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Abstract—Clustering validity indices are methods for examin-
ing and assessing the quality of data clustering results. Various
studies provide a thorough evaluation of their performance using
both synthetic and real-world datasets. In this work, we describe
various approaches to the topic of evaluation of a clustering
scheme. Moreover, a new solution to a problem of selecting an
appropriate clustering validity index is presented. The approach
is applied to a problem of selecting a suitable clustering validity
index for a real-world task of clustering biomedical articles using
the MeSH ontology.

I. INTRODUCTION

T
HE PROBLEM of clustering is one of the fundamental

problems in Machine Learning. The goal of clustering is

to find the best way to divide a set of points into groups. This

formulation reflects a natural process of learning—humans

tend to categorize entities, like objects, people or events

into clusters, which are characterized by common attributes.

In this paper, we will present a comparison of clustering

validity indices with regards to their applications to clustering

biomedical documents from PubMed database.

Clustering validity is a common name for quantitative

evaluation of the results of clustering algorithms [12]. Clus-

tering Validity Index (CVI) can be perceived as a function

which takes as arguments the dataset and clustering scheme

and outputs some value which represents the quality of the

clustering scheme.

Cluster validity index should provide some insight about the

quality of grouping. The most intuitive notions reflected by the

concept of "good clustering" are compactness and separation.

The cluster is compact, when points within this cluster are

possibly close to each other, whereas clusters are separated,

when neighboring clusters are possibly far from each other [4].

The most common applications of cluster validity methods

are:

1) Fine-tuning parameters of clustering parameters—the

comparison of varying clustering schemes obtained us-

ing different parameters in order to find the best group-

ing.

One of the most common parameters studied in the

literature is the number of clusters in algorithms that

assume fixed number of clusters a priori, like k-means

citeHennig2014.

2) Examining clustering stability of a dataset—sensitivity

of result of clustering algorithm to modification of

algorithm’s parameters

3) Examining clustering tendency—in some cases we do

not know if the dataset has any clustering structure so

that it can be grouped in a meaningful way. By applying

cluster validity methods we can determine, whether the

dataset has adequate grouping structure.

II. CLUSTERING VALIDITY INDICES

Clustering Validity Indices are most commonly categorized

into three main categories: internal, external and relative. In

this chapter we will present the most common methods for

assessing the quality of a clustering scheme.

A. External methods

Indices from this group assume that for dataset D some

reference clustering T = {T1, . . . , Tm} is given. The idea

is that these indices try to express similarity between some

scheme C = {C1, . . . , Ck} being examined and T , sometimes

referred to as gold standard.

Pair-counting indices

We introduce a label for a pair of points (xa, xb) for each

xa, xb ∈ D :

• True Positives: xa and xb belong to the same partition in

T and are also in the same partition in C.

• False Negatives: xa and xb belong to the same partition

in T , but are in different partitions in C.

• False Positives: xa and xb do not belong to the same

partition in T , but they belong to the same partition in

C.

• True Negatives: xa and xb belong to different partitions

in both T and C.

Pair-counting indices are defined as functions calculated

over the sizes of the TP , TN , FP and FN sets.

1) Rand Statistic:

R =
TP + TN

TP + TN + FP + FN

Index describes the ratio of correctly guessed pairs (clusterings

C and T agree on membership of both points to either the

same or different clusters). Perfect clustering will achieve

R = 1.

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 3–9

DOI: 10.15439/2016F371

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 3



2) Jaccard Coefficient:

J =
TP

TP + FN + FP

Perfect clustering achieves J = 1, as there are no false nega-

tives and no false positives. Jaccard coefficient is asymmetric

in terms of true negatives and true positives, as it ignores true

negatives. The influence of pairs of points belonging to the

same cluster in both clusterings is amplified and the impact

of pairs of points not belonging together is discounted.

3) Fowlkes and Mallows index: Let’s introduce the notions

of pairwise precision and pairwise recall, defined as follows:

prec =
TP

TP + FP

recall =
TP

TP + FN

The Fowlkes-Mallows index is defined as the geometric mean

of the pairwise precision and pairwise recall:

FM =
√

prec · recall =
TP√

(TP + FN)(TP + FP )

This measure is asymmetric in terms of true positives and true

negatives, because true negatives are ignored. Maximum value

of FM is 1, when there are no false positives or negatives.

Matching-based measures

Matching-based measures try to match clusters from C with

gold standard clusters T and calculate various statistics on the

matching.

4) Purity: This measure tries to capture the concept of

cluster being pure - that is, containing only points from one

golden-standard partition. Purity can be defined as follows[13]:

purity =
1

N

∑

i

max
j

|Ci ∩ Tj |

where T is the set of ground-truth clusters and C is the set of

examined clusters.

We can distinguish following cases based on the cardinality

of sets C and T :

1) when |C| = |T | and purity = 1, then C is a perfect

clustering

2) when |C| > |T | purity can still achieve 1, when each

cluster in C is a subset of cluster in ground-truth

partitioning T

3) when |C| < |T | purity is always < 1 - at least one

cluster in C contains points from more than one clusters

in T

5) Maximum matching: Maximum matching [13] is defined

as the value of maximum matching between sets in C and T -

unlike in purity, each cluster in C is assigned a unique partition

from T .

More formally, given a graph G = (V,E), where V = C∪T
and ∀i,j(Ci, Tj) ∈ E we want to find a maximum weighted

matching in G. Weights on edges are given as w(Ci, Tj) =
|Ci ∩ Tj |.

The problem of finding a maximum matching in a bipartite

weighted graph, assuming |C| ≈ |T |, can be solved in

O(|C|2 log |C|+ |C|3) = O(|C|3) time complexity.

6) F-Measure: Let Tmatch(i) = argmaxTj∈T |Ci ∩ Tj |
denote the cluster in ground-truth partition T , which is rep-

resented the most in cluster Ci. We can define precision and

recall for cluster Ci as follows:

preci =
|Ci ∩ Tmatch(i)|

|Ci|

recalli =
|Ci ∩ Tmatch(i)|

|Tmatch(i)|

The F-measure for cluster Ci is a harmonic mean of the

precision and recall for this cluster:

Fi =
2

1
preci

+ 1
recalli

=
2 · preci · recalli
preci + recalli

F-measure for the clustering scheme C is the mean of F-

measures for all clusters:

F =
1

|C|

|C|∑

i=1

Fi

B. Internal methods

Internal indices are designed to express some properties

of the resulting clustering scheme with regards to proximity

measure.

Internal methods operate on the proximity matrix, which

can be defined as:

W = {δ{xi, xj}}
n

i,j=1

Proximity measure δ should be non-negative, symmetrical and

fulfill the triangle inequality.

1) Dunn index: Dunn index is defined as a ratio of the

minimum distance between clusters to the maximum cluster’s

diameter. These two notions can be interpreted in various

ways, resulting in various definitions of Dunn Index.

Inter-cluster distance can be defined as:

• minimum distance between points originating from dif-

ferent clusters,

• maximum distance between points originating from dif-

ferent clusters,

• distance between centroids of the clusters

Cluster’s diameter can be defined as:

• maximum distance between two points within the cluster,

• mean distance between all pairs of points from the cluster,

• sum of distances of each points to the mean of the cluster

The larger the Dunn index, the better the clustering - the

distance between points in different clusters is much larger

than the distance between points inside the same cluster. How-

ever, Dunn index can be insensitive as inter- and intracluster

distance does not capture all information about the clustering.
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2) Davies-Bouldin Index: Let µi denote the mean of clus-

ter Ci:

µi =
1

|Ci|

∑

xj∈Ci

xj

and σi denote the dispersion of the points in the cluster Ci

around it’s mean µi:

σi =

√∑
xj∈Ci

δ(xj , µi)

|Ci|

The Davies-Bouldin measure [6] for pair of clusters Ci, Cj

is defined as follows:

DBij =
σi + σj

δ(µi, µj)

DBij measures the compactness of clusters compared to

the distance between the cluster means.

DB =
1

|C|

|C|∑

i=1

max
j 6=i

{DBij}

That is, for each cluster Ci we pick another cluster Cj

which produces the largest value of DBij ratio. The smaller

the DB value the better the clustering, because this means that

clusters are well-separated (the distance between cluster means

is large) and each cluster is compact (has a small spread).

3) Silhouette Coefficient: Silhouette coefficient [11] is a

measure of both compactness and separation of clustering.

Let ai denote average dissimilarity of xi with all other points

within its cluster. ai can be interpreted as how well xi has

been assigned to its cluster. Let bi denote the lowest average

dissimilarity of xi to any other cluster in C, of which xi is

not a member. Assuming xi ∈ Cj :

ai =
1

|Cj |

∑

xl∈Cj ;xl 6=xi

δ(xi, xl)

bi = min
Cl∈C;Cl 6=Cj

1

|Cl|

∑

xk∈Cl

δ(xi, xk)

The silhouette coefficient for data point xi is defined as:

si =
bi − ai

max{ai, bi}

si can obtain values in interval [−1, 1]. si = 1 indicates that

xi is close to points in its assigned cluster and far from other

clusters, si = 0 indicates that xi lies close to the boundary

between two neighbouring clusters. si = −1 indicates that xi

is much closer to another cluster than its own cluster - the

point has been misclustered.

Silhouette coefficient for clustering C is defined as:

SC =
1

N

N∑

i=1

si

4) Normalized Γ: Let W be the proximity matrix of the

dataset, and Y be the proximity matrix defined as follows:

Y =
{
δ(µxi

, µxj
)
}n

i,j=1

µxi
is the mean of all points that belong to the same cluster as

xi. Let w, y ∈ R be vectors obtained by linearizing the upper

triangular elements excluding main diagonal of W and Y .

Let zW and zY denote mean-centered vectors w, y. Now,

the normalized Γ statistic can be defined as:

Γn =
zTW zY

||zW || · ||zY ||

5) Within-Between Ratio: Within-Between Ratio is a ratio

of average distance within clusters µwithin to average distance

between clusters µbetween.

µwithin =

∑
Ci∈C

∑
xj ,xk∈Ci;j 6=k δ(xj , xk)
∑

Ci∈C

(
|Ci|
2

)

µbetween =

∑
Ci,Cj∈C;i 6=j δ(Ci, Cj)

(
|C|
2

)

WB =
µwithin

µbetween

The smaller Within-Between Ratio, the better the clustering

scheme.

6) Within cluster sum of squares: Within cluster sum of

squares is a sum of within-cluster squared dissimilarities

divided by the cluster size.

WCSS =
1

2

∑

Ci∈C

∑
xj ,xk∈C;j 6=k δ(xj , xk)

|Ci|

The smaller the Within Cluster Sum of Squares, the more

compact are the clusters.

7) Calinski-Harabasz Index: Given a clustering of a dataset

C = {C1, . . . , Ck} consisting of N points, Calinski-Harabasz

index is defined as [3]:

CH(k) =
SSB

SSW

·
N − k

k − 1

SSB is the overall between-cluster variance, defined as:

SSB =

k∑

i=1

|Ci| · ||µi − µ||2

where µi is a mean of i-th cluster, µ is an overall mean of the

sample data, and ||µi−µ|| is the L2 norm (Euclidean distance)

between the two vectors.

SSW is the overall within-cluster variance, defined as:

SSW =
k∑

i=1

∑

xj∈Ci

||xj − µi||
2

The larger the value of Calinski-Harabasz index, the better

the quality of the clustering scheme - good clustering has

large between-cluster variance SSB and a small within-cluster

variance SSW .
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C. Relative Validity Indices

Relative validity indices are used for comparison of cluster-

ing schemes. Indices from this group are used for deciding

which clustering scheme fits the data best. This definition

covers both external and internal indices which can assess the

quality in relative terms, however, this notion usually refers to

internal methods that are also relative.

The most common use case for relative validity indices is

selecting the best clustering scheme from the set of schemes

obtained using different parameters.

III. OTHER APPROACHES TO CLUSTERING VALIDITY

A. Ensembles of Clustering Validity Indices

Internal indices presented in the previous section tend

to capture only particular properties of evaluated clustering

scheme. The question that arises is whether a combination

of internal indices would correctly judge the quality of every

clustering scheme.

In [9] multiple strategies of building ensembles of clustering

validity indices are evaluated. Authors have conducted an

experiment on various synthetic and real-life datasets and

examined the correlation of the ensembles of relative indices

with regards to external validity index. In this work the quality

of validity index (or ensemble) is measured as Spearman’s

rank correlation coefficient with external index, referred to as

effectiveness.

The basic motivation for validation using ensembles of CVI

is that multiple indices with high effectiveness and a high

degree of complementarity should produce more robust results

than any single index.

Another problem regarding ensembles of CVI is the choice

of aggregation strategy. In [9] authors have compared various

strategies of combining the results of the indices. The authors

found, that score-based strategies, like mean or median of the

normalized values of indices in the ensemble, appeared to give

inferior results to methods based on rank aggregation. The

main advantage of using rank-based aggregation is that it does

not rely on the concrete values of indices, therefore it does not

require value normalization.

The conclusions from the experiments are, that all examined

ensembles, even those assembled from random subsets of

measures and with random aggregation strategy, achieved

higher effectiveness than the expected value of single validity

index. Surprisingly, the strategy of aggregation of results did

not affect the overall effectiveness of the ensembles.

B. Semantic Approach to Clustering Validity

We can divide the indices describe previously into two

major groups: internal and external. Internal indices rely only

on problem space but capture the specific characteristic of

the clustering scheme. External indices rely only on explicit

clustering assignment therefore limiting the expedience in real

world scenarios. Another approach to clustering scheme vali-

dation is the use of partial information, which does not reflect

direct cluster membership, but rather implies the semantic

relationships between the points.

More formally, apart from the dataset D we are given a set

L = {L1, . . . , Ln} consisting of sets of labels with a one-to-

one correspondence between elements from L and D.

In this approach, the clustering is produced based only on

the original space, discarding the additional information. This

information is used afterward to assess the quality of the output

clustering.

The formulation of the clustering validation problem is

motivated by the rise of popularity of datasets which are

annotated using labels, tags, or hashtags.

Semantic Explorative Evaluation

Semantic Explorative Evaluation described in [10] tries

to capture human reasoning of assessing clustering scheme.

When an expert faces the problem of manual evaluation of

clustering results, he tries to explain the contents of the clusters

in his own words. The main idea of SEE is that the quality of

the cluster is correlated with the measure of the complexity of

expert description of the cluster.

More formally, SEE takes as an input the dataset tagged

with expert tags describing the points in the dataset and the

clustering. Next, for each cluster, we need to calculate the

complexity of expert’s description of the cluster - a model of

the cluster in terms of expert tags. Any classification algorithm

can provide such a model. Then the model complexity mea-

sure needs to be defined. Authors have chosen decision tree

classifier as their classification algorithm, and an average depth

of the resulting tree as the measure of model’s complexity.

IV. EVALUATION OF CLUSTER VALIDITY INDICES

In most works evaluating CVIs, the first step is to choose a

set of datasets. Usually, synthetic datasets are used forcing var-

ious characteristics of desired clustering schemes, like varying

densities, compactness, overlapping, shapes, or added noise.

Additionally, a number of sample real-world datasets with

known number of clusters can be chosen for the experiments.

A. Optimal K criterion

Cluster validity index evaluation has been thoroughly cov-

ered in many papers in recent years. Authors of [5] evaluated

multiple papers on the topic. Surprisingly, multiple works

appear to use the same methodology.

The methodology requires preparation of synthetic datasets

with known number of clusters. For this reason, usually, two-

dimensional datasets are used, for the ease of visualization

and human verification. Additionally, we need to choose a

clustering algorithm for the experiment, which allows an input

parameter that sets the number of clusters for the output

partition, k. The most popular algorithms in the literature are

agglomerative hierarchical algorithm and k-means.

Let’s denote the ideal partition of a dataset as P ∗. Sub-

sequently, algorithm is run over the dataset with a set K =
{k1, . . . , kl} of different values of parameter k. As a result,

we obtain a set of partitions, S = {P1, . . . , Pl}, with one of

them being a partition with a correct number of clusters for

the dataset, denoted as PN . More formally,
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PN = {Pi ∈ P : |P ∗| = |Pi|}

Finally, CVI is computed for all partitions in S. The idea

is, that the partition obtaining the best value for the evaluated

CV I(Px) will serve to predict an actual number of clusters.

Let’s assume for simplicity, that function CV I(Px) assigns

greater values to "better" partitions. We say the partition PCV I

is proposed by the cluster validity index, when

PCV I = argmax
Pi∈S

CV I(Pi)

Clustering validity index has predicted that the dataset

contains |PCV I | clusters if it has made a successful guess

so that |PCV I | = |P ∗|.
The method works under a fundamental assumption, that

algorithm used for clustering works "correctly" - that is,

algorithm-generated partition PN is the one that fits the data

best. Obtained results of CVI are biased if the assumption

does not hold so that there exists partition Pi that captures the

clustering scheme of the data better.

B. External criteria similarity

The problem of unrealistic assumption of the clustering

algorithm being able to correctly partition every dataset has

been addressed in [5]. The authors have proposed a modified

version of the Optimal k criterion. In contrast to this method,

the CVI is said to have succeeded if it has proposed the

partition most similar to the optimal partitioning, instead of

the partition containing the same number of clusters as an

ideal partition.

Similar as in previous method, we need to provide the

input dataset D, the set of potential values of parameter

k, K = {k1, .., kl}, the set of partitions from a clustering

algorithm S = {P1, . . . , Pl} and the gold standard partition

P ∗. Additionally, we need to provide a partition similarity

measure sim(Pi, Pj), for example one of external validity

indices. Then, the partition obtaining highest similarity of all

computed partitions can be defined as:

P̂ = argmax
Pi∈S

sim(Pi, P
∗)

In the new methodology, we say clustering validity index

has made a successful guess if PCV I = P̂ - when the partition

obtaining the best value of examined CVI is at the same time

the most similar to the ideal partitioning.

The similarity measure is another input parameter of the

methodology, so its choice can be adapted to the characteristics

of the experiment. Extension of this idea is to use multiple

partition similarity measures and to either aggregate their

results by averaging or using a voting system.

V. SEMANTIC EVALUATION OF CLUSTERING VALIDITY

INDICES

We present a new approach to selecting the best clustering

validity index. We examine the problem of clustering with

additional information. The intuition behind this problem

formulation is that we are given a data set, which has been

manually annotated with multiple labels reflecting semantic

relationships between documents. The clustering is produced

based only on the original space, discarding the additional

information. This information is used afterward to assess the

quality of the output clustering.

More formally, apart from the data set D we are given a

set L = {L1, . . . , Ln} consisting of sets of labels with a one-

to-one correspondence between elements from L and D.

The motivation behind this formulation of the clustering

validation problem is, that it uses additional information about

the relationships, which is not an explicit grouping of the

points. Moreover, recently the number of data sets annotated

using labels, tags, or their social-network equivalents, hashtags

has increased.

The proposed method requires calculating the partitionings

S of the dataset using only information from D into k groups,

for each k in K = {k1, . . . , kl}. Similarly as in Section IV-B,

we want to assess the quality of the clustering using external

knowledge, but since we do not have reference clustering, we

cannot use an external CVI. Instead, we calculate the semantic

quality index ASH(Pi), proposed in [8].

The ASH index uses a notion of semantic distance, which

is defined for documents Ti, Tj with corresponding sets of

assigned expert tags Li, Lj to be a F1 score between sets Li,

Lj :

F1distance(Ti, Tj) = 1−2·
precision(Li, Lj) · recall(Li, Lj)

precision(Li, Lj) + recall(Li, Lj)
(1)

Precision and recall are defined as:

precision(Li, Lj) =
|Li ∪ Lj |

|Li|
(2)

recall(Li, Lj) =
|Li ∩ Lj |

|Lj |
(3)

The semantic distance between two sets of documents is

defined as an average of pairwise F1distances between pairs

of texts from different sets:

semDist(D1, D2) =

∑
Ti∈D1,Tj∈Dj

F1distance(Ti, Tj)

|D1| · |D2|
(4)

The measure of document’s semantic homogeneity is de-

fined similarly as Silhouette Coefficient:

homogeneity(Ti) =
B(Ti)−A(Ti)

max(A(Ti), B(Ti))
(5)

A(Ti) is a semDist distance calculated between document

Ti and all other documents within the same cluster as Ti.

A(Ti) can be interpreted as the measure of quality of Ti’s

assignment to its cluster. In case Ti forms a singleton cluster,

A(Ti) = 0.

B(Ti) is the semDist measure calculated between docu-

ment Ti and all documents which do not belong to the same

cluster as Ti. B(Ti) is the dissimilarity measure describing

how far a document Ti is from all other clusters.
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Finally, we define the Average Semantic Homogeneity:

ASH =
1

|D|

∑

Ti∈D

homogeneity(Ti) (6)

as the measure of semantic quality of clustering scheme.

Similarly as in a methodology described in Section IV-B,

we could formulate the CVI’s correctness criterion as:

argmax
Pi∈S

ASH(Pi) = PCV I (7)

Stating that the partition obtaining the highest value of Average

Semantic Homogeneity is the one which is suggested by

examined CVI.

However, in real world scenarios the size and dimensionality

of the datasets may be too big for this criterion to select one

particular clustering as the one fitting the data best.

We propose a modified CVI correctness criterion: we say

that CVI is suitable for the task of evaluation the clustering

schemes and preserves semantic relationships between the

documents, when:

• CVI calculated on document space indicates optimal

number of clusters

• CVI calculated on document space is correlated with

Average Semantic Homogeneity index

The main advantage of this method is that it can be used

for real-world applications since it does not require a ground-

truth partitioning for the dataset. Instead, we pick a random

sample from the dataset and have it manually annotated by the

experts. Then, using the described method we select the good

CVI for assessing the quality of the clustering of the subset

of the original dataset. Finally, we state that the selected CVI

is appropriate for assessing the quality of the original dataset.

VI. THE EXPERIMENT

We have conducted an experiment to demonstrate the usage

of Semantic Evaluation of Clustering Validity Indices in order

to find the best CVI for assessing the quality of clustering text

documents.

In the experiment, we used a dataset obtained from U.S.

National Library of Medicine (NLM). The dataset consists of

42200 abstracts of scientific articles in English. Each article

has been manually labeled by experts from NLM using con-

cepts from MeSH ontology [1] using on average 12 concepts.

Abstracts were tokenized, stemmed and common English

stopwords were removed. Documents are modeled using bag-

of-words in a document-term matrix with tf-idf weighting [2].

MeSH terms are treated as labels, discarding the information

about major topics and contexts in which the term appears,

resulting in the total of 17169 unique labels.

The experiment has been conducted on a subset of 5054

documents from NLM dataset which were selected from the

MeSH headings presented in the Table I. The selection of

thematically disjoint headings is intended to strengthen the

clustering tendency of the dataset.

The values presented on Figure 1 are mean aggregate

on 10 randomly chosen without replacement, equinumerous

TABLE I
CHARACTERISTICS OF DATASET USED FOR EXPERIMENT

MeSH heading No. of documents

Bacterial proteins 772

Brain 652

Breast Neoplasms 848

Pregnancy 1033

E. Coli 574

HIV 629

Malaria 251

Diabetes 491
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Fig. 1. Values of CVI indexes calculated by Average silhouette width,
Calinski-Harabasz, Dunn, Normalized Γ, Within-Between Ratio and Within
Cluster Sum of Squares methods on clusterings into k ∈ [2, 50] groups in
document space. Values for optimal number of clusters k = 22 have been
marked with blue circle.

subsets (|D| ≈ 505). The datasets have been partitioned

with Agglomerative Nesting algorithm implementation using

cosine distance. The values of indices were calculated using

cluster.stats implementation from R package fpc [7].

Figure 2 shows the values of Average Semantic Homo-

geneity - the value of semantic quality of clustering. Average

Semantic Homogeneity achieves higher values for smaller

clusters, with a maximum value of 1 for singleton clusters.

We can find the best value of parameter k using the elbow

criterion, with possible values of k = {5, 9, 14, 22}.
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Fig. 2. Value of Average Semantic Homogeneity in experiment setup with
optimal number of clusters k = 22 marked with blue circle

TABLE II
THE RESULTS OF COMPARISON

Index L2 Norm best k

Calinski-Harabasz 1.200 22

Average Silhouette Width 1.014 22 (elb. crit.)

Dunn 2.102 20 (local max.)

Normalized Γ 0.184 18, 22 (elb. criterion)

Within-Between Ratio 1.889 -

Within Cl. Sum of Squares 1.063 -

The results of the experiment are summarized in Table II.

The L2 norm has been calculated on 0-1 normalized values of

Average Semantic Homogeneity and examined clustering va-

lidity indices. Our experiment shows, that Normalized Γ shows

very high correlation with ASH. Moreover, the index enables

to find the best value of parameter k for evaluated dataset.

The Average Silhouette Width and Calinski-Harabasz index

show relatively high correlation with ASH and both reach

the optimal value of k = 22. Moreover, Calinski-Harabasz

index achieves global maximum at k = 22, additionally

strengthening the argument of 22 being the optimal value of k.

Dunn index has a relatively weak correlation with ASH,

although it has the local optimum at k = 20. We might sup-

pose, that it does not preserve semantic relationships between

the documents, and suggested value is derived from other

properties of the dataset.

The remaining indices, Within-Between Ratio and Within

Cluster Sum of Squares do not suggest an optimal number of

partitions for the dataset.

VII. CONCLUSIONS

In this work, we have shown that for the given problem,

Calinski-Harabasz, Average Silhouette Width and Normal-

ized Γ indices appear to reflect semantic relationships between

the clusterings using bag-of-words and labels annotations

models.

In contrast to previous studies, the method does not make

any assumption on the correctness of the clustering algorithm.
Moreover, this approach does not require datasets with known

ground-truth partitioning. The presented methodology using

the semantic measure of clustering scheme can be used in

real-life problems. Additionally, the number of datasets tagged

with expert labels or ontologies has increased in recent years.

One of the many possible directions for development of this

method is to evaluate other measures of the semantic quality of

the clustering. Additionally, we could make more extensive use

of the MeSH ontology. In this thesis, we treated the concepts

as labels, but we can take advantage of the tree-like structure

hierarchy of MeSH terms and incorporate this knowledge into

distance calculation in the label representation of data.

Furthermore, future studies should investigate the applica-

tions of the method to other types of documents. In this work

we have examined the usage of the method with scientific

documents from a particular domain only, whereas the overall

applicability to clustering other kinds of documents should be

researched. It is also worth examining the applications of the

ensembles [9] of multiple CVIs pointed out as suitable for

assessing the document clusters by our method.
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[3] T. Caliński and J. Harabasz. A dendrite method for cluster analysis.
Communications in Statistics-Simulation and Computation, 3(1):1–27,
1974.

[4] Brian Everitt. Cluster analysis. Quality and Quantity, 14(1):75–100,
1980.

[5] Ibai Gurrutxaga, Javier Muguerza, Olatz Arbelaitz, Jesús M. Pérez,
and José Ignacio Martín. Towards a standard methodology to evaluate
internal cluster validity indices. Pattern Recognition Letters, 32(3):505–
515, 2011.

[6] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clus-
tering validation techniques. Journal of Intelligent Information Systems,
17(2):107–145.

[7] Christian Hennig. fpc: Flexible Procedures for Clustering, 2015. R
package version 2.1-10.
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