
Highly customizable framework for performance

evaluation of LOOM-based SDN controllers

Szymon Mentel

Erlang Solutions,

ul. Batorego 25, Kraków, Poland

Email: szymon.mentel@erlang-solutions.com

Marek Konieczny, Sławomir Zieliński

Department of Computer Science

AGH University of Science and Technology,

al. Mickiewicza 30, Kraków, Poland

Email: {marekko, slawek}@agh.edu.pl

Abstract—The article presents an innovative method for as-
sessing performance of modular SDN controllers, focusing on
test customization. The method was validated by construction
of a testing framework that gives its users the opportunity to
emulate various network traffic patterns by using arbitrarily
chosen applications, rather than simulating workloads. The
presented solution is more comprehensive than others available
in contemporary SDN environments also because it that takes
into account specific features of modular SDN controllers.

I. INTRODUCTION

Software Defined Networking (SDN) is a promising concept

for computer networking. The main idea behind it is the

separation of control and data planes. The control plane is

moved to a logically centralized, software-based controller.

However, as the scale of the application grows, the perfor-

mance of a controller can become a bottleneck and appropriate

techniques for controller scaling need to be employed. For

example consider using hierarchical controllers [1], increasing

the autonomy of data plane components [2], [3], distributing

controllers [4] or elastic scaling [5]. It is also possible to use

adaptation mechanisms utilized in SOA systems [6]. Another

method - which is of focus for the article - is increasing

controller’s performance by building upon the modularity

offered by modern programming and runtime environments,

such as Erlang.

Although there are works related to measuring the perfor-

mance of monolithic SDN controllers, there is little research

regarding modular ones. Therefore, this paper is focused on

the development of a method and framework for assessing

performance of modular SDN controllers. The framework

also provides its users with means required to emulate var-

ious network traffic patterns. It was implemented upon open

technologies, such as the LOOM Controller Framework [7],

Mininet Cluster Edition1, and Open vSwitch (OVS)2.

The paper organization is as follows. Sections II and III

overview the domain of the presented research, including

research in the area of measuring performance of SDN con-

trollers. The survey forms a base for choosing a testing

approach and designing the framework architecture - both

are presented in Section IV. Section V presents a proof-of-

concept implementation of a testing environment and in this

1https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype/
2http://openvswitch.org/

way demonstrates the options for customizing the framework

to a practical use case. Moreover, it presents results gathered

from a series of experiments and the conclusions that were

drawn from them. The article ends with concluding remarks

and acknowledgments, which form Sections VI and VII,

respectively.

II. BACKGROUND

In SDN, forwarding logic no longer has to run on specific

hardware built into the switches, routers or other networking

devices. The control plane functions, implemented by a SDN

controller, can be achieved in general purpose programming

languages and run on regular servers. Thanks to that, control

plane development is much more flexible, cheaper and faster.

To make user traffic reach its destinations, the control plane

needs to communicate with data plane devices. Currently, the

most popular protocol for control to data plane communication

is OpenFlow, created and maintained by Open Networking

Foundation3. The OpenFlow protocol allows to define simple

actions (e.g. drop packets or send packets specific ports), but

it is also possible to build more complex policies [8]. SDN

and OpenFlow concepts can also be applied to PON networks

[9] , vehicular networks [10] or multimedia transmission over

HTTP [11].

The research in the area of SDN results in many new

concepts and technologies being developed. Traffic patterns

for new applications can be highly distributed and can require

extremely short response times [12], [13]. As the result,

various solutions regarding network topologies have been

proposed [14], [2]. However, there is no consistent framework

that would facilitate early stage performance evaluation of

SDN environments designed to host new applications. The

framework presented in this article aims to fill the gap.

Because new control plane developments are typically im-

plemented using open controllers and new data plane de-

velopments use virtual switches, this section overviews the

respective categories.

Controllers. As SDN and OpenFlow gain popularity, many

controllers appear on the market. In most cases, they are

distributed as open source projects. Table I lists some of the

3https://www.opennetworking.org/

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 969–977

DOI: 10.15439/2016F398

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 969

controllers along with their core technologies, the number of

contributors and popularity indicators. The latter are expressed

by the number of cloned repositories (table column Forks)

and the number of people which found the project interesting

(table column Stars). Based on this information (and on the

last activity times) one can estimate the potential and size of

a particular developing community.

Name Language Devs Stars Forks Last activity

Ryu Python 60 457 339 recently

Floodligth Java 58 313 323 recently

POX Python 16 282 285 2 years ago

ONOS Java 74 147 132 recently

Trema Ruby 18 238 77 recently

OpenDaylight Java 66 82 114 recently

NOX C++ 6 75 66 one year ago

OpenMul C 2 18 8 recently

Beacon Java 3 8 3 4 years ago

LOOM Erlang 22 26 8 7 months ago

TABLE I: Popularity of OpenFlow controllers (based on

GitHub data).

In many cases controllers are in fact entire SDN platforms

(they are often referred to as monolithic controllers). They

consist of many components which deliver rich functionalities

to users, such as topology discovery or security analysis

tools. OpenDaylight4, the leading production controller, is

a representative of this group. On top of the controller de-

velopers write single, monolithic network applications. They

use supported languages, APIs, and libraries provided by the

framework, compile the entire platform and run the created

application as a single process. Note however that an error in

any part of the application can have adverse effects on the

entire system.

Erlang community promises to deliver extensible, robust

OpenFlow controllers based on the LOOM [7] framework. The

main goal is to make the controller scalable and distributed

(that is the main rationale for using Erlang virtual machine).

LOOM has a modular and layered design. In control plane it

consists of Network Execution and Application layers. LOOM-

based controllers share core libraries, such as low-level library

for encoding and decoding OpenFlow messages, an abstract

interface to OpenFlow switches and a driver with a common

base for OpenFlow controllers. LOOM developer creates a

controller (specific to his needs) that can be later orchestrated

by the network execution layer. Such approach clearly differs

from monolithic controllers.

Virtual switches. When it comes to switches supporting

OpenFlow, there are many hardware and software products

on the market. However, from the perspective of early stage

testing, software ones are the most important, because it is

much easier to build test environment based on software

switches (and larger environments can be prepared more

easily). Moreover, because software switches often implement

the latest version of the OpenFlow standard, new features can

4https://www.opendaylight.org/

be used as soon as a reference implementation is available.

Software switches are also widely used in production envi-

ronment (e.g., VMware NSX [3]), so their evaluation is also

valuable.

Erlang community (together with Infoblox and Erlang So-

lutions) is currently working on LINC-Switch5. It is run in

operating system user space to facilitate usage flexibility and

quick development. LINC-Switch is used as a simulator of an

optical network, in one of Open Network Operating System

(ONOS)6 controller use cases. LINCX7, which alse comes from

Erlang community, is a new, faster version of LINC-Switch.

In the presented framework we use Open vSwitch because of

its popularity and implementation quality. The switch supports

multiple protocols and network standards. Moreover, because

OVS is integrated with Mininet8, it is easier to build test

environment based on the switches distributed among multiple

physical servers.

III. RELATED WORK

There are a few noteworthy research efforts in the area of

measuring SDN controllers performance that can be leveraged

by new ones, especially to identify the metrics to be measured

and key test environment parameters. Shalimov et al. [15]

measured latency, and throughput of controllers based on (1)

the number of cores the controller uses, (2) the number of

switches connected to the controller, and (3) the number of

hosts in the network. For their tests, they created their own

Haskell emulator of OpenFlow switches - hcprobe9.

Similar work [16], evaluates performance of two Java-

based controllers: OpenDaylight and Floodlight. The authors

used a cluster of hosts running Cbench10. The tool directly

stresses a controller by sending OpenFlow Packet-In messages.

Another study [17], describes metrics of ONOS, including

Flow installation throughput. The metric shows a number

of flow mods, which can be sent by the SDN control plane

in response to requests coming from applications or network

events.

While all the mentioned characteristics were studied using

network emulators, authors of the [18] proposed a methodol-

ogy that utilizes network virtualization. To interconnect virtu-

alized hosts, Mininet was used. They evaluated performance,

as the number of Packet-In messages (requesting installation

of new flows), a controller can handle per second.

As an example of more structured and holistic approaches,

consider IETF draft describing the methodology for reporting

SDN controller performance [19]. The document touches three

aspects, namely: the number of switch sessions a controller can

handle, the network size (number of nodes, links, and hosts)

a controller can discover, and forwarding table capacity.

5http://flowforwarding.github.io/LINC-Switch/
6http://onosproject.org/
7https://github.com/FlowForwarding/lincx
8http://mininet.org/
9https://github.com/ARCCN/hcprobe
10https://goo.gl/CEgQ68

970 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

No performance tests are covering modular controllers

(especially written in Erlang), although the authors of [15]

mentioned that they examined FlowER, and it was not ready

for evaluation under heavy workloads. Nonetheless, Erlang

is designed to be used in the telecommunication industry

and seems to be well suited for SDN use cases. Therefore,

we decided to focus on controllers developed upon LOOM

framework. To our best knowledge, this article is the first

to present any results on Erlang SDN/OpenFlow controller

performance testing.

Additionally, the presented framework aims to facilitate pro-

filing of network topologies in context of specific applications

(which generate specific traffic) by enabling the developer to

define the virtual network topology to be constructed by the

framework, and to deploy the applications in the network.

IV. ARCHITECTURE OF SOLUTION

Before starting to test performance of a SDN controller,

it should be decided what to measure, and how to perform

the measurements, i.e., what kind of environment to use to

generate load against the controller, how to collect the data,

and how to interpret it. This article proposes a method that

follows a generic methodology consisting of the following

steps:

1) Deciding upon testing objectives.

2) Building the test environment.

3) Configuring the test system.

4) Running tests and collecting data.

5) Interpreting the test results.

The following subsections refer to the steps in more detail.

A. Testing objectives

For measuring controllers performance two characteristics

seem to be most important: latency and throughput. Latency

describes an average amount of time that is needed to process

a request. Although OpenFlow controllers have to be able to

process various requests, those related to topology changes and

new traffic flows are crucial. Regarding networking devices

configuration, when a new traffic flow occurs, a controller has

to handle Packet-In requests. Handling them, from a controller

perspective, usually boils down to installing flow entries in

the data plane device that originated the Packet-In, in order

to instruct it what to do with packets belonging to the new

flow. Note that latency in processing a Packet-In depends on

the kind and context of a particular request, so the values

measured can be different for particular application, network

topology, etc.

Throughput is a metric describing how many requests a

controller can handle, on average, in a given period. The

requests related to receiving an unrecognized traffic flow

may be sent simultaneously from multiple data plane devices

to a single controller. Thus, this metric is sensitive to the

characteristics of the network, i.e., its topology, number of

switches and hosts, etc.

Regarding the controller itself, the following parameters

affect its performance (i.e., both latency and throughput):

number of cores used by the controller, the amount of memory

used by the controller, the number of instances of the controller

(if it can operate as a distributed system), and workload

distribution strategy.

The framework presented in the article provides means for

building test environments that enable the user to manipulate

all the mentioned variables and measure metrics including, but

not limited to, latency and throughput.

B. Building the Test Environment

There are three generic approaches to building an envi-

ronment that mimics a real network generating Packet-In

messages:

• Building an SDN network from hardware. Testing a

controller with a real network can provide most accurate

results. On the other hand, the approach is expensive, not

flexible, and not scaling well. Additionally, it is not easy

to gather statistics from all the devices on the network.

• Emulating an SDN network by using specialized software.

There are switch emulators designed for testing SDN

networks, e.g., Cbench and Hcprobe, which offer easy

configuration and automation of test scenarios. It is rela-

tively easy to scale the environments based on emulators

– it usually involves adding new servers/virtual machines

with emulator instances. This approach has been used in

evaluation of Network Management Systems [20]. Note

however, that emulators are hard to synchronize across

instances, making it more difficult to coordinate test

scenarios, and to gather and analyze the results.

• Using network virtualization to simulate an SDN network.

In this approach, a tool such as Mininet can be used to

virtualize a complex network on hardware hosts by using

Linux containers interconnected with software switches.

Such a tool allows for easy automation, controlling traffic

generation and gathering statistics.

The presented list is not exhaustive. It is easy to imagine

an approach that combines all of the above. It is also possible

to test scalability using discrete-event network simulator such

as NS-311.

For the implementation of our framework, We chose

virtualization-based approach because of the ease of test au-

tomation and low cost.we chose virtualization-based approach.

Figure 1 presents essential components of a test environment

that could be developed with the proposed test framework.

It outlines three main modules, as well as the data channels

between them.

The core elements of the Network Module are those re-

lated to network simulation: OpenFlow switches, hosts, and

topology. To enable the user to reproduce arbitrarily designed

topologies, the framework uses Mininet Cluster Edition, and

Open vSwitch. The emulated network characteristics can be

very close to what would be observed in production networks

also because the Mininet hosts come with a full implementa-

11https://www.nsnam.org/

SZYMON MENTEL ET AL.: HIGHLY CUSTOMIZABLE FRAMEWORK FOR PERFORMANCE EVALUATION 971

Fig. 1: Test Environment Components

tion of OSI protocol stack, so arbitrarily chosen applications

can be used for testing, and act as traffic generators.

Local Data Collector is a component responsible for col-

lecting and persisting tests-related data, like traffic metrics or

counters of OpenFlow messages sent by the switches (i.e., the

load metrics). The Test Results Channel indicates the likely

transfer of collected data to the Data Analysis Module. The

Network Module Management and Configuration component’s

task to facilitate automatization of Network Module set up

and its coordination with the Controller Module via the Test

Management Channel.

The Controller Module module encapsulates the SDN/Open-

Flow Framework and User SDN Application components,

that together form a fully capable SDN controller, which

is the System Under Test(SUT). Because the framework is

intended to be used mainly with modular, Erlang-based SDN

controllers, a natural choice was to leverage the LOOM

framework as the basis for SUT implementations, so that

custom controllers can be easily built into the framework.

The Local Data Collector and Management and Configuration

components have similar responsibilities as their counterparts

from the Network Module. Similarly to the Network Module

case, the Test Results Channel indicates the likely transfer of

collected data to the Data Analysis Module.

The Data Analysis Module is related to data produced

during the tests: gathering, parsing, presenting and interpreting

information. Depending on a particular test scenario, this

component could be placed either inside the environment

(in the case of runtime analysis) or outside (in the case of

offline analysis). Global Data Collector is a component that

gathers all the metrics from other modules so that they can

be processed further in a consistent way. Data Parsing and

Data Visualization components are designed for presenting

the data in readable formats. Data Interpretation denotes

additional tools that facilitate interpretation processes. Data

Analysis Module Management and Configuration component

is intended for management and configuration of the data

analysis process.

C. Configuring the Test System

The configuration of a test environment can result in

changes of traffic patterns. The key network configuration

parameters include number of switches, number of hosts per

switch, topology, and deployed applications.

Regarding the controller, there are usually less parameters

to change. However, changing the hardware specification (e.g.,

memory, CPU), setting some options at the controller level

(e.g., the number of cores it can use) or choosing the controller

system structure option (centralized, distributed) have to be

considered.

D. Data Collection and Interpretation of Results

Metric probes (i.e., values read from a given metric) can

be taken at different intervals, cover different time spans, and

have various aggregation rules. For example, when measuring

load as the number of Packet-In requests, one needs to decide

on how often the value will be measured, what time it will

cover (e.g., last 10 minutes), and how it will be aggregated

(e.g., maximum, average). Those decisions have to be taken

keeping in mind the planned test scenarios.

In the presented framework, the core of the component

responsible for collecting test data is implemented by using the

exometer12 package - it is run as a user application dependency

in the same Erlang Virtual Machine. The package allows

for instrumentation of Erlang code, so that data reflecting

system performance can be exported to a variety of monitoring

systems.

The following exometer metrics are implemented:

Application Packet-In Handle Time: histogram metric that

captures elapsed time it takes for the SDN application

(part of the SUT) to handle a single Packet-In request.

LOOM Packet-In Handle Time: similar as above, but time

for the whole SUT (i.e., LOOM framework and SDN

application) is captured.

Packet-In Count: counts Packet-In messages that are pro-

cessed by the SDN application.

12https://github.com/Feuerlabs/exometer

972 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Packet-Out Count: counts Packet-Out messages that are sent

out by the SDN application.

Flow-Mod Count: counts Flow-Mod messages sent out of

the SDN application.

In order to make updates to the LOOM Packet-In Handle

Time metric, the LOOM framework code had to be instru-

mented. In the proof of concept implementation it is assumed

that each Packet-In message has a corresponding Packet-

Out message. Based on that, each Packet-In message that

arrives to the controller framework is marked with a timestamp

just after being decoded. Then, the mark is copied into the

corresponding Packet-Out message. When the message is

about to be encoded before sending, the mark is retrieved and

the metric value is computed. Note that such instrumentation

would not be possible with closed controller code.

The value of Application Packet-In Handle Time is based

on the same assumption. The first timestamp is made when

a Packet-In message enters the application process, and the

second when Packet-Out and possibly Flow-Mod messages

are sent.

The presented set of metrics is not closed and can be

extended by metrics specific for a particular controller. To

make use of the metrics collected during a test run, appro-

priate subscriptions and reporters need to be configured. Each

reporter reads values from a metric at given interval and writes

them to a file. The values are then processed by the Data

Analysis Module. Depending on test scenarios’ specifics, data

can be analyzed (and, e.g., visualized) at run time or saved

for later reference.

V. FRAMEWORK EVALUATION

In order to prove the framework usability and test whether

it fulfills the requirements, a learning switch application was

developed. The switch (called later LOOM Switch), was built

upon the LOOM Framework. Together with the framework it

formed a simple, but fully functional, SDN controller. The

basic design decisions regarding the LOOM Switch were as

follows:

1) There is no topology detection service: LOOM Switch

fills in the forwarding tables based on the standard MAC

addresses learning algorithm.

2) There is exactly one forwarding table (FT) for each data

plane switch connected to the controller.

3) A packet that does not match any of the flow table entries

is buffered in the data plane switch and its portion is sent

to the controller using a Packet-In message.

4) At most one flow table entry is installed in the data plane

switch that sent a Packet-In message.

5) Flow tables of other data plane switches are not changed.

Figure 2 depicts an example test setup. It demonstrates how

the most important parts of the test environment are related to

each other. Thick solid lines represent network links. Arrows

show OpenFlow channels, connecting each of the switches

to the LOOM Switch controller. Test management and data

collection components were omitted for clarity.

Fig. 2: An example test setup

Fig. 3: Options of LOOM Switch Deployment

The network used for proof-of-concept testing was built

from a number of switches that formed a linear topology,

each of which had an even number of hosts attached. Network

traffic was generated by a simple application called Pair, that

was deployed on Mininet hosts. The application was sending

out a UDP datagram to a random counterpart, receiving a

reply, changing its configuration (including MAC address) and

flushing its ARP table. Such an application provided an evenly

distributed, constant load during the test runs.

A. Testing scenarios

Because Erlang is a highly concurrent functional language,

and the presented framework supports the specifics of Erlang

LOOM, it was a natural choice to evaluate two options of

LOOM Switch deployment. In the first, called later regular, a

single Erlang process handled requests coming from all the

switches. In the second, called later process per switch, each

switch had its dedicated process. The intention was to compare

performance offered by the deployment options.

Figure 3 shows the LOOM Switch deployment architectures

from the perspective of Erlang processes, for LOOM Switch

application instance that serves 3 switches. The dashed arrows

in the figure represent invocations of LOOM Switch callbacks

from the LOOM framework.

In the case of process per switch deployment, each for-

warding table (implemented as a hash map) is associated with

SZYMON MENTEL ET AL.: HIGHLY CUSTOMIZABLE FRAMEWORK FOR PERFORMANCE EVALUATION 973

a separate Erlang process. In the regular deployment case,

all the tables are accessed from one process. Regardless of

the deployment option, LOOM Switch uses a single process

for asynchronously handling metrics (LS Metrics) and for

sending messages to the switches via LOOM Send API.

B. Experimental results

We conducted framework proof-of-concept tests for config-

urations in which the controller (i.e., LOOM Switch) used 2, 4

or 8 cores. As a representative test case, we chose the results

gathered for 4 cores serving the LOOM Switch, run in the

process per switch deployment option.

Figures 4a, 4b, 4c and 4d contain plots with metrics obtained

during respective test runs. Each graph is labeled with (X,

Y), where X is a number of switches in the (linear) topology

and Y is a number of hosts per switch. The overall number

of hosts (240) was constant across all the test runs, and the

same number of traffic generator (i.e., Pair) instances was

used, so the performance was expected to be dependent only

on the deployment option and the number of switches used.

Note that the same number of hosts and conversations resulted

in different loads in terms of Packet-In requests due to the

assumptions regarding LOOM Switch and the varying number

of data plane switches in the topology.

The following metrics are presented:

• Application Packet-In Handle Time, i.e., SDN applica-

tion (part of the controller) latency, called later LS Time,

• LOOM Packet-In Handle Time, i.e., SDN controller

latency, called later LOOM Time.

The collected values correspond to a 20 minute period of a

stable load. To get a time frame in which the load is stable, the

measurement was started after 15 minutes of test execution.

The values were sampled every minute.

The difference in values of LS Time and LOOM Time

is quite impressive. Average LS Time values, indicating the

time it takes LOOM Switch to handle a request are becoming

lower and less significant in relation to LOOM Time, which

represents the overall time needed to serve a request by the

controller (which consists of the LOOM Switch and the LOOM

framework). In percentages, they take 38.7%, 9.8%, 1.7%,

and 0.6% of LOOM Time, respectively.

The phenomenon of decreasing values of LS Time metric

can be explained as follows. In the process per switch de-

ployment option, computations related to switching decisions

are spread across the available cores, because each switch

is served by a separate process. Along with the increase of

Packet-In messages rate the LOOM framework gets overloaded

and slower in serving requests, in comparison to the LOOM

Switch application. As a result, as the framework needs more

time to process the messages, and they are delivered at a lower

pace to the LOOM Switch. Consequently, a message spends

less time being processed by LOOM Switch, because it is able

to process it instantly, since a major part of the messages is

buffered (and stuck) in the framework.

C. Comparison of deployment options

In the presented test case of process per switch, four cores

deployment scenario, the LOOM framework was observed

to be a bottleneck. As presented in section V-B, the LS

Time constituted only a few precent of the whole LOOM

Time, which clearly denotes that the Packet-In messages were

stuck in the framework. The highest load measured was about

228 000 Packet-Ins per minute with average times of 3 ms and

572 ms for LS Time and LOOM Time metrics, respectively.

Similar values of LOOM Time (580 ms) were observed in

case of the regular deployment for the load of 73000 Packet-

Ins per minute. In that case, the values of LS Time and

LOOM Time metrics were almost equal, indicating that most

of the processing time was consumed by the LOOM Switch

application. Its pace of serving requests was significantly

slower than the pace of request delivery performed by the

LOOM framework.

From the results gathered from two test sets for the two

LOOM Switch deployment options, it is clear that the way of

deploying a modular SDN controller has a tremendous impact

on its performance. The same hardware configuration, 4 cores

per controller, yielded about three times better processing

capability in the process per switch case than in the regular

one while offering the same processing time. Note that the

processing time values cannot be directly compared with

results presented in other articles, because it was measured for

the maximum number of Packet-In messages that the controller

was able to process. As shown in [5], the processing time

grows rapidly after excessing a certain threshold, mainly due

to request queuing.

In the following section, we present an experiment that was

conducted to check whether adding more cores to the LOOM

controller improved the situation, i.e., lowered the processing

time for the maximum load identified for 4 cores.

D. Scalability Test for Process Per Switch Deployment

Figure 5 presents a plot for the tested controller running

in the process per switch mode, that depicts the relation

between controller performance and the number of cores

available for the schedulers. The plot was created based on

experiments conducted on the same topologies that were used

for comparing deployment options. Each test scenario (denoted

(X,Y) on the X axis) has three values for three corresponding

controller configurations that vary only in the number of used

cores. Each point represents an average value of the LOOM

Time metric measured in a given test scenario and controller

configuration. Note that the experiment was conducted under

heavy load (228000 Packet-In messages per minute processed),

which proved to be the limit of processing capability of the

tested controller running on 4 cores.

The most important conclusion from comparing the results

depicted in figure 5, is that while switching from 2 cores to 4

gives a significant increase in performance in all test scenarios,

such situation does not happen when doubling the number

of cores again, from 4 to 8. In the case of 5 schedulers the

controller performed even a bit worse. As a consequence, it

974 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(a) Test Scenario (5, 48);
61000 Packet-Ins/minute

(b) Test Scenario (10, 24);
117000 Packet-Ins/minute

(c) Test Scenario (15, 16);
172000 Packet-Ins/minute

(d) Test Scenario (20, 12);
228000 Packet-Ins/minute

Fig. 4: Handle Request Time in Function of Time for Different Test Scenarios

should be stated that the bottleneck (for 8 cores) does not

result from insufficient computing power, but rather from the

LOOM framework implementation.

The reason that LOOM running LOOM Switch in the

discussed deployment option scales well only up to the certain

point (to 4 cores given the presented results), may be related

to locks. Some processes in LOOM may be acquiring the

same lock. The more cores available to the system, the more

processes can execute simultaneously. As a result, there could

be more failed attempts to acquire a particular lock. Of

course, there could be other potential reasons but checking

the locks seems to be a good starting point in searching for

an explanation.

VI. CONCLUSIONS

In the article, we presented our research on the development

of an innovative framework for measuring the performance of

SDN controllers. As a part of the presented research, we built

a test environment to evaluate the framework practically by

testing specific features of modular SDN controllers. The pre-

sented results are promising, and form a good base for further

development and analysis. We plan to extend our environment

with different traffic generators to emulate various application

workloads (e.g. multimedia sessions, big data processing).

It will allow measuring performance of SDN controllers in

real scenarios, with real applications and with different traffic

conditions.

The framework presented in this article is designed for

assessing various network topologies, and controller deploy-

ments, with arbitrarily chosen applications generating network

traffic. Such a tool is needed, e.g., for early stage testing of a

new network-intensive application that creates network traffic

with certain characteristics. Using the framework presented

in the article one can define both the network topology and

traffic patterns that run on top of it as well and observe the

effects of modifying multiple attributes on the performance of

the controller.

SZYMON MENTEL ET AL.: HIGHLY CUSTOMIZABLE FRAMEWORK FOR PERFORMANCE EVALUATION 975

Fig. 5: LOOM Handle Request Time in Different Test Scenarios

VII. ACKNOWLEDGMENTS

The research presented in this paper was partially sup-

ported by the National Centre for Research and Development

(NCBiR), Poland, project PBS1/B9/18/2013 and AGH statu-

tory research grant no. 11.11.230.124.

REFERENCES

[1] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the

first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in ACM SIGCOMM computer communication review,
vol. 39, no. 4. ACM, 2009, pp. 51–62.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson et al., “Network virtu-
alization in multi-tenant datacenters,” in 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14), 2014, pp.
203–216.

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[5] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “To-
wards an elastic distributed sdn controller,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 7–12, 2013.
[6] T. Szydlo and K. Zielinski, “Adaptive enterprise service bus,” New

Generation Computing, vol. 30, no. 2-3, pp. 189–214, 2012.

[7] LOOM, http://flowforwarding.github.io/loom/.

[8] D. Jullier, M. Konieczny, and S. Zieliński, “Applying software-defined
networking paradigm to tenant-perspective optimization of cloud ser-
vices utilization,” in Computer Networks. Springer, 2015, pp. 193–202.

[9] P. Parol and M. Pawlowski, “Towards networks of the future: Sdn
paradigm introduction to pon networking for business applications,” in
Computer Science and Information Systems (FedCSIS), 2013 Federated

Conference on. IEEE, 2013, pp. 829–836.

[10] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems

(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1–8.

[11] C. Cetinkaya, Y. Ozveren, and M. Sayit, “An sdn-assisted system design
for improving performance of svc-dash,” in Computer Science and

Information Systems (FedCSIS), 2015 Federated Conference on. IEEE,
2015, pp. 819–826.

[12] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,” in ACM

SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 219–230.

[13] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication. ACM,
2015, pp. 123–137.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-

tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[15] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of sdn/openflow controllers,” in Proceedings of the

9th Central and Eastern European Software Engineering Conference in

Russia. ACM, 2013.

[16] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of

976 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

opendaylight sdn controller,” in 20th IEEE International Conference on

Parallel and Distributed Systems (ICPADS), 2014.

[17] Open Network Operating System, “Raising the bar on sdn control

plane performance and scalability,” http://goo.gl/AizqcC, 2015.

[18] M. P. Fernandez, “Evaluating openflow controller paradigms,” in IEEE

27th International Conference on Advanced Information Networking

and Applications, 2013.

[19] B. Vengainathan, A. Basil, M. Tassinari, V. Manral, and S. Banks,

“Benchmarking methodology forsdn controller performance,”

Working Draft, IETF Secretariat, Internet-Draft draft-bhuvan-bmwg-

sdn-controller-benchmark-meth-01, July 2015. [Online].

Available:https://tools.ietf.org/html/draft-bhuvan-bmwg-sdn-

controller-benchmark-meth-01

[20] K. Grochla and L. Naruszewicz, “Testing and scalability analysis of

network management systems using device emulation,” in Computer

Networks. Springer, 2012, pp. 91–100.

SZYMON MENTEL ET AL.: HIGHLY CUSTOMIZABLE FRAMEWORK FOR PERFORMANCE EVALUATION 977

