale

very well (speedup is equal to the number of threads) for

c max = 8. For c max = 16, the scalability is getting worse

since parallelization is based on regions (see Section I-G3 and

II-D). For small matrices (with small order), the parameter

2c max is comparable with the order of the matrix. In this

case, the load-balance is not good and majority of threads is

idle and the speedup is almost independent on the number of

threads.

IV. CONCLUSIONS

This paper presents the design of a new algorithm for the for

the calculation of the number of blocks in sparse matrices. This
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Fig. 4: Speedups for Morton-based algorithm with c max =
16.

algorithm is crucial for preprocessing of matrices into some

advanced storage formats. We have also developed a parallel

version of this algorithm. We performed experiments on the

parallel system and their results showed that the proposed

algorithm is both execution- and space-efficient.
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