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Abstract—In this article we evaluate some strategies of paral-
lelizing nested loops on Intel Xeon Phi on the example of the WZ
factorization for dense matrices. We employ both parallelism and
vectorization to accelerate nested loops on manycore coprocessor.

For random dense square matrices with the dominant diagonal
we report the execution time and the performance of the nested
loops. Numerical experiments show that the vectorization that is
efficiently exploiting SIMD vector units do not always improve
the application performance on the coprocessor.

I. INTRODUCTION

M
ANYCORE computers with shared memory are used to

solve the computational science problems. One of the

machines with manycore architecture is Intel Xeon Phi [8],

[9], which is based on Intel’s Many Integrated Core (MIC).

Intel Xeon Phi has got over 60 cores, hardware threading

capabilities and wide vector units (VPU).

To implement parallel programs on manycore systems with

shared memory, in particular on Intel Xeon Phi, programmers

can use the OpenMP standard [12] as for the traditional multi-

core processors. The programming model provides a set of

directives to explicitly define parallel regions in applications.

The compiler translates these directives. One of its most

interesting features in the language is the support for the nested

parallelism.

In the scientific applications, loops are an important source

of the parallelism — nested loops, in particular. Parallelizing

nested loops require the programmer to make a decision

about applying some strategies of the parallelization and the

vectorization.

The research of the parallelization of nested loops have been

undertaken by different scientists.

In the work [10], the authors study five different models

for the nested parallel loops execution on shared-memory

manyprocessors and show a simulation-based performance

comparison of different techniques using a real application.

The possibility to take advantage of the parallelism in nested

parallel loops with the use of good scheduling and synchro-

nization algorithms is described.

An automatic mechanism to dynamically detect the best way

to exploit the parallelism when having nested parallel loops is

presented in the study [5]. This mechanism takes into account

the number of threads, the size of the problem, the number of

iterations in a loop and it was implemented inside the IBM XL

runtime library. That paper examined (among others) an LU

kernel, which decomposes the matrix A into the matrices: L

(a lower triangular matrix) and U (an upper triangular matrix).

An algorithm for finding good distributions of threads

to tasks is provided and the implementation of the nested

parallelism in OpenMP is discussed in the paper [1].

The focus of [7] was to investigate the possibility of

dynamically choosing, at runtime, the loop which utilizes the

available threads the best.

One of the direct methods of solving a dense linear system

is to factorize the matrix into some simpler matrices — it is

its decomposition into factor matrices of a simpler structure or

of some specific properties — and then solving simpler linear

systems. The most known factorization is the LU factorization

(mentioned above). Another form of the factorization is the

WZ factorization. In the work [2] we investigated four strate-

gies of parallelizing nested loops on multicore architectures

on the example of the WZ factorization [3], [6], [11]. We

dealt with the following parallelism strategies for nested loops:

outer, inner, nested and split.

For random dense square matrices with the dominant di-

agonal we reported the execution time, the performance, the

speedup of the WZ factorization for these four strategies of

parallelizing nested loops and we investigated the accuracy of

such solutions. The outer and split approaches achieved the

best speedup.

The goal of this paper is to study parallelized nested

loops on Intel Xeon Phi. We research only two strategies,

namely: outer and split due to their best results for multicore

architectures. The efficient parallelizing of a nested loop is

very difficult on Intel Xeon Phi because we must employ both

a large number of threads and wide vector units available

in Intel Xeon Phi. For the thread-level parallelism we use

OpenMP [12], [4].

The OpenMP standard supports the loop parallelism. For

the OpenMP standard, it is done by the utilization of the

directive #pragma omp parallel for, which provides

a shortcut for specifying a parallel region that contains a

single #pragma omp for. We scale nested loops to a large

number of threads and choose a good load balancing. The

division of the work among threads is controlled with the
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schedule clause.

We provide enough work for the coprocessor and we also try

to efficiently exploit 512-bit vectors on Intel Xeon Phi using

adequate pragmas.

The paper deals with the following issues: In Section II

it describes the main characteristics of the Intel Xeon Phi

architecture. Section III provides some information about some

strategies of parallelizing nested loops and their application to

the original WZ factorization. Section IV presents the results

of our experiments. The time, the speedup, the performance

of the WZ factorization for different strategies on Intel Xeon

Phi are analyzed. Section V is a summary of our experiments.

II. INTEL XEON PHI ARCHITECTURE

Intel Xeon Phi [9] coprocessors are one of the state-of-

the-art architectures which goal is to execute parallel codes.

Intel Xeon Phi is a manycore coprocessor created on the basis

of the Intel MIC (Many Integrated Cores) technology. The

first generation the Intel MIC architecture is based on the

Knights Corner chips. Many redesigned Intel CPU cores are

connected by a bi-directional 512-bit ring bus. The cores are

enriched with 64-bit instructions and the L1 and L2 cache

memories. Each of the cores contains a vector processing unit

(VPU), which together with 32 512-bit vector registers allows

to process many data with the use of one instruction (SIMD

instructions).

A single Intel Xeon Phi has 61 cores of 1,238 GHz

frequency and it serves 244 threads and communicates through

PCI-Express 2.0.

Intel Xeon Phi enhances the performance of applications

written in the C/C++ and Fortran languages. The Intel com-

pany offers a set of programming tools assisting programming

processes such as compilers, debuggers, libraries, that allow

creating parallel applications (e. g. Pthread, OpenMP, Intel

Cilk plus, MPI). Intel Xeon Phi is able to use standard parallel

programming models such as OpenMP.

The Intel Xeon Phi coprocessors can work in two executing

modes: the native mode or the offload mode (for one Intel

Xeon Phi).

In the native mode the task is executed directly by a

coprocessor, which makes it a separate computing node. The

compilation of the source code for the accelerator architecture

demands so-called cross-compiling, which produces a file

executable on Intel Xeon Phi. The native application can be

started by hand on the coprocessor or by the micnativeloadex

tool which automatically copies the program together with

necessary files and then starts it.

III. NESTED LOOPS PARALLELIZATION

An application with nested loops can be performed in

parallel in different ways depending on compilers, hardware

and run-time system support available. Nested loops require a

programmer to take a decision concerning details of the paral-

lelism. Nested loops can have a few levels of the parallelism.

The outermost loop contains other loops. Next, each of these

loops may also consist of loops. It is a reason for the increased

complexity of the implementation.

Frequently, the parallelization is applied to the outer loop

levels and the vectorization to the inner levels. If you are cer-

tain that the vectorization is a safe alternative (gives the same

results as the non-vectorized code) in a particular loop where

the compiler itself does not vectorize, using #pragma simd

often provides the best and the most predictable benefits.

In this work we deal with the following parallelization

strategies for the nested loops:

1) outer;

2) split.

All variables used in a parallel region are by default

shared; in each strategy we declare explicitly all variables

as private or shared for all directives respectively. Using

the private clause, we specify that each thread has its own

copy of variables.

To ensure a good load balancing for all threads we use

the schedule clause, which specifies how the iterations

of the loop are assigned to the threads. In the directive

#pragma omp parallel for in the clause schedule

we set values static or dynamic. We research the impact

of this clause on the efficiency.

A. Outer

Outer — the simplest parallelization strategy of nested loops

is the parallel execution of the outermost loop (not counting

the loop which cannot be parallelized). This approach gives

good results if the number of iterations in a loop is big and

the iteration’s granularity is coarse enough.

Figure 1 presents a listing of the outer strategy for the WZ

factorization. The outermost k-loop cannot be parallelized.

However, we can parallelize the i-loop. In this simple paral-

lelization strategy the loop is divided equally between threads

using both the static and dynamic scheduler.

Figure 2 also presents a listing of the outer strategy for

the WZ factorization with the use of the vectorization. Again

the outermost k-loop cannot be parallelized, however, we can

parallelize the i-loop. The loop is divided equally between

threads. The inner loop is vectorized. The compiler is unable

to automatically vectorize the inner loop due to the vector

dependences. To vectorize this code we use #pragma simd.

B. Split

The second (and final) strategy consists in the division of the

i-loop into two separate loops and we denote it by split. Figure

3 shows a listing of the split strategy for the WZ factorization.

The first loop is parallelized. The second loop is a nested loop

and we execute only its outer loop in parallel.

Figure 4 also shows a listing of the split strategy for the

WZ factorization. Here, the first loop is parallelized. The

second loop is a nested loop and we execute its outer loop in

parallel and we vectorize it at the same time. For the OpenMP

standard, it is done by the utilization of the directive #pragma

omp parallel for simd, which provides a shortcut for
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for (k=1; k<=n/2-1; k++) {

k2=n-k+1;

det=a[k2,k]*a[k,k2]-a[k,k]*a[k2,k2];

#pragma omp parallel for default(none) private(i,j) shared(w,k,k2,n,a,det) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

w[i,k]=(a[k2,k] * a[i,k2] - a[k2,k] * a[i,k])/det;

w[i,k2]=(a[k,k2] * a[i,k]-a[k,k] * a[i,k2])/det;

for (j=k+1; j<=k2-1; j++)

a[i,j]=a[i,j] - w[i,k]*a[k,j] - w[i,k2] * a[k2,j];

}//for i

}//for k

Fig. 1. A fragment of the WZ factorization algorithm — the outer strategy with the static or dynamic scheduler without the vectorization

for (k=1; k<=n/2-1; k++) {

k2=n-k+1;

det=a[k2,k]*a[k,k2]-a[k,k]*a[k2,k2];

#pragma omp parallel for default(none) private(i,j) shared(w,k,k2,n,a,det) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

w[i,k]=(a[k2,k] * a[i,k2] - a[k2,k] * a[i,k])/det;

w[i,k2]=(a[k,k2] * a[i,k]-a[k,k] * a[i,k2])/det;

#pragma simd

for (j=k+1; j<=k2-1; j++)

a[i,j]=a[i,j] - w[i,k]*a[k,j] - w[i,k2] * a[k2,j];

}//for i

}//for k

Fig. 2. A fragment of the WZ factorization algorithm — the outer strategy with the static or dynamic scheduler with the vectorization

for (k=1; k<=n/2-1; k++) {

k2=n-k+1;

det=a[k2,k]*a[k,k2]-a[k,k]*a[k2,k2];

#pragma omp parallel for default(none) private(i) shared(k2,k,w,n,a,det) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

w[i,k]=(a[k2,k]*a[i,k2]-a[k2,k2]*a[i,k])/det;

w[i,k2]=(a[k,k2]*a[i,k]-a[k,k]*a[i,k2])/det;

}

#pragma omp parallel for default(none) shared(k2,k,a,w) private(i,j) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++)

for (j=k+1; j<=k2-1; j++)

a[i,j]=a[i,j]-w[i,k]*a[k,j]-w[i,k2]*a[k2,j];

}//for k

Fig. 3. A fragment of the WZ factorization algorithm — the split strategy with the static or dynamic scheduler without the vectorization
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for (k=1; k<=n/2-1; k++) {

k2=n-k+1;

det=a[k2,k]*a[k,k2]-a[k,k]*a[k2,k2];

#pragma omp parallel for default(none) private(i) shared(k2,k,w,n,a,det) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

w[i,k]=(a[k2,k]*a[i,k2]-a[k2,k2]*a[i,k])/det;

w[i,k2]=(a[k,k2]*a[i,k]-a[k,k]*a[i,k2])/det;

}

#pragma omp parallel for simd default(none) shared(k2,k,a,w) private(i,j) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

for (j=k+1; j<=k2-1; j++)

a[i,j]=a[i,j]-w[i,k]*a[k,j]-w[i,k2]*a[k2,j];

}

}//for k

Fig. 4. A fragment of the WZ factorization algorithm — the split strategy with the static or dynamic scheduler with the parallelization of the first loop and
with the parallelization and the vectorization of the second outer loop

specifying a parallel region that contains a single #pragma

omp for simd.

Figure 5 shows a listing of another version of the split

strategy for WZ factorization. The first loop is parallelized.

The second loop is a nested loop and we execute the outer loop

in parallel and we vectorize the inner loop using #pragma

simd.

IV. NUMERICAL EXPERIMENTS

In this section we show how we tested the time and

the performance of the parallelized nested loops for Intel

Xeon Phi. Our intention was to investigate different nested

loops parallelization strategies for nested loops on manycore

architectures. We examined 10 versions of the parallelized

nested loops:

1) outer:

• static (Figure 1),

• dynamic (Figure 1),

• static+simd (Figure 2),

• dynamic+simd (Figure 2);

2) split:

• static (Figure 3),

• dynamic (Figure 3),

• static+forsimd (Figure 4),

• dynamic+forsimd (Figure 4)

• static+simd (Figure 5),

• dynamic+simd (Figure 5).

The input matrices were generated (by the authors). They

were random, dense, square matrices with a dominant diagonal

of even sizes (1000, 2000, . . . , 12000).

A. Test environment

The tests were carried out using a computing node of the

following parameters:

• Platform: Intel Server Chassis R2000WTXXX, Intel

Server Board S2600WT2.

• CPU: 2×Intel Xeon E5-2670 v3 (2x12 cores, 2.3 GHz).

• Memory: 128 GB DDR4 2133MT/s (8×Crucial

CT16G4RFD4213).

• Network card: FDR InfiniBand ConnectX-3 Mellanox

AXX1FDRIBIOM (FDR 56GT/S).

• Coprocessor: Intel Xeon Phi Coprocessor 7120P.

• Software: Intel Parallel Studio XE 2016 Cluster Edition

for Linux (Intel C++ Compiler, Intel Math Kernel Library,

Intel OpenMP).

The algorithms were implemented with the use of the

C language and with the use of the double precision. Our

codes were compiled by INTEL C Compiler (icc) with the

optimization flag -O3 and with the cross-compiling option

-mmic. Additionally, all algorithms were linked with the

OpenMP library. To run the native executable on the co-

processor, the micnativeloadex command was used. We

set the number of threads using the environment variable

OMP_NUM_THREADS.

B. The run-time

All the processing times are reported in seconds.

The time was measured with the OpenMP function

open_get_wtime(). They were tested in the double pre-

cision.

In Figures 6 and 7 we have compared the average running

time of the four versions of the outer strategy on Intel Xeon

Phi.

Figure 6 shows the dependence of the time on the number

of threads for the matrix of the size 12000 on Intel Xeon Phi.

Figure 7 shows the dependence of the time on the matrix

size for 240 threads on Intel Xeon Phi.

In Figures 8 and 9 we have compared the average running

time of the six versions split strategy on Intel Xeon Phi.
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for (k=1; k<=n/2-1; k++) {

k2=n-k+1;

det=a[k2,k]*a[k,k2]-a[k,k]*a[k2,k2];

#pragma omp parallel for default(none) private(i) shared(k2,k,w,n,a,det) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

w[i,k]=(a[k2,k]*a[i,k2]-a[k2,k2]*a[i,k])/det;

w[i,k2]=(a[k,k2]*a[i,k]-a[k,k]*a[i,k2])/det;

}

#pragma omp parallel for default(none) shared(k2,k,a,w) private(i,j) \

schedule(static/dynamic)

for (i=k+1; i<=(k2-1); i++) {

#pragma simd

for (j=k+1; j<=k2-1; j++)

a[i,j]=a[i,j]-w[i,k]*a[k,j]-w[i,k2]*a[k2,j];

}

}//for k

Fig. 5. A fragment of the WZ factorization algorithm — the split strategy with the static or dynamic scheduler with the parallelization of the first loop and
the second loop and with the vectorization of the second outer loop and with vectorization of the inner loop

Figure 8 shows the dependence of the time on the number

of threads for the matrix of the size 12000 on Intel Xeon Phi.

Figure 9 shows the dependence of the time on the matrix

size for 240 threads on Intel Xeon Phi .

Figure 10 shows the dependence of the time on the number

of threads for the matrix of the size 12000 on Intel Xeon Phi

comparing the best of the outer and split strategies.

Figure 11 shows the dependence of the time on the matrix

size for 240 threads on Intel Xeon Phi comparing the best of

the outer and split strategies.

Using obtained results we conclude that:

• The outer strategy gives better results without the vector-

ization.

• For the split strategy the best results were obtained for

the static+forsimd version (Figure 4).

• The split strategy achieves better execution time than the

outer strategy.

• The worse execution time was achieved for the outer

strategy in the static+simd version (Figure 2).

• The choice of the scheduler usually makes small differ-

ences in the execution time.

• If the size of the matrix is increased, then the runtime is

increased too and it may become more profitable to use

a big number of threads.

• Our approaches (both outer and split strategies) are

scalable to a large number of threads.

C. The performance

Figures 12 and 13 compare the performance (in Gflops)

results obtained for both the outer and the split strategies —

in double precision on Intel Xeon Phi. The performance is

based on the number of floating-point operations in the WZ

factorization, namely:

n

2
−1

∑

k=1



3 +

n−k
∑

i=k+1



8 +

n−k
∑

j=k+1

4







 =
4n3 − 7n− 18

6
.

Figure 12 shows the dependence of the performance (of the

best algorithms of both strategies) on the size of the matrix

for 240 threads.

Figure 13 shows the dependence of the performance (of the

best algorithms of both strategies) on the number of threads

for the matrix size of 12000.

We can see that the best performance (about 11 Gflops) is

achieved by the split strategy for the matrix of the size 12000

for 240 threads, and worst (less than 2 Gflops) is for the outer

strategy for the smallest sizes. The performance increases fast

with the growth of the number of threads.

V. CONCLUSION

In this paper we examined several practical aspects of

the nested parallel loop execution on Intel Xeon Phi. Our

approach exploits the thread-level and SIMD parallelism of

the Intel Xeon Phi coprocessor. We used different strategies

for executing nested parallel loops on the examples of the WZ

factorization.

Both the outer and the split algorithms exploited the avail-

able number of threads. The split strategy achieves the best

performance. The performance of 11 Gflops was achieved for

240 threads on Intel Xeon Phi. The implementation of the split

strategy presented in this paper achieves high performance

results, which has a direct impact on the solution of linear

systems. Using the split strategy can help programmers with

loop parallelization in multithreading environments.

This paper is another example of the successful use of

OpenMP for solving scientific applications on Intel Xeon Phi.
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This paper is also example that the vectorization is not always

the only key to achieving high performance on Intel Xeon Phi

architecture.
The achieved results provide the basis for the further re-

search on optimization of nested loops using the loop tiling

technique in such a way that a data element used once is

reused as soon as possible. Another field of further research

is the use of thread affinity strategies which allow improving

the performance and the scalability of our solution.
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