
Simulating Large-scale Aggregate MASs with
Alchemist and Scala

Roberto Casadei
Università di Bologna, Italy

roberto.casadei12@studio.unibo.it

Danilo Pianini
Università di Bologna, Italy

danilo.pianini@unibo.it

Mirko Viroli
Università di Bologna, Italy

mirko.viroli@unibo.it

Abstract—Recent works in the context of large-scale adaptive
systems, such as those based on opportunistic IoT-based applica-
tions, promote aggregate programming, a development approach
for distributed systems in which the collectivity of devices is
directly targeted, instead of individual ones. This makes the
resulting behaviour highly insensitive to network size, density,
and topology, and as such, intrinsically robust to failures and
changes to working conditions (e.g., location of computational
load, communication technology, and computational infrastruc-
ture). Most specifically, we argue that aggregate programming
is particularly suitable for building models and simulations of
complex large-scale reactive MASs. Accordingly, in this paper we
describe SCAFI (Scala Fields), a Scala-based API and DSL for
aggregate programming, and its integration with the ALCHEMIST

simulator, and usage scenarios in the context of smart mobility.
Keywords — aggregate programming, Scala, DSL, simulation.

I. INTRODUCTION

A
PPLYING multiagent systems (MASs) in the context of

large-scale distributed systems is known to be hard in

general, due to the ineluctable need to take into account issues

such as communication, robustness, consistency and perfor-

mance. The situation is then becoming harder and harder es-

pecially in recently emerging distributed computing scenarios,

such as pervasive computing or IoT, due to the number of com-

putational entities, the complexity of interactions, the presence

of natural limitations related to energy, communication and

processing, and the tight connection with the physical world

and human users—quintessential source of unpredictability.

Achieving a sound development of MAS applications in this

context, so as to ensure desired properties of robustness and

scalability, calls not just for better algorithms and computing

frameworks, but possibly for whole new paradigms.
Recent research in collective adaptive software systems

proposed aggregate computing [1] as a promising approach

generalising over several prior models and languages ad-

dressing computations over collections of spatially-situated

systems [2]. Essentially, aggregate computing allows one to

express complex system-wide, global-level computations in-

volving large sets of devices in a fully declarative way, promot-

ing decomposition and resiliency. Aggregate computing can be

formally grounded in the field calculus [3], a core language

able to express complex patterns of information diffusion

and aggregation. Resiliency is guaranteed by self-organisation:

aggregate programs can be compiled into repetitive local tasks

to be executed by the single agent, promoting identification of

robust building blocks of aggregate behaviour [4].

Though naturally applicable to swarm-like reactive MASs,

aggregate computing is also of interest when stronger notions

of agency enter the picture: as discussed in [5], aggregate pro-

grams can be seen as “aggregate plans,” namely, operational

instructions for deliberative agents that guide the cooperative

behaviour of a team.

In order to more deeply investigate the impact of this

new paradigm to the mainstream development of large-scale

MASs, in this paper we explore and propose an extension

of the Alchemist simulator [6] with scafi1 [7], a Scala

framework that provides an internal domain-specific language

(DSL) for specifying aggregate computations via a simple API

that well integrates with the advanced typing features of Scala

(inference, genericity, implicits) and its library. This allows to

smoothly simulate complex collective adaptive behaviours on

top of Scala mainstream programming.

The remainder of this paper is organised as follows: Sec-

tion 2 introduces aggregate programming, Section 3 presents

the scafi framework and example specifications, Section

4 depicts Alchemist and the integration of scafi, Section

5 discusses case studies in the context of smart mobility,

and Section 6 presents related works before finally drawing

conclusions.

II. AGGREGATE PROGRAMMING

Aggregate programming [1] is a novel approach to (large-

scale) distributed systems engineering that supports the spec-

ification of collective behaviours in a simple, high-level,

and composable way. The key idea is to shift programming

from the traditional single-device viewpoint to a global view-

point where the programmable entity is the aggregate body

of computational elements constituting a system. This way,

programmers are no longer required to solve the intricate

local-to-global problem, i.e., building the desired emergent

phenomenon by specifying how each component behaves and

interacts with others in a fully bottom-up fashion; instead,

it is possible to focus on what the system should exhibit,

and let the computational platform define – under-the-hood

– how the computation is carried on by the interaction of

individual entities. It essentially solves the inverse, global-to-

local mapping problem.

1http://scafi.apice.unibo.it

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1495–1504

DOI: 10.15439/2016F407

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1495

An immediate consequence is the independence of aggre-

gate computations from the physical implementation details

of systems, which is realised by suitably abstracting spatial

distribution, topology and interaction. More specifically, as

realised by space-time programming approaches [2], logical

or physical neighbouring of nodes can be exploited to make

interaction implicit. In addition, this notion is instrumental for

the conceptual connection with systems where locality might

play a major role in communication.

The main programming abstraction in aggregate program-

ming is the computational field [3] (or field for short), a notion

already used in the MAS community [8], [9]. Generalising

the notion of (gravitational, electromagnetic) field in physics,

a computational field is a function that, at a given moment

in time, maps each point in space to a computational object;

when considering the space discretised by a networked set

of situated agents, each sample represents the outcome of

computation for that agent. The key insight of the approach

consists in the ability to specify collective behaviours (i.e.,

aggregate computations) by algorithms expressed as a func-

tional composition of fields: from input fields representing

information sensed from the environment, up to output fields

representing some form of actuation. In other words, aggregate

computations are represented by a declarative specification

of functional operations involving collective data structures,

though, under-the-hood, they are turned into repetitive, gossip-

like interactions between individual agents—namely, relying

on known low-level self-organisation patterns [10].

This approach is shown to support a solid engineering

methodology, in which composable and reusable high-level

library components of aggregate behaviour can be defined that

are provably resilient [4].

III. AGGREGATE PROGRAMMING IN SCALA

The aggregate computing idea can be naturally supported

by a programming language, used to specify aggregate be-

haviours. Among different choices one can make to frame

one such language (as a DSL, as an API, and so on), in this

paper we explore the idea of using the Scala programming

language [11] as the host language for building an aggregate

programming platform. This is motivated by both technical

and practical reasons.

Scala is a modern language for the JVM which integrates

the object-oriented and functional paradigms in a seamless

way, hence we can combine the typically rich and expressive

OO libraries and data structures, with functional programming

as promoted by aggregate computing. Scala has a powerful

and expressive type system, combining the advantages of

static type checking with a concise syntax for productivity—

thanks to type inference, the implicits system, generic and

functional programming features, and ad-hoc syntactic sugar.

This allows library designers to create Scala APIs which

actually have a DSL-like flavour, which are thus perceived

by users as “embedded languages.” Moreover, Scala is now

becoming a standard de facto for the construction of platforms

for distributed processing (frameworks like Akka actors, and

Apache Kafka, Storm and Spark are essentially Scala-based):

this makes it the ideal language to target a platform for

aggregate computing—though this issue is not discussed here

further.

Accordingly, we propose scafi (Scala fields) [7], a frame-

work consisting of two main parts:

1) aggregate programming support, by a Scala-internal DSL

that provides a syntax and the corresponding semantics

for the constructs of the computational field calculus [3],

by which aggregate computations are naturally expressed

and seamlessly combined in code; and

2) aggregate platform support, allowing configuration and

execution of such code in actual distributed setups.

scafi explicitly addresses the construction of concrete

aggregate computing applications: however, it can also play

the role of a language to validate complex MAS algorithms,

as meta-model for simulations—in the next section, in fact,

we shall describe its integration with a full featured simulator,

Alchemist.

A. Computational field calculus in Scala

An aggregate system consists of a (possibly mega-scale)

number of computational devices or agents, all executing the

same aggregate program at asynchronous rounds of compu-

tation. According to contextual information (e.g, sensor val-

ues), different such computational devices may take different

branches of computation, i.e., computing sub-fields in different

domains of execution. Interaction depends on a notion of

locality, i.e., a device can communicate to all its neighbours,

as defined by an application-specific proximity relation. The

communication is carried out by repeatedly broadcasting the

latest computed state to the neighbourhood: the shape of this

state, and how it affects and gets affected by computations,

is precisely defined by our language semantics [3]. The basic

primitives of the field calculus (described below, in turn) are

declared in the Constructs trait, implemented by the frame-

work and mixed-in in any library of user-defined aggregate

functions:

trait Constructs {

def rep[A](init: A)(fun: (A) => A): A

def nbr[A](expr: => A): A

def foldhood[A](init: => A)(acc: (A,A)=>A)(expr: => A): A

def branch[A](cond: => Boolean)(th: => A)(el: => A): A

def aggregate[A](f: => A): A

def sense[A](name: LSNS): A

def nbrvar[A](name: NSNS): A

}

The field calculus constructs can be understood and de-

scribed according to two complementary viewpoints:

1) Local viewpoint – refers to the traditional device-centric

interpretation where an aggregate computation is consid-

ered in the context of a single device. The operational

semantics of the field calculus is implemented according

to this stance.

2) Global viewpoint – it corresponds to the natural se-

mantics and refers to the aggregate-level interpretation

of programs as computations running on whole fields

1496 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(i.e., spatial data structures mapping each device to some

computational object).

B. Working with basic constructs

The most trivial program is one that simply evaluates to a

constant value, such as a boolean, a number or a string. For

instance, value

"Hello, World"

should be interpreted as a constant field evaluating that value

everywhere; concretely, it results in the string "Hello,

World" being the return value of the local computation of

every device in the system.
Construct sense provides the means for reading a value

from a local sensor, which enables context-sensitive be-

haviours. Expression

sense[Double]("temperature")

gets in any device a double value from the temperature sensor,

creating the field of temperatures.
Change over time of a field can be realised via the rep

construct, which produces a dynamically evolving field by

repeatedly applying a state-transformation function. For exam-

ple, it could be used for counting how many rounds a device

performed since the beginning of computation:

// Initially 0; state is incremented at each round

rep(0){ _+1 } // or equivalently: rep(0){ x => x+1 }

Note that the frequency at which devices compute rounds and

hence send messages to neighbours can vary over time and

from agent to agent: the aggregate computing model generally

assumes partial synchronicity [12], though in most cases even

full asynchrony of rounds can be assumed.
Communication with the neighbourhood is achieved via

nbr, which gives a map from neighbouring devices to their

value of the argument—essentially an observation primitive.

Construct nbr has to be nested inside a foldhood oper-

ation, which reduces one such map back to a single value

via a monoidal reduction (on top of it, derived minHood,

sumHood and others are defined and will be used in next

sections). Example applications of foldHood are as follows:

// Counting number of neighbours at each device

foldhood(0)(_+_){ nbr{1} } // sum 1 across neighbours

// Is sensor "sns" active in every neighbour?

foldhood(true)(_&&_){ nbr{ sense[Boolean]("sns") } }

In addition to local sensors, there is a notion of “envi-

ronmental” sensor. nbrvar allows to extract values from a

neighbouring sensor, which gives a sample for each neighbour.

Thus, similarly to nbr, nbrvar has to be used within a

foldhood operation.

def nbrRange(): Double = nbrvar[Double](NBR_RANGE_NAME)

// Compute the maximum distance of a neighbour

foldhood(Double.MinValue)(max(_,_)){ nbrRange() }

// equivalently: maxHood{ nbrRange() }

Operation branch splits the spatial domain of devices into

two parts, or rather two sub-teams, according to a boolean field

expressing some condition. Each of the two parts, compute a

different sub-field in complete isolation. For example, if we

would like to execute some aggregate computation only on

a subset of the devices of the network (the complementary

subset must not participate), we need a partition:

branch(sense[Boolean]("flag")){

Double.MaxValue // not computing

}{

compute(...) // sub-computation

}

Construct aggregate is used to define the body of a new

function that should work on whole fields. The devices running

a given aggregate function constitute a partition, i.e., they are

able to interact with each other via nbr. As an example,

branch could be entirely rewritten using aggregate:

def branch[A](cond: => Boolean)(th: => A)(el: => A): A =

mux(cond)(() => aggregate{ th })(() => aggregate{ el })()

The symbol mux used in this example is a built-in operator

that provides a purely functional multiplexer.

C. Working with combinations

More elaborate aggregate behaviours can be defined by

compositions of the basic constructs. In addition, specific parts

of the program logic can be encapsulated into Scala functions.

Simple examples involving these features include counting

neighbours except the device itself:

// mid is a special sensor yielding the device unique id

def isMe = nbr{ mid() } == mid()

sumHood{ mux(isMe){0}{1} }

The paradigmatic example of computational field is known

as gradient [10], computing in each node the distance (hop-

by-hop, or estimated) from the nearest node where a source

field holds a true value:

def nbrDist = nbrvar[Double](NBR_RANGE_NAME)

def gradient(source: Boolean): Double =

rep(Double.MaxValue) { dist =>

mux(source){ 0.0 } { minHood{ nbr{dist} + nbrDist } }

}

D. Scaling with complexity

Even though the basic constructs of the field calculus are

somewhat low-level, they can be further composed so as to

define reusable library components that provide higher-level

behaviours—in fact, the functional character of the approach

promotes systematic factorisation of behaviour into reusable

layers of increasing abstraction.

An initial set of general coordination operators has been

identified in [1], [4]. These operators capture common patterns

of distributed computation and also enjoy the self-stabilisation

property, which ensures that a system, independently of the

current state, will eventually reach a stable state in finite time

MIRKO VIROLI ET AL.: SIMULATING LARGE-SCALE AGGREGATE MASS WITH ALCHEMIST AND SCALA 1497

that is not affected by transitory events. Moreover, as the

self-stabilisation property is preserved by composition [13],

it is formally guaranteed that also composite structures and

algorithms self-stabilise.

On top of such resilient building blocks, a sound devel-

opment API can be defined, which in turn can be used to

implement application-specific aggregate behaviours.

1) Gradient-cast: G simultaneously performs two tasks:

i) builds a distance-gradient from the source (src) according

to metric, and ii) builds accumulated values via acc along

the gradient starting from init at the src. In scafi, it can

be encoded as follows:

def G[V](src: Boolean, field: V, acc: V=>V, metric: =>Double)

(implicit ev: OrderingFoldable[V]): V =

rep((Double.MaxValue, field)){ // (distance,value)

dv => mux(src) {

(0.0, field) // ..on sources

} {

minHoodPlus { // minHood except myself

val (d, v) = nbr { dv }

(d + metric, acc(v))

}

}

}._2 // yielding the resulting field of values

The generic type V (and, in this case, also Tuple2[+A,+B])

must have an (implicit or explicit) instance of the

OrderingFoldable type-class available so that

minHoodPlus can work out the minimum value on

the neighbourhood (by convention, *hoodPlus operators

exclude the device itself from the neighbours set).

A broadcast operation can easily get built on top of G:

def broadcast[V](source: Boolean, field: V)

(implicit ev: OrderingFoldable[V]): V =

G[V](source, field, x=>x, nbrRange())

In the following example, we leverage broadcast, to

diffuse across the whole network the distance between two

devices:

def distanceTo(source: Boolean): Double =

G[Double](source, 0, _ + nbrRange(), nbrRange())

def distBetween(source: Boolean, target: Boolean): Double =

broadcast(source, distanceTo(target))

def isSource = sense[Boolean]("source")

def isObstacle = sense[Boolean]("obstacle")

distBetween(isSource, isObstacle)

and, most notably, we could realise an algorithm that builds a

width-wide channel connecting a source and a destination:

def channel(src: Boolean, dest: Boolean, width: Double) =

distanceTo(src) + distanceTo(dest) <=

distBetween(src, dest) + width

2) Converge-cast: C is the dual of G: it collects infor-

mation distributed across space by accumulating values down

a potential field, starting with local at the sources (i.e.,

devices with no parent, located at the edge of the potential

field):

def C[V](potential: V, acc: (V,V)=>V, local: V, Null: V)

(implicit ev: OrderingFoldable[V]): V = {

rep(local){ v =>

acc(local, foldhood(Null)(acc){

mux(nbr(findParent(potential)) == mid()){

nbr(v)

} {

nbr(Null)

}

})

}

}

def findParent[V](potential: V)

(implicit ev: OrderingFoldable[V]): ID = {

mux(ev.compare(minHood{ nbr(potential) }, potential)<0){

minHood{ nbr{ Tuple2[V,ID](potential, mid()) } }._2

}{

Int.MaxValue

}

}

C and G can be combined to originate a self-stabilising

summarise operator that first collects information across the

space and then propagates back the computed summary:

def summarize(sink: Boolean,

acc: (Double,Double)=>Double,

local: Double,

Null: Double): Double =

broadcast(sink, C(distanceTo(sink), acc, local, Null))

def average(sink: Boolean, value: Double): Double =

summarize(sink, (a,b)=>{a+b}, value, 0.0) /

summarize(sink, (a,b)=>a+b, 1, 0.0)

3) Time-decay: The T operator can be used to condense

information across time by decreasing the initial field

according to a decay function:

def T[V](initial: V, floor: V, decay: V=>V)

(implicit ev: Numeric[V]): V = {

rep(initial){ v =>

ev.min(initial, ev.max(floor, decay(v)))

}

}

def T[V](initial: V)

(implicit ev: Numeric[V]): V = {

T(initial, ev.zero, (t:V)=>ev.minus(t, ev.one))

}

Given such a function, the implementation of a timer is

direct. With timer, a limitedMemory function can be

defined, computing value until timeout has expired and

expValue thereafter, effectively realising a memory limited

in time.

def timer[V](length: V)

(implicit ev: Numeric[V]) = T[V](length)

def limitedMemory[V,T](value: V, expValue: V, timeout: T)

(implicit ev: Numeric[T]) = {

val t = timer[T](timeout)

(mux(ev.gt(t, ev.zero)){value}{expValue}, t)

}

1498 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

4) Sparse-choice: S can be used to create partitions and

for selecting sparse subsets of devices in space. Essentially, it

realises a local leader election, where grain is the mean

distance between two leaders and metric represents the

notion of distance.

def S(grain: Double,

metric: Double): Boolean =

breakUsingUids(randomUid, grain, metric)

The implementation uses randomUid to generate a field of

unique identifiers:

def randomUid: (Double,ID) = rep((Math.random()), mid()) {

v => (v._1, mid())

}

which is in turn exploited to break the network symmetry:

def breakUsingUids(uid: (Double,ID),

grain: Double,

metric: => Double): Boolean =

uid == rep(uid) { lead:(Double,ID) =>

val acc = (_:Double)+metric

distanceCompetition(G[Double](uid==lead, 0, acc, metric),

lead, uid, grain, metric)

}

by means of a competition between devices for leadership:

def distanceCompetition(d: Double,

lead: (Double,ID),

uid: (Double,ID),

grain: Double,

metric: => Double) = {

val inf:(Double,ID) = (Double.PositiveInfinity, uid._2)

mux(d > grain){ uid }{

mux(d >= (0.5*grain)){ inf }{

minHood {

mux(nbr{d}+metric >= 0.5*grain){nbr{inf}}{nbr{lead}}

}

}

}

}

5) Restriction in space: We have already encountered

the operator for doing domain restriction, which is branch.

With it, a number of interesting computations can be achieved:

// Compute distance from ’src’, avoiding obstacles

def distAvoidObstacles(src: Boolean, obs: Boolean): Double =

branch(obs){ Double.PositiveInfinity }{ distanceTo(src) }

// Perform a broadcast within a particular ’region’

def bcastRegion[V](region: Boolean, src: Boolean, v: V)

(implicit ev: OrderingFoldable[V]): Option[V] =

branch[Option[V]](region){

Some[V](broadcast(src, v))

}{ None }

// Measure the size of connected components of a region

def groupSize(region: Boolean): Double =

branch(region){ summarize(S(1,0),_+_,1,0) }{ Double.NaN }

// Remember whether an event has recently occurred

def recentEvent(event: Boolean, timeout: Int): Boolean =

branch(event){ true } { timer(timeout)>0 }

IV. ALCHEMIST AS SIMULATION PLATFORM

Testing, debugging, and performance assessment prior to

actual deployment are key components of a good software

engineering process, and aggregate programming makes no

exception. However, since the primary target for this emerging

paradigm are distributed and situated systems, conventional

testing and debugging tools are hardly enough, in particular

falling short at capturing the interaction among devices and

between them and the underlying environment. In this situa-

tion, simulation emerges as a valuable tool for all the phases of

software development: early testing and debugging, integration

testing, and performance assessment. Of course, simulation

cannot entirely capture the complexity of the real system

(much like the classic unit testing cannot test every possible

situation in classic application development), nevertheless the

desiderata is to be as close as possible to a real situation.

There are two relevant dimensions in this regard: first, the

simulated environment must capture the most relevant aspect

of the distributed system under design; second, the code that

the simulator executes must resemble as closely as possible

the production code. Considering both dimensions, we picked

Alchemist [6].

Alchemist is an event-driven simulator, mostly written in

Java, tailored to the simulation of pervasive systems with a

focus on performance. The model, albeit originally inspired

by chemistry, supports complex environments, several flavors

of node mobility, and advanced network models. Particularly

interesting for real world applications is the possibility of

exploiting map data from OpenStreetMap, navigating nodes

along existing GPS traces as well as along roads (distinguish-

ing among a handful of vehicles types). Also useful is the sup-

port for converting indoor images to Alchemist environments

with physical obstacles. Figure 1 shows typical instances of

environments frequently simulated with Alchemist.

The Alchemist computational model is generic (it is rather

a meta-model), and requires a so called “incarnation” to

be developed in order to actually execute simulations. An

incarnation is a mapping between the Alchemist meta-model

concepts and the concrete entities that the user is interested

in simulating. Alchemist, at the time of writing, ships two

incarnations, one of them tailored to aggregate programming

supporting the simulation of (possibly mobile) Protelis [14]

programmed devices.

A. Interfacing Alchemist and Scala

Our goal in interfacing scafi and Alchemist was to be

able to feed it with the production Scala code, injecting it

directly into the simulated environment. A few factors made

such integration quite straightforward:

1) Scala and Java are both hosted in the JVM and feature

full, bidirectional interoperability;

2) the scafi architecture neatly separates its core from the

actor-based network backend, this design was key in our

pursue to sharing interpreter and Scala code between the

actor platform and the simulator;

MIRKO VIROLI ET AL.: SIMULATING LARGE-SCALE AGGREGATE MASS WITH ALCHEMIST AND SCALA 1499

(a) (b)

Fig. 1: Typical multi-agent scenarios supported by Alchemist: a very dense and intricate indoor environment (Figure 1a), and

an urban environment (Figure 1b).

Alchemist meta-model Protelis incarnation scafi incarnation

Environment: container of nodes and

network model

- -

Network model - -

Node: container of reactions and

molecules

Device: container of events and envi-

ronment variables

Device: container of events and envi-

ronment variables

Reaction: set of conditions that, if

matched, triggers a set of actions with

some time distribution

Event Event

Condition - -

Action: any change of the environment Any Alchemist action, or the execution

of a computation round of a Protelis vir-

tual machine, or the dispatch of results

to neighbours

Any Alchemist action, or the execu-

tion of a scafi computation round,

included message dispatching

Time distribution - -

Molecule, associated with a concentra-

tion

Environment variable, associated with a

value

Environment variable, associated with a

value

Concentration Value: any Java object Value: any Scala object

Fig. 2: Mapping between the Alchemist meta-model entities and the Protelis and scafi incarnation concepts. Omitted cells

indicate that the Alchemist concept is inherited as-is, with no change. Similarities between the incarnations hosting the two

aggregate languages are immediately clear.

3) the Protelis incarnation in Alchemist provided an archi-

tectural template, that led to a quick identification of the

proper conceptual mapping to operate when building the

incarnation.

Figure 2 summarizes the mapping effort between Al-

chemist entities and scafi ones, also comparing with

the existing Protelis incarnation. As the reader may ex-

pect, several entities share the same meaning between the

two aggregate programming languages, and as such we be-

lieve that an incarnation skeleton for any aggregate pro-

gramming language could be crafted in Alchemist, fur-

ther easing the integration of any JVM-hosted aggregate

programming language interpreter. In particular, note that

sensing of information is supported by means of environ-

ment variables in Alchemist, whose evolution over time

is controlled when configuring an Alchemist simulation,

and which binds to the behaviour of construct sense in

scafi.

V. CASE STUDY

Our goal in this work is to demonstrate the feasibility

of using scafi in conjunction with Alchemist to realise

complex simulations. As such, we do not aim at presenting

novel scenarios, but rather we do explain how to recreate some

of the results available in literature, validating the proposed

framework and showing how convenient is to express com-

plex collective adaptive systems with aggregate computing,

scafi, and the available APIs. In particular, we focus on

two examples that have already been implemented in Protelis

and simulated in Alchemist:

1) an example application of smart vehicle counting, which

showcases the usage of higher order functions and the

possibility of tuning the computational round execution

1500 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

frequency with Alchemist. The proposed code is derived

from [15];

2) an urban crowd tracking scenario featuring the combined

usage of all fundamental self-stabilising building blocks

exposed in Section III-D [1].

The goal of these simulations, performed prior to actual

deployment, would be to evaluate whether the propose collec-

tive adaptive system would provide an effective and efficient

service for the application at hand.

A. Vehicle counting

Consider a highway, where a sensor is deployed to monitor

the number of vehicles passing nearby. We suppose that the

vehicles are equipped with electronic components that make

them connected with all the other compatible devices within a

certain range. We do not consider connectivity issues (which

are beyond the scope of this work), and make instead the

assumption that every device (vehicle or sensor) is able to

communicate with every neighbour within a certain distance.

We suppose that all devices are running the following scafi

“virtual machine”, which is able to import any injected pro-

cedure from the snsInjectedFun sensor:

// Dynamically import any computation

def snsInjectedFun: ()=>Double = sense("injectedFun")

// True where the data should get aggregated

def snsInjectionPoint: Boolean = sense("injectionPoint")

// 1 for patrons, 0 otherwise

def snsShouldCount: Double = mux(sense("patron")){1}{0}

// Detection range in meters

def snsRange: Double = 30

def virtualMachine(): Double = {

deploy(snsRange,snsInjectionPoint,snsInjectedFun,()=>0.0)

}

def deploy[T](range:Double, source:Boolean,

g: ()=>T, noOp: ()=>T)

(implicit ev: OrderingFoldable[T]): T = {

val f: ()=>T = branch(distanceTo(source) < range) {

G(source, g, identity[()=>T], nbrRange())

}{ noOp }

f()

}

To monitor the number of nearby vehicles, the sensor device

injects the following function, which relies on the C building

block to realise a convergent sum:

def countPatrons() = {

C[Double](potential = distanceTo(snsInjectionPoint),

acc = _+_, local = snsShouldCount, Null = 0.0)

}

In this scenario, the sensor injects such function after two

seconds of simulations, due to a congested block of traffic

coming, and turns it off after 10 seconds (by injecting a func-

tion returning 0). We executed the same experiment multiple

times, varying the round frequency. Figure 3 summarises the

results. As expected, values get much closer to reality when

the sampling frequency is very high. Moreover, the algorithm

exploited to implement C is based on a spanning tree, that by

its nature is sensible to changes in the network topology: these

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

Measuring enabled at t=2

Measuring disabled at t=12

Time (simulated seconds)

Actual
1 run per second

10 runs per second
100 runs per second

D
e
v
ic

e
s
 w

it
h
in

 6
0
 m

e
te

rs
 f

ro
m

 t
h
e
 s

e
n
s
o
r

Fig. 3: Number of vehicles counted using the convergent,

distributed sum based on C. As expected, higher frequencies

lead to more precise measurements.

are responsible of the peak in the device count observed with

devices running at 1Hz.

B. Crowd tracking in an urban scenario

As second example, consider an IoT environment that

provides services for crowd safety at a mass public event,

such as a marathon. Such events pose challenging safety

issues, because the movement of people in crowded and

constrained environments often creates emergent zones of

dangerous overcrowding where any small incident can create

a panic or stampede that injures or kills people. We simulate

here a possible crowd safety service running in an IoT urban

environment.

We define three possible crowding levels;

val (high,low,none) = (2,1,0) // crowd level

a function locally estimating crowd density;

def unionHoodPlus[A](expr: => A): List[A] =

foldhoodPlus(List[A]())(_++_){ List[A](expr) }

def densityEst(p: Double, range: Double): Double = {

val nearby = unionHoodPlus(

mux (nbrRange < range) { nbr(List(mid())) } { List() }

)

nearby.size / p / (Math.PI * Math.pow(range,2))

}

a function mapping each local area to a danger level, depend-

ing on the average density sensed locally;

def managementRegions(grain: Double,

metric: => Double): Boolean = S(gran,metric)

def dangerousDensity(p: Double, r: Double) = {

val mr = managementRegions(r*2, () => { nbrRange })

val danger = average(mr, densityEst(p, r)) > 2.17 &&

summarize(mr, (_:Double)+(_:Double), 1 / p, 0) > 300

mux(danger){ high }{ low }

}

and a function yielding true if a situation of danger has

remained active for enough time.

MIRKO VIROLI ET AL.: SIMULATING LARGE-SCALE AGGREGATE MASS WITH ALCHEMIST AND SCALA 1501

Fig. 4: A snapshot, taken from [1], of Alchemist executing the

crowd warning application. Grey dots are stationary devices,

not participating the system. Green dots are users in safe areas,

red dots users in dangerous areas, and yellow dots are users

who are being warned.

def recentTrue(state: Boolean, memTime: Double): Boolean = {

branch(state) {

true

}{

limitedMemory[Boolean,Double](started, false, memTime)._1

}

}

def crowdTracking(p: Double, r: Double, t: Double) = {

val crowdRgn = recentTrue(densityEst(p, r)>1.08, t)

branch(crowdRgn){ dangerousDensity(p, r) }{ none }

}

With all those ingredients, we warn the users of those devices

located near areas which have remained crowded for a long

time.

def crowdWarning(p: Double, r: Double,

warn: Double, t: Double): Boolean = {

distanceTo(crowdTracking(p,r,t) == high) < warn

}

For the sake of simplicity, the numbers we used for the

estimates had been directly written in code. They could get ex-

tracted and substituted by parameters, the values proposed are

derived from literature [16]. The actual simulation is composed

of 1000 stationary devices embedded into the environment

plus 1479 mobile personal devices, each following a smart-

phone position trace collected at the 2013 Vienna marathon

[17], [18]. Figure 4 shows a sample screenshot of the system

deployed.

VI. RELATED WORK

A. Computational fields and aggregate programming

A wide range of existing approaches to aggregate pro-

gramming have been proposed, including such diverse ap-

proaches as abstract graph processing (e.g., [19]), declarative

logic (e.g., [20]), map-reduce (e.g., [21]), streaming databases

(e.g., [22]), and knowledge-based ensembles (e.g., [23])—for

a detailed review, see [24]. Most of them, however, have been

too specialized for particular assumptions or applications to

be able to address the aggregate programming challenge at its

full complexity in a wide range of different environments.

A unifying model based on computational fields has been

identified as a generalization of a wide range of existing

approaches, surveyed in [24]. Formalized as the computational

field calculus [3], this universal language provides a theoretical

foundation on which real aggregate programming platforms

can be built: both Protelis [14] and scafi are practical

instances of such calculus.

B. Aggregate programming and multi-agent systems

Aggregate programming targets collective behaviour of

systems, which in the MAS literature have typically been

addressed in various ways. On the one hand, we have ap-

proaches facing the design of relatively small systems of de-

liberative/cognitive agents: coordination mechanisms and tools

(e.g. via artifacts [25] or protocols [26]), social/organisational

norms [27], commitments [28], and so on. They provide

declarative constraints to agent interaction (abstracting away

from the step-by-step operational behaviour of the aggregate),

and strongly rely or deal with autonomy of agents, assuming

agents have inner mechanisms to dynamically adapt their

behaviour to the specific contingency, up to the point of

deviating from a previously agreed cooperative behaviour.

On the other hand, collective behaviour of large-scale MASs

is mostly studied in terms of swarm-intelligence techniques,

assuming that agents are reactive and perform repetitive tasks,

with the problem of designing local agent behaviours that can

end up in the desired global tasks [29].

Aggregate programming somewhat sits in between these

two apparently unreconcilable views of a self-adaptive MASs:

it aims at devising a methodology by which the collective be-

haviour of large-scale ensembles of autonomous, deliberative

agents, can be designed so as to manifest inherent properties

of self-adaptation, resiliency, and openness.

C. Simulation of aggregates

We claimed in Section IV that simulation is a key step

in the development of aggregate programming applications.

There are many kinds of simulation tools available: they

either provide programming/specification languages devoted

to ease construction of the simulation process, especially

targeting computing and social simulation (e.g. as in the case

of multi-agent based simulation [30], [31], [32], [33], [34]),

or they stick to quite foundational computing languages to

better tackle performance, mostly used in biology-oriented

applications [35], [36], [37], [38].

Alchemist is a discrete-event simulator (DES), since it

combines a continuous time base with the description of

system dynamics by distinguished state changes [39]. The

class of DES more related to our approach are those commonly

used to simulate biological-like systems, by which in fact

Alchemist was originally inspired. A recent overview of them

is available in [38], which takes into account: DEVS [40], Petri

Nets [36], State Charts [41], and stochastic π-calculus [35].

1502 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced scafi, a Scala based API and

DSL for aggregate programming, equipped with an actor based

platform and integrated with the Alchemist simulator. We

described the main features of the API/DSL, and demonstrated

how scafi can be used to realise reusable building blocks

that ease the creation of aggregate programs. We presented the

integration between scafi and Alchemist, a discrete-event

simulator targeting pervasive systems, detailing the mapping

between the Alchemist meta-model and the concrete scafi

entities. We were able to push the integration to the point

that there exists no difference between the production code

and the code required to perform a simulation. We argue that

such a deep level of integration will improve the engineering

practices when it comes to leveraging aggregate programming

for building actual systems, allowing for debugging and testing

on a centralized testing platform prior to deployment. We val-

idated the approach by translating complex examples found in

literature in scafi, using Alchemist as simulation platform.

Further development of this research includes a refine-

ment of the current scafi architecture and of its simulator

integration. While Alchemist is already publicly available,

scafi is set to be ready for the general public shortly, as

well as the Alchemist incarnation supporting the execution

of scafi programs in a controlled environment. We expect

scafi and the related tool chain to boost the adoption of

aggregate programming as a new paradigm for the engineering

of complex, pervasive systems, such as the typical Internet of

Things applications.

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, 2015.

[2] J. Beal and M. Viroli, “Space–time programming,” Philo-

sophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, vol. 373,
no. 2046, 2015. doi: 10.1098/rsta.2014.0220. [Online]. Available:
http://rsta.royalsocietypublishing.org/content/373/2046/20140220

[3] F. Damiani, M. Viroli, and J. Beal, “A type-sound calculus of
computational fields,” Science of Computer Programming, vol. 117, pp.
17 – 44, 2016. doi: http://dx.doi.org/10.1016/j.scico.2015.11.005.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167642315003573

[4] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in IEEE

Self-Adaptive and Self-Organizing Systems 2015. IEEE, Sept 2015. doi:
10.1109/SASO.2015.16 pp. 81–90.

[5] M. Viroli, D. Pianini, A. Ricci, P. Brunetti, and A. Croatti, “Multi-agent
systems meet aggregate programming: Towards a notion of aggregate
plan,” in PRIMA 2015: Principles and Practice of Multi-Agent Systems,
ser. Lecture Notes in Computer Science, Q. Chen, P. Torroni, S. Villata,
J. Hsu, and A. Omicini, Eds. Springer International Publishing, 2015,
vol. 9387, pp. 49–64. ISBN 978-3-319-25523-1. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-25524-8 4

[6] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with Alchemist,” Journal of Simulation,
2013. doi: 10.1057/jos.2012.27. [Online]. Available: http://www.
palgrave-journals.com/jos/journal/vaop/full/jos201227a.html

[7] R. Casadei and M. Viroli, “Towards aggregate programming in scala,” in
First Workshop on Programming Models and Languages for Distributed

Computing. ACM, 2016, p. 5.

[8] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Trans. on Soft-

ware Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009. doi:
http://doi.acm.org/10.1145/1538942.1538945

[9] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson, “Pervasive
ecosystems: a coordination model based on semantic chemistry,” in
27th Annual ACM Symposium on Applied Computing (SAC 2012),
S. Ossowski, P. Lecca, C.-C. Hung, and J. Hong, Eds. Riva del Garda,
TN, Italy: ACM, 26-30 March 2012. ISBN 978-1-4503-0857-1 pp. 295–
302.

[10] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
and J. L. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, vol. 12, no. 1, pp.
43–67, 2013. doi: 10.1007/s11047-012-9324-y

[11] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger, “An overview of
the scala programming language,” Tech. Rep., 2004.

[12] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[13] M. Viroli and F. Damiani, “A calculus of self-stabilising computational
fields,” in Coordination Languages and Models, ser. LNCS, eva Kühn
and R. Pugliese, Eds. Springer-Verlag, Jun. 2014, vol. 8459, pp. 163–
178, proceedings of the 16th Conference on Coordination Models and
Languages (Coordination 2014), Berlin (Germany), 3-5 June. Best Paper
of Discotec 2014 Federated conference.

[14] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate pro-
gramming,” in Proceedings of ACM SAC 2015. Salamanca, Spain:
ACM, 2015, pp. 1846–1853.

[15] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets
self-organisation: A higher-order calculus of computational fields,” ser.
Lecture Notes in Computer Science. Springer International Publishing,
2015, vol. 9039, pp. 113–128. ISBN 978-3-319-19194-2. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-19195-9 8

[16] J. Fruin, Pedestrian and Planning Design. Metropolitan Association
of Urban Designers and Environmental Planners, 1971.

[17] B. Anzengruber, D. Pianini, J. Nieminen, and A. Ferscha, “Predicting
social density in mass events to prevent crowd disasters,” in Social

Informatics, ser. Lecture Notes in Computer Science, A. Jatowt,
E.-P. Lim, Y. Ding, A. Miura, T. Tezuka, G. Dias, K. Tanaka,
A. Flanagin, and B. Dai, Eds. Springer International Publishing, 2013,
vol. 8238, pp. 206–215. ISBN 978-3-319-03259-7. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-03260-3 18

[18] D. Pianini, M. Viroli, F. Zambonelli, and A. Ferscha, “HPC from a self-
organisation perspective: The case of crowd steering at the urban scale,”
in High Performance Computing Simulation (HPCS), 2014 International

Conference on, July 2014. doi: 10.1109/HPCSim.2014.6903721 pp.
460–467.

[19] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos.” in Distributed Computing in

Sensor Systems (DCOSS), 2005, pp. 126–140.
[20] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and

P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE International Conference on Intelligent Robots and Systems

(IROS ’07), 2007, pp. 2794–2800.
[21] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[22] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting
aggregate queries over ad-hoc wireless sensor networks,” in Workshop

on Mobile Computing and Systems Applications, 2002.
[23] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A formal

approach to autonomic systems programming: The SCEL language,”
ACM Trans. Auton. Adapt. Syst., vol. 9, no. 2, pp. 7:1–7:29, Jul. 2014.
doi: 10.1145/2619998. [Online]. Available: http://doi.acm.org/10.1145/
2619998

[24] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Or-
ganizing the aggregate: Languages for spatial computing,” in For-

mal and Practical Aspects of Domain-Specific Languages: Recent

Developments, M. Mernik, Ed. IGI Global, 2013, ch. 16, pp.
436–501. ISBN 978-1-4666-2092-6 A longer version available at:
http://arxiv.org/abs/1202.5509.

[25] M. Viroli, A. Omicini, and A. Ricci, “Engineering MAS environment
with artifacts,” in 2nd International Workshop “Environments for Multi-

MIRKO VIROLI ET AL.: SIMULATING LARGE-SCALE AGGREGATE MASS WITH ALCHEMIST AND SCALA 1503

Agent Systems” (E4MAS 2005), D. Weyns, H. V. D. Parunak, and
F. Michel, Eds., AAMAS 2005, Utrecht, The Netherlands, 26 Jul. 2005.

[26] A. K. Kalia and M. P. Singh, “Muon: designing multiagent
communication protocols from interaction scenarios,” Autonomous

Agents and Multi-Agent Systems, vol. 29, no. 4, pp. 621–657,
2015. doi: 10.1007/s10458-014-9264-2. [Online]. Available: http:
//dx.doi.org/10.1007/s10458-014-9264-2

[27] A. Artikis, M. J. Sergot, and J. V. Pitt, “Specifying norm-
governed computational societies,” ACM Trans. Comput. Log., vol. 10,
no. 1, 2009. doi: 10.1145/1459010.1459011. [Online]. Available:
http://doi.acm.org/10.1145/1459010.1459011

[28] A. U. Mallya and M. P. Singh, “An algebra for commitment protocols,”
Autonomous Agents and Multi-Agent Systems, vol. 14, no. 2, pp.
143–163, 2007. doi: 10.1007/s10458-006-7232-1. [Online]. Available:
http://dx.doi.org/10.1007/s10458-006-7232-1

[29] H. V. D. Parunak, S. Brueckner, R. S. Matthews, and J. A. Sauter,
“Pheromone learning for self-organizing agents,” IEEE Transactions

on Systems, Man, and Cybernetics, Part A, vol. 35, no. 3, pp. 316–
326, 2005. doi: 10.1109/TSMCA.2005.846408. [Online]. Available:
http://dx.doi.org/10.1109/TSMCA.2005.846408

[30] S. Bandini, S. Manzoni, and G. Vizzari, “Agent based modeling and
simulation: An informatics perspective,” Journal of Artificial Societies

and Social Simulation, vol. 12, p. 4, 2009. [Online]. Available:
http://EconPapers.repec.org/RePEc:jas:jasssj:2009-69-1

[31] M. Schumacher, L. Grangier, and R. Jurca, “Governing environments
for agent-based traffic simulations,” in Proceedings of the 5th

international Central and Eastern European conference on Multi-

Agent Systems and Applications V, ser. CEEMAS ’07. Berlin,
Heidelberg: Springer-Verlag, 2007. doi: 10.1007/978-3-540-75254-
7 17. ISBN 978-3-540-75253-0 pp. 163–172. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75254-7 17

[32] S. Bandini, S. Manzoni, and G. Vizzari, “Crowd Behavior Modeling:
From Cellular Automata to Multi-Agent Systems,” in Multi-Agent

Systems: Simulation and Applications, ser. Computational Analysis,
Synthesis, and Design of Dynamic Systems, A. M. Uhrmacher and
D. Weyns, Eds. CRC Press, Jun. 2009, ch. 13, pp. 389–418. ISBN
978-1-4200-7023-1. [Online]. Available: http://crcpress.com/product/
isbn/9781420070231

[33] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “A declara-
tive model assembly infrastructure for verification and validation,” in
Advancing Social Simulation: The First World Congress, S. Takahashi,
D. Sallach, and J. Rouchier, Eds. Springer Japan, 2007, pp. 129–140.

[34] E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial life,
vol. 13, no. 3, pp. 303–311, 2007.

[35] C. Priami, “Stochastic pi-calculus,” The Computer Journal, vol. 38,
no. 7, pp. 578–589, 1995.

[36] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. doi:
10.1109/5.24143. [Online]. Available: http://dx.doi.org/10.1109/5.24143

[37] A. M. Uhrmacher and C. Priami, “Discrete event systems specification
in systems biology - a discussion of stochastic pi calculus and devs,” in
Proceedings of the 37th conference on Winter simulation, ser. WSC ’05.
Winter Simulation Conference, 2005. ISBN 0-7803-9519-0 pp. 317–326.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1162708.1162767

[38] R. Ewald, C. Maus, A. Rolfs, and A. M. Uhrmacher, “Discrete
event modeling and simulation in systems biology,” Journal of

Simulation, vol. 1, no. 2, pp. 81–96, 2007. [Online]. Available:
http://dx.doi.org/10.1057/palgrave.jos.4250018

[39] B. P. Zeigler, Theory of Modeling and Simulation. John Wiley, 1976.
[40] B. Zeigler, Multifaceted modelling and Discrete Event Simulation.

Academic Press, 1984.
[41] D. Harel, “Statecharts: A visual formalism for complex systems,”

Sci. Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987. doi:
10.1016/0167-6423(87)90035-9. [Online]. Available: http://dx.doi.org/
10.1016/0167-6423(87)90035-9

1504 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

