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Abstract—In this paper are presented classification methods

with use of two-dimensional three-state cellular automata. This

methods are probabilistic forms of cellular automata rule mod-

ified from wide known almost deterministic rule designed by

Fawcett. Fawcetts rule is modified into two proposed forms par-

tially and fully probabilistic. The effectiveness of classifications of

these three methods is analysed and compared. The classification

methods are used as the rules in the two-dimensional three-

state cellular automaton with the von Neumann and Moore

neighbourhood. Preliminary experiments show that probabilistic

modification of Fawcett’s method can give better results in

the process of reconstruction (classification) than the original

algorithm.

I. INTRODUCTION

In a classification problem, we wish to determine to which

class new observations belong, based on the training set

of data containing observations whose class is known. The

binary classification deals with only two classes, whereas

in a multiclass classification observations belong to one of

the several classes. The well-known classifiers are neural

networks, support vector machines, k-NN algorithm, decision

trees, and others. The idea of using cellular automata (CA)

in the classification problem was described by Maji et al. [4],

Povalej et al. [7] and recently by Fawcett [1]. Fawcett designed

the heuristic rule based on the von Neumann neighborhood

(so-called voting rule) moreover, tested its performance on

different data sets. Recently, GA was considered as a tool to

select CA rules with von Neumann neighbourhood for binary

classification problem by Piwonska et al. [6].

Despite the fact that CAs have the potential to efficiently

perform complex computations [9]; the main problem is a

difficulty of designing CAs which would behave in the desired

way. One must not only select a neighborhood type and size,

but most importantly the appropriate rule (or rules). In some

applications of CAs one can design an appropriate rule by hand

(e.g. the GKL rule designed in 1978 by Gacs, Kurdyumov and

Levin for density classification task [2]) or can use partial

differential equations describing a given phenomenon [5].

Since the number of possible rules is usually huge, this is

the extremely hard task, and it is not always possible to select

them by hand. Therefore, in the 90-ties of the last century

Mitchell et al. proposed to use GAs to find CAs rules able to

perform one-dimensional density classification task [3].

In this paper are used rules based on methods of clas-

sification like the Fawcett’s [1] method, and new proposed

modifications into a probabilistic form of such method. Above

rules are applied to the rectangular grid with both neighbour-

hood types i.e. von Neumann and Moore neighbourhood, and

the effectiveness of the modified rules is compared with the

effectiveness of the original Fawcett’s rule.

This paper is organized as follows. Section 2 describes two-

dimensional CAs and binary classification problem. In section

3 are proposed new CA-based classifier as a modification

of the Favcett’s rule. Experimental results are presented in

Section 4. Last section contains conclusions and future works.

II. TWO-DIMENSIONAL CELLULAR AUTOMATA AND

BINARY CLASSIFICATION PROBLEM

A two-dimensional CA considered in this paper is a rect-

angular grid of N × M cells, each of which can take on k

possible states. After determining initial states of all cells (i.e.

the initial configuration of a CA), each cell changes its state

according to a rule - transition function TF which depends on

states of cells in a neighborhood around it. In this paper is con-

sidered finite CA with the periodic boundary conditions. This

is usually done synchronously, although asynchronous mode

is used too. Two types of the neighborhood are commonly

used: the von Neumann neighborhood (the four cells orthog-

onally surrounding the central cell) and can be described as:
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The evolution of a CA is usually presented using so-called

’space-time diagrams’ displaying grid of cells at subsequent

time steps, with each state marked with different color.

The square state of the data space in classification problem

should be i.e. [0, 1]× [0, 1]. Suppose that N ×M data-points

p(i,j)=(xi, yj), where i=1, 2, ..., N and j=1, 2, ...,M are given

as a training set from two classes: class 1 and class 2. When

each of p(i,j) data-points is known as one of two classes then

we have the classification. On the other hand, when even one

of the data-points is not one of two known classes we have the

classification problem. Moreover, to answer the question, what

kind of class 1 or class 2 are unclassified data points it should

be applied the classification method. In CA the data space of

such problem should be mapped from [0, 1] × [0, 1] into the
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grid of N ×M cells (in this paper N ×N for the simplicity).

Each of cells can take one of 3 states, classified the state 1

(class 1) and state 2 (class 2) and also unclassified state (class

0). Classifier - the rule of CA will analyze the unclassified

cells and changes its states into one of two known.

III. PROPOSED CA-BASED CLASSIFIER

The classification problem described in [1] is the base

of this paper. The rule of CA known as n4_V 1_nonstable

and presented there was the starting point to create a better

classifier. The classification with use this rule is defined as:

• classify as class 0, if class 1 neighbors + class 2

neighbors = 0,

• classify as class 1, if class 1 neighbors > class 2

neighbors,

• classify as class 2, if class 1 neighbors < class 2

neighbors,

• classify as rand({class 1, class 2}), if class 1 neighbors

= class 2 neighbors.

The Fawcett’s rule is productive enough for classification

problems in little CA grids. This rule was presented in [1]

as better than other, but it was tested and compared for only

81× 81 wide CA grid. Therefore, in this paper are proposed

modifications of Fawcett’s rule into two patterns: partially and

fully probabilistic. A proposed modification should strengthen

an original and more accurate classify binary data, specially

for large CA grid. The partially probabilistic modification

(n4_V 1_nonstable_PP ) is proposed as follows:

• classify as class 0, if class 1 neighbors + class 2

neighbors = 0,

• classify as class 1, with probability p(1),
• classify as class 2, with probability p(2),

where probability are calculated form clas-

sified neighbours in the neighbourhood, i.e.:

p(i)= class i neighbors

class 1 neighbors+class 2 neighbors
, where i={1, 2}.

It means that unclassified cell will change in to one of

classified state with probability calculated from known states

in the neighbourhood and suitable state.

The full probabilistic modification

(n4_V 1_nonstable_FP ) is proposed as follows:

• classify as class 0, with probability p(0),
• classify as class 1, with probability p(1),
• classify as class 2, with probability p(2),

where probabilities are calculated form each class of neigh-

bours in the neighbourhood, i.e.: p(i)= class i neighbors∑
2

j=0
class j neighbors

,

where i={0, 1, 2}. It means that unclassified cell could change

in to one of classified state or stay unclassified with probability

calculated from states of cells in neighbourhood.

The n4_V 1_nonstable rule presented in [1] and newly

proposed modifications will be examine on the sinusoidal

testing sets (CA grids), shown in the Fig. 1.

In the Fig. 2(b, c and d) one can observe a classification

process of the linear goal Fig. 2(a). In the classification was

used n4_V 1_nonstable rule in CA size: 100×100. In the first

step (see, Fig. 2(b)), 1% cells of known state (classified as class

(a) (b)

Fig. 1. Two-dimensional classifications of sinusoidal goals (examples): 100×
100 (b) and 800 × 800 (c).

(a) (b)

(c) (d)

Fig. 2. An example of classification process with use of n4_V 1_nonstable
rule in 2D CA with size 100×100 for linear goal (a), initial configuration of
CA - 1% of classified cells (b), temporary CA state - classification in progress
(c), final CA state - after classification (d).

1 - cells in black state or class 2 - cells in the white state) was

randomly chosen from the linear goal. This initial configura-

tion of CA was subject to the classification and the unclassified

(cells in the gray state) with the use of n4_V 1_nonstable rule

(temporary state of CA under classification process, see Fig.

2(c)). After the classification, the obtained result shows Fig.

2(d). The effectiveness of classification in presented example

achieved level 93, 38% it means that 662 CA cells from 10000
CA cells have an incorrect classification.

Suppose, the GN×M is the binary matrix of the classifica-

tion goal. Also, the FN×M is the binary matrix of the final

configuration. The EN×M = |GN×M−FN×M | is the absolute

difference between two matrixes. Therefore, the Effectiveness

(in %) is calculated by the formula: Effectiveness =
N∗M−

∑
N

i=1

∑
M

j=1
e(i,j)

N∗M
∗ 100, where e(i,j) ∈ EN×M .
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IV. EXPERIMENTAL RESULTS

Proposed modifications of Fawcett’s CA rule was tested and

compared with original one. The results of analysis for the ef-

ficiency of classification are described above. During each test

were used N × N CA, where N ∈ {100, 200, ..., 700, 800},

according to each of CA rules (n4_V 1_nonstable, and newly

proposed: n4_V 1_nonstable_PP , n4_V 1_nonstable_FP )

with the von Neumann and Moore neighbourhood. In the

goal, a 99% random states of CA cells was changed into

the unclassified. So, only 1% CA cells stayed as classified.

Such form of the goal was the initial configuration of CA to

classification. After classification (reconstruction of goal) we

obtained the finite CA state, and it was compared with the goal

CA state; then the differences between both states (incorrect

classified CA cells) and next ere calculated Effectiveness.

A. An analysis of the incorrect classifications for CA rules.

Classification in CA with the use of the Fawcett’s rule, and

new proposed probabilistic modification with von Neumann

and Moore neighbourhood was realized in [8] for a linear

goal during 1000 tests with above-presented conditions and

assumptions. In [8] we can see that the effectiveness grows

with the CA size, but it only depends on the fast growing area

with the same class of data where the border with the different

classes is increasing very slowly. The results showed that in

general, the proposed modifications give better results in a

classification for a linear goal than the original rule. For von

Neumann neighbourhood, it could be observed for higher CA

sizes (from 300 to 800) with both modifications in particular

partially probabilistic one n4_V 1_nonstable_PP , where we

can see that the effectiveness of new proposed modifications is

better than for the original Fawcett’s rule. Some kind anomaly

one can see for CA size equal to 700×700 (see, Table 1 in [8]),

where can be observed the best result of classification for the

fully probabilistic classifier (n4_V 1_nonstable_FP ), better

than Fawcett’s rule and much better than partially probabilistic

one. For Moore neighbourhood both modification gives better

results for each CA sizes except the size equal to 700× 700
where Fawcett’s rule classified effective (see, Table 2 in [8]).

In this paper is presented analysis mentioned above rules

for sinusoidal goal (see, Fig. 1) with both von Neumann and

Moore neighbourhood.

In the Tab. I one can see the results of classification for

a sinusoidal goal in CA with the use of mentioned above

three CA rules with Moore neighbourhood for 1000 tests. We

can observe that the effectiveness of new proposed modifi-

cations is better than for the original Fawcett’s rule for the

sinusoidal goal. It could be observed for both modifications

(marked in bold), in particular for fully probabilistic one

(n4_V 1_nonstable_FP ), except the tests for CA size equal

to 400 × 400 and 600 × 600 (the underlined numbers mean

the best results in general, from all analysed rules). We can

also observe that effectiveness of classification with use of

CA with Moore neighbourhood for a sinusoidal goal in much

higher than for linear goal, it is easy to see in comparison

the incorrect classification from Tab. I and Tab. 2 from [8].

TABLE I
CLASSIFICATION RESULTS OF GOAL SINUSOIDAL SET FOR CA RULES:
n4_V 1_nonstable, n4_V 1_nonstable_PP , n4_V 1_nonstable_FP

WITH MOORE NEIGHBOURHOOD. THE WORST EFFECTIVENESS AND

(HIGHEST NUMBER OF INCORRECT CLASSIFIED CA CELLS) FROM 1000
TESTS.

CA size CA rule CA rule CA rule

N ×N Fawcett’s partially probab. fully probab.

100× 100 92,7% (730) 93,69% (631) 93,69% (631)

200× 200 96,81% (1275) 97,1% (1160) 97,35% (1062)

300× 300 98,21% (1613) 98,34% (1493) 98,4% (1436)

400× 400 98,78% (1959) 98,82% (1882) 99,12% (1977)

500× 500 99,04% (2388) 98,99% (2513) 99,12% (2203)

600× 600 99,28% (2606) 99,22% (2817) 99,26% (2661)

700× 700 99,37% (3076) 99,37% (3100) 99,4% (2937)

800× 800 99,45% (3528) 99,47% (3413) 99,46% (3465)

TABLE II
CLASSIFICATION RESULTS OF GOAL SINUSOIDAL SET FOR CA RULES:
n4_V 1_nonstable (FAWCETT’S RULE), n4_V 1_nonstable_PP ,

n4_V 1_nonstable_FP WITH VON NEUMANN NEIGHBOURHOOD. THE

WORST EFFECTIVENESS AND (HIGHEST NUMBER OF INCORRECT

CLASSIFIED CA CELLS) FROM 1000 TESTS.

CA size CA rule CA rule CA rule

N ×N Fawcett’s partially probab. fully probab.

100 × 100 92,75% (725) 94,31% (569) 93,53% (647)

200 × 200 97,08% (1169) 97,43% (1028) 97,35% (1061)

300 × 300 98,44% (1403) 98,35% (1482) 98,44% (1402)

400 × 400 98,9% (1757) 98,92% (1732) 98,78% (1952)

500 × 500 99,13% (2184) 99,16% (2102) 99,08% (2310)

600 × 600 99,3% (2507) 99,28% (2588) 99,29% (2561)

700 × 700 99,41% (2875) 99,39% (2974) 99,41% (2913)

800 × 800 99,49% (3259) 99,49% (3246) 99,48% (3342)

For the rule n4_V 1_nonstable_FP the difference between

number incorrect classification in linear and sinusoidal goal

is equal to {210, 432, 436, 526, 726, 1008, 1171, 923} for CA

sizes {100, ..., 800}, and also for n4_V 1_nonstable_PP dif-

ferences are equal to {185, 167, 402, 564, 471, 617, 921, 1086}
respectively.

Similar results but not so high, are obtained for classifi-

cation the sinusoidal goal with this three methods for CA

with von Neumann neighbourhood. In the Tab. II one can

see the results of classification for a sinusoidal goal in CA

with the use of mentioned above three CA rules with von

Neumann neighbourhood for 1000 tests. We can observe

that the effectiveness of partially probabilistic modification

(n4_V 1_nonstable_PP ) is better than other rules for the

sinusoidal goal (marked in bold and underlined). It can be

observed for tests realised for most of analysed CA sizes

(compare, Tab. 1 from [8] and Tab. II).

The observed highest effectiveness for modification of

Fawcett’s rule maybe is not so spectacular, but we should

interpret it from the another point of view; it means the

number of incorrectly classified CA cells should be analyzed.

One can see that the modifications have in general the lowest

number of incorrectly classified CA cells than the original

rule (see, numbers in bold in Tab. II, Tab. I also Tab. 1 and

Tab. 2 from [8]). For example, for the linear goal in the

Tab. I for CA size 200 × 200, the fully probabilistic modi-
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(a)

(b)

Fig. 3. Ranges of scattering for incorrect classifications for 1000 tests with a
sinusoidal goal: (a) Moore neighbourhood, (b) von Neumann neighbourhood.

fication (n4_V 1_nonstable_FP ) has 213 CA cells less than

the original rule, and also partially probabilistic modification

(n4_V 1_nonstable_FP ) has 115 CA cells less.

So, the analysis of the worst effectiveness and highest

number of incorrect classification for data presented above

in Tables leads to the conclusion; if the worst results for

classification with use of proposed modifications are better

than for the original rule, then the new classifiers are more

efficient because their the worst classifications are much better.

B. An analysis of the scattering ranges for incorrect classifi-

cations for CA rules.

The scattering range is the difference between the highest

number of incorrect classifications and the lowest number of

incorrect classification. The scattering ranges were calculated

for each analysed CA rules for linear and sinusoidal goals with

the use of both neighbourhoods von Neumann and Moore. The

highest and lowest number of incorrect classifications were

selected from 1000 tests for random initial configuration of

CA.

We can observe in the Fig. 3 the scattering ranges for

sinusoidal goal with Moore neighbourhood Fig. 3(a) and von-

Neumann neighbourhood Fig. 3(b). One can see in Fig. 3(a)

the scattering ranges for newly proposed modified CA rules are

shorter in general than for original rule, in particular for fully

probabilistic modification (n4_V 1_nonstable_FP ) with the

use of Moore neighbourhood. Moreover, remembering such

rule has, in general, the lowest incorrect classifications we

can conclude that fully probabilistic classifier shows up the

more accurate and consistent with Moore neighbourhood for

the sinusoidal goal.

Similarly, in Fig. 3(b) can be observed in general the short-

est scattering ranges for proposed modification in particular for

partially probabilistic modification (n4_V 1_nonstable_FP )

of CA rule with the use of von Neumann neighbourhood.

For the linear goal, also we can observe the shortest scat-

tering ranges in most cases of CA size, for the proposed new

classifiers (see, [8] in particular the Moore neighbourhood).

V. CONCLUSIONS AND FUTURE WORKS

In the paper was presented problem of classification with

use of three-state two-dimensional cellular automaton. Among

classifiers were analysed the wide known Fawcett’s rule and

two proposed probabilistic modifications of such rule. The

conducted experiments show the better effectiveness for classi-

fication applying a newly proposed classifiers (modifications)

to reconstruction goals from state consisted of only 1% clas-

sified states. Moreover, the proposed modifications result in a

much lower number of incorrectly classified CA cells.

Also, the analysis the data from Tab. I, Tab. II; Table 1

and Table 2 from [8] leads to the conclusion that seems to

be a weak relationship between kind of modification and type

of CA neighbourhood. For the von Neumann neighbourhood

better classifications have obtained for partially probabilistic

modification, and for Moore neighbourhood fully probabilistic

modification are better.

Moreover, from Fig. 3 and Fig. 2 from [8] ensue in general

the shortest scattering range for proposed modifications of

Fawcett’s rule than the original one. From that and above

conclusions, we can understand that proposed probabilistic

classifiers characterized by more accurate and consistent clas-

sification.

In the future works the newly proposed rules will also be

examined with use of new testing goals like e.g.: parabolic,

closed area (circular, square, concave boundary, ...), disjunctive

and other. Also, will be analysed the effectiveness of classifi-

cation depending on the number of unclassified states of CA

cells initial configuration.
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