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Abstract—This document describes an approach to the prob-
lem of predicting dangerous seismic events in active coal mines
up to 8 hours in advance. It was developed as a part of the
AAIA‘16 Data Mining Challenge: Predicting Dangerous Seismic
Events in Active Coal Mines. The solutions presented consist of
ensembles of various predictive models trained on different sets
of features. The best one achieved a winning score of 0.939 AUC.

I. INTRODUCTION

I
N 2015, the mining industry in Poland reported 2158

dangerous incidents with 19 casualties and 12 severe in-

juries [1]. Underground mining work poses a number of threats

including fires, methane outbreaks or seismic tremors and

bumps. Monitoring and decision support systems might play

an essential role in limiting the number of incidents and their

prevention. Such systems, often based on machine learning or

data mining techniques, can be effectively applied to lessen

the danger to employees and prevent potential losses arising

from lost and damaged equipment, see, e.g., [2], [3], [4].

In this paper, we present a model for predicting dangerous

seismic events in coal mines. Using different machine learning

models, we address the classification problem of whether

the total seismic energy in the upcoming few hours is going

to reach a warning level. The model was developed for

the AAIA‘16 Data Mining Challenge: Predicting Dangerous

Seismic Events in Active Coal Mines and proved to be the most

successful approach among the 203 teams participating in

the challenge [3].

The paper is structured as follows: the first section outlines

the problem and describes the main challenges. Next, we

describe our approach, focusing on feature engineering, model

optimization and evaluation. Finally, in the last section we

conclude the work.

II. THE CHALLENGE

In this section we introduce the problem and describe

the provided data. We also make some preliminary remarks

about the data and its nature.

A. Problem statement

The given problem is a classification task. The goal is to

develop a prediction model that, based on the recordings from

a 24-hour long period, predicts whether an energy warning

level is going to be reached in the upcoming 8 hours. The

warning is reached when the total energy of seismic bumps

exceeds 50 000 J = 50 kJ. The accuracy of a model is

determined with respect to the Area Under ROC curve (AUC)

metric. This accuracy measure is defined as follows. Let

(xi, yi) ∈ X denote an instance from the dataset X, i.e.,

xi stands for the feature vector associated with a single

measurement and yi ∈ {0, 1} stands for its label. Let f be

a model that maps each instance to probability that it belongs

to class ‘1’ (or, more generally, a real-valued risk score). Then

AUC is derived as

AUC(f,X) =

∑
i:yi=0

∑
j:yj=1

✶(f(xi) < f(xj))

|{yi : yi = 0}| · |{yj : yj = 1}|
(1)

where ✶(·) denotes an indicator function that returns 1 if

a given condition is satisfied or 0 otherwise, and |S| denotes

the cardinality of set S. This accuracy measure returns values

in the range range [0, 1], where 1 is achieved by a perfect

predictor. A random predictor yields values around 0.5.

B. Data

Two sets of observations were provided: training dataset

with accompanying labels and the test set without them.

The former was provided so that the problem could be

approached from a machine learning angle, the latter serves

for evaluation purposes. The competitors were asked to submit

the likelihood of the label ‘warning’ for each record in the test

set.

In total, the training set consists of 133 151 observations.

Each observation (instance) is described by a set of 541

numbers. Below, we briefly introduce the data provided. For

a more thorough description of the dataset please refer to

the competition website [5].

The instances are described by a set of 13 features of

different type and 22 time series over last 24 hours prior to the

forecasting period. The time series’ names are followed by 1,

2, . . . , 24, indicating consecutive hours of measurements (with

the most recent hour prior to forecasting period being 24).

Possible suffixes _eξ, ξ ∈ {2,3,4,5,6plus} refer to orders

of magnitude of a given time series in a certain range, e.g.

sum_e3.5 stands for sum of energies within range (102, 103]
in the 5th hour of the time series. The series are listed below:

• count_e2, . . . , count_e6plus - number of regis-

tered seismic bumps;

• sum_e2, . . . , sum_e6plus - sum of energy of regis-

tered seismic bumps;

• total_number_of_bumps;

• number_of_rock_bursts;

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 213–220

DOI: 10.15439/2016F420

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 213



• number_of_destressing_blasts;

• highest_bump_energy.

Additionally, for the most active geophones, the following

series are provided:

• max_gactivity;

• max_genergy;

• avg_gactivity;

• avg_genergy;

• max_difference_in_gactivity;

• max_difference_in_genergy;

• avg_difference_in_gactivity;

• avg_difference_in_genergy.

There are also 4 assessments provided by experts. They are

provided as categorical variables with four levels ranging from

‘a’ (the lowest risk) to ‘d’ (the highest risk):

• latest_seismic_assessment;

• latest_seismoacoustic_assessment;

• latest_comprehensive_assessment;

• latest_hazards_assessment.

Finally, several features which we will refer to as general are

provided:

• total_bumps_energy;

• total_tremors_energy;

• total_destressing_blasts_energy;

• total_seismic_energy;

• latest_progress_estimation_l;

• latest_progress_estimation_r;

• latest_maximum_yield;

• latest_maximum_meter.

Metadata: For each observation we are given its location,

i.e., a longwall in a particular coal mine that the measurement

comes from. Each location is accompanied with additional

information (metadata included in a separate file):

• main_working_id - ID of the main working site (at

a longwall);

• main_working_name - name of the main working

site;

• region_name - name of region where the main work-

ing site is located;

• bed_name - name of coal bed;

• main_working_type - type of the main working site;

• main_working_height - height of the main working

site;

• geological_assessment - geological assessment

of the main working site made by experts before the be-

ginning of exploration (ordered categorical variable rang-

ing from ‘a’ (lower risk) to ‘c’ (higher risk)).

Most of metadata were unique to the working

sites, therefore were discarded early due to the

reasons discussed later. The only information of

potential use were main_working_height and

geological_assessment, however they still had

to be treated with caution:

• geological_assessment: A closer insight revealed

that there is none mine assessed as ‘d’ and only one

marked as ‘c’. It was replaced by ‘b’. Moreover, the pro-

portion of ‘a’ assessments for longwalls in the training

and test dataset varied significantly, 25% to 48%, respec-

tively.

• main_working_height: many working sites had

unique working heights - this posed a danger that the fea-

ture would be used by a model as a proxy for particular

location rather than a potentially valuable information

about the height. One solution, discussed later, could

be to add extra noise, to diminish the relations between

the mines and their heights.

The test set consists of 3 860 unlabeled observations. Ap-

proximately 25% of them were used for evaluation on the pre-

liminary leaderboard, which was updated throughout the con-

test when participants submitted their solutions. The remaining

observations were used for selection of the best solutions at

the end of the competition.

We should also note that the observations in the test set

were randomly selected events rather than time series as

provided within the training set. More precisely, given a series

consecutive observations, samples were uniformly drawn from

them to form a test set. If two samples collected laid within

the same window of 32 hours (for 24-hour long time series

describing seismic activity plus 8 hour window for prediction),

one of them was dropped so as to assure that the samples

were approximately independent. This procedure removes a

significant amount of observations hence the size of the

competition test set was relatively modest in comparison to

the amount of training data available. This resulted in a very

unreliable leaderboard evaluation during the competition that

was based on ca. 1 000 observations. Therefore, we put great

emphasis and efforts to develop reliable evaluation methods

given the available training data as discussed in the next

section.

C. Initial remarks

When we approached the problem we quickly realized that

the main challenge was to develop a prediction model that

generalizes well to new locations. Table I presents the warn-

ing frequencies per location in the dataset. We observe that

first of all, different locations vary considerably in terms of

the frequency of warnings. Secondly, the sets of locations

differ between the training and test dataset. Additionally, the

test set in the competition originated from future recordings

with respect to the training data available. This is the root of

the problem. Hence a proposed model should be both location

and time independent in the sense that it yields unbiased

predictions for instances with no regard to their origin and time

they are collected. We also see that the number of instances

originating from different locations varies considerably. These

preliminary observations should be carefully considered during

model building and evaluation steps. We elaborate on this in

the next section.
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III. THE SOLUTION

In this section we describe in detail our solution to the given

problem. We discuss different sets of features that were

proposed, various evaluation methods, models and their set

up.

A. Feature engineering

In our experiments we created several feature sets for model

training. For the sake of simplicity and completeness, we

describe them under consecutive headers and denote as FSn

which stands for the n-th feature set we proposed. These

feature sets were developed independently by members of our

team. Inevitably, there are significant overlaps between them.

FS1: The processing of the data focused mainly on aggrega-

tion, aiming to reduce the number of the hourly measurements

as the majority of them were just zeros (for the training set,

about 66% of all numbers were 0). The feature extraction step

ended up with 133 features, over 4 times less than the original

set. From the original features we kept:

• all general features;

• all seismic assessments converted to consecutive integers

and their average;

• number of bumps (count_e*) and their energies

(sum_e*) summed over all 24 hours, together with mean

energies resulting from division (if count_e* was 0,

then we were substituting the result by 0);

• number of bursts and the highest bump energies were just

summed.

We also aggregated the remaining time series related to

most active geophones (8 time series), however this time we

introduced some aggregations over subsets of hourly measures

based on their relative importance. The process is described

below.

In order to assess the impact of features we used a func-

tionality provided by the implementation of Gradient Boosting

Trees available in the XGBoost [6] package. The library

allows building a tree classifier and assessing the importance of

particular features by providing the number of times the fea-

ture was used in a split. The more often a feature is used,

the more separation gain it offers and therefore the more

important it is. We used an XGBoost classifier with 150 trees

(other parameters were default). Fig. 1 presents an example

of such feature importance analysis for avg_genergy. It

seems that features are gaining importance towards the end of

the time-series - it agrees with the intuition that the measure-

ments closer to the forecasting period are more informative.

Therefore in this case, apart from the entire time-series statis-

tics, we are also interested in statistics based on the last five

hours (they stand out from the preceding hours). Also, we

keep the measurements from the very last hour as a separate

feature. Having applied analogous analysis to the above feature

groups, we selectively compute statistics such as:

• average and average over absolute values;

• standard deviation;

• max and max over absolute values;
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Fig. 1. Importance of hourly measurements of avg_genergy.
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Fig. 2. Distribution of main_working_height, before and after adding
noise.

• average over last γ hours (were γ varies from 1 to 6);

• standard deviation over last γ hours;

• slope of a linear regression over last 5 hours with respect

to time.

As mentioned above, competitors were also provided with

the metadata describing specific mine sites. Most of them

were discarded. The only metadata used here were the main

working height, but only after adding Gaussian noise (σ = 0.2)

resulting in more even distribution, see Fig. 2. This step was

performed to prevent a model from recognizing a particular

location by its height.

In addition to the above features, we produced a vast set

of more than 6 000 interactions between them, i.e., pairwise

products of features. This is obviously an exhaustive number

and we were not planning to use all of them. However, some

interactions proved to be valuable. We applied an iterative

process of selecting the most promising subsets of features and

their interactions. We will come back to them when describing

the final model (Section III-C Model1).

FS2: In constructing this set, at first we decided

to drop time series describing maximum statistics

(max*) since they were highly correlated with

corresponding average records. For the series

count_e*, sum_e*, number_of_rock_bursts,

number_of_destressing_blasts,

avg_gactivity, avg_genergy we extracted the

following features:

• minimum,

• maximum,

• standard deviation,

• indicator variable, if there is a non-zero value in the se-

ries,

• hours elapsed from the last non-zero observation.

Moreover, these statistics were derived over the window

of the last 2, 4, 8 and 24 hours prior to the forecasting

period in order to describe the most recent data in greater
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detail. These features were appended to data with the orig-

inal time series that they were computed for. Addition-

ally, for series avg_difference_in_gactivity and

avg_difference_in_genergy maximal absolute value

was derived over the last 2 and 24 hours. Finally, the cate-

gorical variables were converted to binary features using one-

hot encoding, i.e., for each possible value of a categorical

a separate column was created which indicates that a given

observation has this particular category. These operations

produced a feature set with a total number of 700 features.

FS3: In this set of features, we first derived several new series

based on the original ones

1) log_max_avg_diff_genergy which was derived

as difference in max_genergy and avg_genergy,

with application of logarithm hereafter. Analogous

operation was performed for other series avg and

max_difference_in_genergy and a correspond-

ing series for gactivity

2) log_ave_energy series was produced by computing

average energy based on sum and count series.

In addition to features enumerated for FS2, we derived the

following statistics:

• 0.25, 0.5 and 0.75-quantiles,

• number of times a series increased in comparison to

the previous hour’s recording,

• number of positive values in a series,

• indicator variable, if there is a non-zero value in the se-

ries.

The statistics were computed on 4, 8 and 24 hours

window. Furthermore, we computed the coefficient,

intercept and R2 statistic for a fit of linear model

of series avg_difference_in_gactivity,

avg_gactivity, log_ave_energy to an independent

hourly temporal variable (1, 2, . . . , 24). Finally, we computed

correlations between avg_difference_in_gactivity

and avg_difference_in_genergy as well as

avg_gactivity with avg_genergy. After extracting

features, constant features were dropped from the feature set.

Also, if there were features that were correlated over 0.99

(according to Pearson correlation coefficient), one of them

was removed. For categorical variables, they were one-hot

encoded for logistic regression model or converted to integers

(with higher risk categories being assigned a higher integer)

for tree-based models.
These steps produced a training set of 426 features (for

the integer encoding of categorical features).

FS4: The feature set that was created with the goal

of being simple and as such leaving little room for

overfitting. Out of the basic (not time-based) features,

main_working_id was dropped. Out of the metadata,

only geological_assessment was used. The time-based

features were ran through maximum and standard deviation

functions on 8-hour time periods with 4 hour increments, only

the features concerning quantities and maximums were used

(features listing averages and sums were left out).

B. Evaluation procedures

Evaluation methodology is a crucial part of creating a suc-

cessful application of a model. Below we list different vali-

dation techniques that we employed to assess the accuracy of

a model. Here, the issue of overfitting a model to particular

locations and time-frames of samples is considered in detail.

k-fold cross validation (k-CV): This is one of the basic

validation procedures. It is performed by assigning each ex-

ample in the training set randomly to one of k folds (in our

application we used k = 10 or 20). Note that due to temporal

alignment of instances in the training data, this evaluation

procedure tends to produce overly optimistic evaluation scores

(we observed that during the contest by, e.g., large discrepancy

in local evaluation and leaderboard scores). This is because

consecutive instances are likely to share the same label. If

some of them pertain to a training fold and the others to test

fold, then a classifier has a relatively easy task to assign this

instance to the proper label.

Leave one location out (LOLO): This evaluation method was

chosen to estimate the model’s performance on mining sites

not included in the training data (see Table I). It was supposed

to promote models that overfit less and filter out those whose

good performance was actually based on data leaks. We have

decided to not use the three largest locations (with IDs 264,

373 and 437) for testing. These three locations constitute to

a large portion of the total training data (48%) and were not

appearing in the test set. Locations that had no ‘warning’ labels

were also not used as validation data, as AUC could not be

computed for them. This approach resulted in a 8-fold cross-

validation that gave much lower scores than the other ones

(not even the best models could exceed 0.9 AUC), and the

scores varied between folds (from as low as 0.6 to as high

as 0.999) but it should not be percieved as a flaw — it was

intended behavior.

Train and test split #1 (TrTs1): This evaluation methodology

was devised to reflect the way the leaderboard was constructed.

It is based on multiple train and test splits of the data. It

proceeds in two steps:

1) 5 series are chosen at random and included in the vali-

dation set,

2) among series that have not been selected in 1) we include

the first 70% observations in the training sample and the

other 30% in the validation set.

Moreover, in each of those 70%-30% splits, 32 observations

between the split point were removed to assert approximate

independence between the training and validation set (by

introducing a gap of 32 hours between them). Again, data

from locations with IDs 264, 373, 437 where included only in

the training set.

In order to arrive at a reliable error estimate, this evaluation

was repeated 25 times and consecutive measurements were
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averaged. With that many iterations we arrived at stable results

for mean AUC value.

Train and test split #2 (TrTs2): The evaluation was based on

multiple train and test splits (20 in the final model) with some

restrictions. By comparing the total_seismic_energy

(TSE) of mines (which turned out to be linearly correlated

with the frequency of appearances of warnings) we tried to

make the split, so the TSE in the inferred test sets resembled

the level of energies in the private test set.

TABLE I
NUMBER OF INSTANCES ORIGINATING FROM DIFFERENT LOCATIONS IN

THE TRAINING AND TEST SET ALONG WITH AVERAGED TOTAL SEISMIC

ENERGIES (TSE) AND FREQUENCY OF WARNINGS (NOT AVAILABLE FOR

TEST SET CASES).

Mine ID
Train set Test set

Instances
Mean

TSE [J]
Warnings
Frequency

Instances
Mean

TSE [J]
373 31236 81002 1.1% - -
264 20533 7563 0.4% - -
725 14777 190232 9.4% 330 106741
777 13437 0 0.0% 330 29061
437 11682 4727 0.4% - -
541 6429 9397 0.9% 5 324
146 5591 678 0.1% 98 1
575 4891 9775 0.5% 253 7503
765 4578 136 0.0% 329 51265
149 4248 48357 7.3% 98 72749
155 3839 322021 17.2% 98 527229
583 3552 2595 0.2% 215 73302
479 2488 5548 0.0% 35 102
793 2346 0 0.0% 330 11547
607 2328 6027 0.0% 209 9470
599 1196 29932 1.9% 363 39962
171 - - - 49 33
470 - - - 258 10701
490 - - - 160 13698
508 - - - 58 32183
641 - - - 97 10672
689 - - - 83 63889
703 - - - 145 44031
799 - - - 317 8

Table I presents averaged TSE for each mine grouped over

train and test datasets, together with the frequencies of warn-

ings in the training dataset. It is worth to point out significant

discrepancies between the activity levels of mines in both sets.

For mine 765, the activity in the training set is mere 136 J,

with no warnings. In the test set, the average activity is above

50 kJ, so there must have been several warnings emitted.

A closer look reveals that there are some abnormalities in

the training set. Fig. 3 presents the TSE of mines 155 and

765. While the activity of the former looks realistic, 765 is

mute for majority of the time, only to exhibit a few spikes

towards the end of the time series. On the other hand, its

activity in the test set greatly increased. Some mines do not

exhibit any activity in the training set, i.e. TSE equals zero

(mines 777, 793). This is one of the reasons we have to avoid

producing models that would be able to recognize the mines,

the classifiers should generalize correctly from the activity

records, regardless any behavior specific to certain mines.

Also, it poses a problem - whether to consider the suspicious
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Fig. 3. Total seismic energy over time.

mines during the training or not. It is rather unusual for a mine

to have a zero seismic activity and supposedly the data in these

periods might be corrupted.

The final train and test splits were based on the above TSE

analysis and were produced in the following way:

1) mines 777, 793 were excluded due to their suspicious

lack of any activity in the training set (although they

represented a significant amount of data);

2) in every split, five randomly selected mines were left

only for testing (to evaluate the generalization properties

of classifiers);

3) from the remaining sites we were taking 20% of samples

for testing. For mines 146 and 599 samples were drawn

from the beginning (due to corresponding energy levels

in the test set), for the remaining - from the end;

4) in some cases (mines 373, 437) only samples where TSE

were nonzero were taken into account.

The process was repeated several times to obtain multiple

train/test splits. The final evaluation was based on the average

score over 20 splits.

C. Model training and optimization

There are several models that we employed in creating

the final solution to the problem. We used the implemen-

tation of models available in Python’s scikit-learn package

for machine learning (ver. 0.17.1) [7], [8] and XGBoost

package for tree boosting models (ver. 0.4) [6]. Throughout

the paper, for brevity, we use the following abbreviations

for the model names: Linear Discriminant Analysis - LDA,

Logistic Regression - LR, Extra Trees Classifier - ETC (all

from scikit-learn library) and Extreme Gradient Boosting

Classifier - XGB (from XGBoost library).

Model1: The fist model was built using FS1 and TrTs2
evaluation method. Several models were considered, apart

from XGB and ETC, also logistic regressions and neural

networks, finally only the first two were used in the final blend.

They were performing particularly well in spite of rather large

number of features.

First, we ran learning on all the features and interactions

we produced. Based on the importance scores provided by

XGB (described in Section III-A FS1) we kept the first 982
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interactions and all individual features. Then, a grid search

returned sets of parameters scoring the highest:

The optimal parameters for XGB model were (otherwise

default):

• n_estimators = 100

• max_depth = 2

• learning_rate = 0.08

The optimal parameters for ETC were (otherwise default):

• n_estimators = 1000

• max_depth = 7

• criterion = entropy

It is worth to note, that trees, by their design, are relatively

powerful in discovering interactions between features. How-

ever, in their case the interactions are not discovered concur-

rently, but rather in a multilevel manner, between consecutive

splits. By explicitly using interactions as features, they can be

made use of directly.

Having obtained well performing hyperparameters, we ran

a randomized search for best features’ subsets. In each iter-

ation we were randomly selecting from 20 to 40 individual

features (out of 133) and additionally up to 10 interactions

(out of 982). We ran several thousands evaluations on XGB

and several hundreds on ETC, tracking their validation scores.

The idea was to produce many models built only on subsets

of features and to take advantage of assembling them which

reduces variance of predictions and minimize the risk of over-

fitting to anomalies in particular features. This is a powerful

method for increasing the performance of the model [9].

The final blend was composed of:

• single ETC of 10 000 trees using all 133 features and 20

best interactions;

• single XGB using the same features;

• a blend of 20 ETCs built on 20 best subsets of features;

• a blend of 20 XGBs built on 20 best subsets of features;

The final submission scored 0.9199 on the public leader-

board. The score in the final evaluation reached 0.9393 and

turned out to be the best in the competition.

Model2: The second model involved the following classifiers:

two linear models (LDA and LR) as well as the tree-based

ETC model.

The first part of the solution was the LDA model trained

on FS2 using k-CV evaluation procedure. The regularization

shrinkage parameter selection was done in an automated way

(i.e., the parameter shrinkage set to “auto”) in scikit-

learn’s LDA implementation. The other models were LR

and ETC trained on FS3 using TrTs1 evaluation method.

The parameter values were set using grid search. The optimal

values for LR model were:

• penalty = l1

• C = 0.003

The optimal parameters for ETC were:

• n_estimators = 1000 (number of trees)

• max_depth = 3

• max_features = 200

• min_samples_split = 3

• class_weight = 10 (for label ‘1’).

The three models were blended by averaging their predictions

with equal weights to produce a solution. Prior to averaging,

the model predictions were standardised so that their stan-

dard deviations would equal 1. This step aims to convert

the probabilities yielded by individual models to the same

scale. Note that the mean values of predictions are irrelevant

since AUC is invariant to monotonic transformations of output,

see Equation 1. On the competition test set, the model yielded

0.9385 and 0.9340 of preliminary and final evaluation score,

respectively.

Model3: This model used only FS4 and was meant to be more

universal than the other models and thus was tuned on LOLO

validation. The algorithms used were ETC, XGB and logistic

regression. For each algorithm, many sets of predictions were

generated (using the top results from a grid search). This

model achieved 0.928 and 0.933 on preliminary and final

evaluations, respectively.
Below we list the best parameters found for each algorithm:

ETC

• min_samples_leaf = 5

• n_estimators = 40 000

XGB

• subsample = 1.0

• num_round = 200

• max_depth = 10

• objective = binary:logistic

• base_score = 0.05

• eta = 0.04

• colsample_bytree = 0.8

LTR

• solver = sag (Stochastic Average Gradient, just for

speed)

• C = 1.0

D. Model ensemble

We have decided to use sorted order position averaging

(as the AUC assessment method considers only the rank of

predicted likelihoods and not the values) of the three presented

models’ predictions with the final weights being 1, 3 and 2 for

models 1, 2 and 3 respectively. The averaging was employed

in order to leverage various approaches and come up with

yet a better predictor for the given task. The weights for the

ensemble were chosen basing on individual model’s scores on

the preliminary leaderboard. The ensemble produced a model

scoring 0.933 and 0.938 on preliminary and final leaderboard,

respectively. All in all, it turned out that model 1 outperformed

the full ensemble by a small margin (0.939 to 0.938). However,

it might be caused by the relatively small test set size.

E. Things we tried that did not work

Throughout the process of creating the most successful

model we tested a couple of ideas that turned out not to
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Fig. 4. Histogram of the total energy within 8 next hours (after with
application of log(x + 1) transformation). The dashed line indicates the
warning level of log(5 · 104 + 1) J.
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Fig. 5. Histogram of likelihoods returned by the winning model.

improve our results. First of all, we framed the problem

given in the competition as a regression task. Because the

observations in the training data were given as time series, it

was possible to retrieve the energy level for the next hours,

see Fig. 4. This allowed us to forecast energy levels within

the target window of 8 hours. Note that predictions from

a regression model may be directly evaluated using AUC

accuracy measure as it can be considered as a risk scoring

model for high values of energy. For the original classification

problem, we tried to modify the energy levels and train

the models on an enriched set of labels, e.g., we assumed

30 kJ (and a couple of other values) as the warning level and

estimate the model.

We also experimented with undersampling of training in-

stances pertaining to class 0 so that the proportion of ‘1’ in

the training data increases. We also tried to reduce samples

from locations 264, 373 and 437 in the training set by

undersampling or assigning them a lower sample weight (in,

e.g., LR model).

However, in this particular application, our efforts were

not successful as the performance of the models (in terms

of evaluation scores) was not improving.

F. Model performance on the final test set

After the competition we were provided with the true labels

used during the final evaluation. We were able to compute

different metrics than AUC. The winning model’s predictions

had a strongly skewed distribution (Fig. 5), corresponding to

total energies seen in Fig. 4. The distribution has two modes,

however of a much lower mode related to predicted warnings -

this is due to imbalance of classes. Depending on the threshold

beyond which we consider predictions as warnings we can

derive the confusion matrix:
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Fig. 6. Precision-recall curve.

True warning

1 0

Predicted warning
1 TP = 126 FP = 284
0 FN = 11 TN = 2390

Based on the matrix we can compute several useful accuracy

measures of the model:

precision = TP / (TP + FP) (2)

sensitivity (recall) = TP / (TP + FN) (3)

specificity = TN / (TN + FP) (4)

F1 = 2 ·
precision · recall

precision + recall
(5)

Class-gain = specificity + recall - 1 (6)

The threshold maximizing the class-gain score is 0.018 (see

Fig. 5) and yields the following accuracy on the final test set:

precision recall specificity F1 class-gain

0.31 0.92 0.89 0.46 0.81

The entire precision-recall curve can be seen in Fig. 6.

In order to assess our results we looked for research

addressing similar problems as the one considered here. In [4]

we found an approach to solve the same problem, however

the results are not directly comparable since they are based

on different datasets. Our results prove to outperform results

reported there for all presented classifiers (the highest class-

gain reported is 0.75). Also, in the cited paper there was no

inter-coal-mine validation, while the models described in our

work were cross-validated on separate coal mines. Therefore,

the models proposed are designed to generalize well and

should be applicable also to working sites with no historical

data available.

IV. SUMMARY

Given that the dataset originates from working mine sites,

with the entire measurement infrastructure already installed,
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we hope that the approach presented in this paper could be

implemented and serve as a valuable tool for alerting about

dangerous seismic events early. This hopefully should result in

preventing possible accidents which pose a threat to employees

and generate losses from damaged coal mine infrastructure and

machinery.

Even though the models presented here have outperformed

the other models in the competition, we recommend they be

ensembled with other high-scoring models, because properly

combined efforts of multiple participants are expected to yield

better results than individual solutions.

Lastly, we would like to thank the organizers for the op-

portunity to solve a real-life problem and the contestants for

creating such a competitive environment.
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