
Minimizing the Number of Late Multi-Task Jobs on
Identical Machines in Parallel

Lingxiang Li
Hunan University of Science and Engineering

Yongzhou

Hunan, P.R.China

Haibing Li
BNP Paribas,

787 Seventh Ave

New York City, NY 10019, USA

Hairong Zhao
Purdue University Northwest

2200 169th Street, IN 46323, USA

Email: hairong@pnw.edu

Abstract—We consider the problem of scheduling multi-task
jobs on identical machines in parallel. Each multi-task job
consists of one or more tasks. Each job has a release date and
a due date. A task of a job can be processed by any one of
the machines. Multiple machines can process the tasks of a job
concurrently. The completion time of a job is the time at which
all its individual tasks have been completed. A job is late if it is
completed after its due date. We study the problem of minimizing
the total number of late jobs. We show that while some special
cases are solvable, the general problem is NP-hard and there
exists no polynomial time ρ-approximation algorithm, for any
ρ > 1. We present a general algorithm for the problem and
derive from it six heuristics whose performance is evaluated by
experimental results.

I. INTRODUCTION

T
HE PROBLEM under consideration is scheduling multi-

task jobs on identical machines in parallel. It can be stated

as follows: Assume there are m identical machines and n jobs.

Each job j (j = 1, 2, . . . , n), which is available at time rj
and has a due date dj , consists of kj (1 ≤ kj ≤ k) individual

tasks (or operations), where k is the maximum number of

tasks that a job may have. Each task l = 1, 2, . . . , kj of

job j, denoted by olj , can be processed by any one of the

machines, and its processing time is denoted by plj . The

individual tasks of a job can be assigned to multiple machines

so that they can be processed concurrently. When a machine

switches over from one task to another, no setup is required.

The completion time of job j, denoted by Cj , is the time at

which all individual tasks of job j have been completed. If

we let Clj denote the completion time of task olj , it is clear

that Cj = max1≤l≤kj
{Clj}. For the ease of description, we

also let Pi,j and Ci,j denote the total processing time and

the completion time of job j on machine i, respectively. By

definition, Cj = max1≤i≤m {Ci,j}. A job is late if Cj > dj ,

and by standard notation, Uj = 1 if Cj > dj and Uj = 0
otherwise. We are interested in minimizing the total number

of late jobs
∑

Uj . Let jbs n denote n jobs and tsk k denote

the maximum number of tasks that a job may have. The

problem is denoted by Pm | jbs n, tsk k, rj |
∑

Uj , where

m, n, and k can be either fixed or arbitrary. If any of these

is not fixed, it is removed from the notation. For example,

P | jbs 10, tsk |
∑

Uj denotes that m and k are arbitrary

but the number of jobs n is 10. If rj = 0 for all jobs, rj is

removed from the notation as well.

The above problem is a more general description of the

fully flexible case of customer order scheduling models de-

scribed in [1], so it is not limited to any specific application

contexts, e.g. manufacturing environments. In addition to the

application examples surveyed in [1], we yet give another

real-life application example in software project management,

with the objective to minimize
∑

Uj . It is not unusual that

in a software development team, new projects with various

due dates are requested from business lines. A development

manager usually creates a parent task for each new project,

and creates multiple child tasks (for example, independent

modules or loosely coupled modules as a result of well-

designed software architecture) associated with the parent task

so that multiple software developers in the development team

can work on the project simultaneously. A parent task (project)

is completed if and only if all child tasks are completed.

All software developers (assuming that they have the same

skills at the same proficiency levels after certain cross-training)

in the team can work on all child tasks. The challenge for

the development manager is to find a good schedule for

the team, to minimize the number of parent tasks (projects)

that cannot be completed before their due dates, so that the

relationship and partnership between the development team

and the business teams can be positively built up.

Some past work has been done for this problem with the

objective to minimize the total weighted completion time
∑

wjCj and its un-weighted version. Even when wj = 1
for all j, the problem with an arbitrary k is ordinary NP-

hard for any fixed m ≥ 2 and strongly NP-hard when m is

arbitrary (see Blocher and Chhajed [2]). On the other hand,

when k = 1, the problem becomes the classical problem

P ||
∑

wjCj which is strongly NP-hard, and for any fixed

m ≥ 2, the problem is equivalent to Pm ||
∑

wjCj which is

ordinary NP-hard (see [3]). In the aspect of algorithms, when

wj = 1, Blocher and Chhajed [2] presented six heuristics with

empirical analysis of the performance of the heuristics. One of

the heuristics was also studied by Yang [4], [5] where it was

shown a worst-case performance bound of 7/6 for m = 2.

For arbitrary m, two classes of nine heuristics with proven

worst-case performance bounds of either (2−1/m) or m were

studied by Leung, Li and Pinedo [6].

To the best of our knowledge, no past work has ever been

done for this problem with the objective to minimize
∑

Uj .

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 577–584

DOI: 10.15439/2016F441

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 577

In this paper, we are interested in both the complexity and the

algorithm aspects of the problem. The remainder of the paper

is organized as follows. In Section II, we present some prelimi-

nary results regarding some properties of optimal schedules. In

Section III, we show that some cases are NP-hard, while some

other cases are polynomially solvable. Then, after showing the

non-approximability for the general case without release dates,

we present in Section IV a general algorithm scheme for the

problem and derive from it six heuristics, whose performance

is evaluated by experimental results in Section V. Finally, we

present conclusions in Section VI.

II. PRELIMINARY RESULTS

We first look into some properties of an optimal schedule

for problem P | jbs, tsk |
∑

Uj :

Lemma 2.1 (Optimal Property): For problem P | jbs, tsk |
∑

Uj , there exists an optimal schedule in which:

a) the tasks (if more than two) of a job are assigned

consecutively on each machine;

b) the early jobs are scheduled in nondecreasing order of

their due dates on each machine.

Proof: a) Suppose that there exists an optimal schedule

in which some tasks of job j assigned on machine i are not

consecutive, we keep the last task of job j where it is, but make

necessary interchange to shift all its other tasks backward so

that they become consecutive, thus the completion time of

job j remains unchanged. However, other jobs, whose tasks

are shift forward due to the interchanges, would be completed

earlier. Thus, no new late jobs are introduced, and the resulting

schedule remains optimal.

b) Suppose that in an optimal schedule there exist two early

jobs, j1 and j2, and a machine i, such that Ci,j2 < Ci,j1 but

dj1 < dj2 . We assume the tasks of both jobs are scheduled

consecutively according to a). We remove job j2, and push

forward all jobs before j1 (and j1 itself), to fill the hole

produced by removing j2, then place j2 right after j1. Clearly,

all jobs except j2 are completed earlier. As for job j2, its new

completion time C ′
i,j2

= Ci,j1 ≤ dj1 < dj2 . Thus, job j2 is

still completed on time, and the resulting schedule remains

optimal.

Note that in an optimal schedule, the tasks of a job are not

necessarily to be assigned across all machines. Some machines

may be assigned with multiple tasks of the job, while some

other machines may not be assigned with any tasks of the

same job. To illustrate this, consider an example as follows:

m = 2, n = 2, p11 = p21 = 2, d1 = 4, p12 = 4, d2 = 5.

Clearly, in an optimal schedule for this instance, the only task

of job 2 must be assigned to one machine, while the two tasks

of job 1 must be assigned to another machine. This yields a

schedule with no late jobs.

For any instance I of P | jbs, tsk |
∑

Uj , to derive a

lower bound for it, we can construct an instance I ′ of problem

1 ||
∑

Uj which can be solved in O(n log n) by Moore-

Hodgson’s algorithm [7]: For each job j, construct a job j
for I ′ with processing time p′j =

∑

l plj/m and due date

d′j = dj . Let SOPT and S′
OPT denote an optimal schedule for

instance I and I ′, respectively. Then, we have the following

lower bound which might be useful for the design of a branch-

and-bound algorithm, or for evaluating the performance of

heuristic algorithms by experimental analysis as what we will

show later.

Lemma 2.2 (Lower Bound): For any instance I of problem

P | jbs, tsk |
∑

Uj , and its corresponding instance I ′ of

problem 1 ||
∑

Uj constructed in the way described above, the

optimal objective value for I has the following lower bound:
∑

j

Uj(SOPT) ≥
∑

j

Uj(S
′
OPT).

Proof: Consider an optimal schedule SOPT for instance

I , let Se denote the sub-schedule of all early jobs in SOPT .

We construct a schedule S′ for instance I ′ as follows: a)

For the jobs in Se, schedule the corresponding jobs of I ′ in

nondecreasing order of d′j which equals to dj , let the sub-

schedule be S′
e; b) Append the rest jobs to the end of S′

e in

arbitrary order.

We shall show that all jobs in S′
e are on time as well.

Without loss of generality, we assume that the early jobs in Se

are indexed by 1, 2, . . . , |Se|. Consider any partial schedule for

jobs 1, 2, . . . , j∗ in Se where 1 ≤ j∗ ≤ |Se|. Since job j∗ is

early, we have Cj∗ = max1≤i≤m

{

∑j∗

j=1
Pi,j

}

≤ dj∗ . Due to

the fact that this partial schedule may not be aligned up at the

end of each machine, we have max1≤i≤m

{

∑j∗

j=1
Pi,j

}

≥
∑j∗

j=1

∑kj

l=1
plj/m =

∑j∗

j=1
p′j = C ′

j∗ , it follows that

C ′
j∗ ≤ dj∗ = d′j∗ , implying that job j∗ is early in S′

e. Thus,
∑

j Uj(S
′) ≤

∑

j Uj(SOPT). The lower bound follows due

to the fact that
∑

j Uj(S
′) ≥

∑

j Uj(S
′
OPT).

III. COMPLEXITY RESULTS

In this section, we investigate the cases that are either

NP-hard or polynomially solvable. The goal is to establish

a borderline between the hard cases and the polynomially

solvable ones.

A. NP-hard Cases

Before we proceed further, we first introduce the following

NP-complete problems (see Garey and Johnson [8]) that will

be used for reduction later:

Definition 1 (Partition Problem): Given a list A = (a1, a2,

. . . , an) of n positive integers, can A be partitioned into two

subsets A1 and A2 such that A1 ∪A2 = A and
∑

aj∈A1
aj =

∑

aj∈A2
aj = B = 1

2

∑

aj∈A aj?

Definition 2 (3-Partition Problem): Given a list A =
(a1, a2, . . . , a3m) of 3m positive integers such that

∑

j aj =
mB,B/4 < aj < B/2 for each 1 ≤ j ≤ 3m, is there a parti-

tion A into m subsets A1, A2, . . . , Am such that ∪m
i Ai = A

and
∑

aj∈Ai
aj = B for each 1 ≤ i ≤ m?

Note that even though these two problems are closely

related, the Partition problem is NP-complete in the ordinary

sense, while the 3-Partition problem is strongly NP-complete.

To show the NP-hardness of several cases, we first start with

two restricted cases.

578 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Theorem 3.1: Problem P | jbs, tsk 1, dj = d |
∑

Uj is

NP-hard in the strong sense.
Proof: We shall show that the 3-Partition problem is

reducible to problem P | jbs, tsk 1, dj = d |
∑

Uj . Given an

instance of A = (a1, a2, . . . , a3m) of 3-Partition, we construct

an instance of P | jbs, tsk 1, dj = d |
∑

Uj as follows:

There are m machines and 3m jobs such that p1j = aj and

dj = B for each 1 ≤ j ≤ 3m. The transformation clearly

takes polynomial time. The decision version of the scheduling

problem asks if there exists a schedule such that
∑

Uj = 0?
If the 3-Partition instance has a “Yes” solution, we let the

partition be A1, A2, . . . , Am. For each Ai (1 ≤ i ≤ m), we

schedule on machine i the three jobs constructed from the three

elements which are in Ai. Thus, we have a schedule such that

the finish time on each machine is exactly B, implying that

no job is late, i.e.,
∑

Uj = 0.
Conversely, if the scheduling problem instance has a sched-

ule such that
∑

Uj = 0, it implies that the finish time

on each machine has to be exactly B. Due to p1j = aj
and B/4 < aj < B/2, each machine must have 3 jobs

exactly, otherwise, the finish time with less/more jobs on a

machine would be strictly less/larger than B. Let Ai be the

triplet corresponding to the 3 jobs scheduled on each machine

1 ≤ i ≤ m, then A1, A2, . . . , Am is a “Yes” solution to the

3-Partition instance.
Theorem 3.2: Problem Pm | jbs, tsk 1, dj = d |

∑

Uj is

NP-hard in the ordinary sense for every fixed m ≥ 2.
Proof: It is sufficient to consider the special case for m =

2. We shall show that the Partition problem is reducible to P2 |
jbs, tsk 1, dj = d |

∑

Uj . Given an instance of the Partition

problem, we construct an instance of P2 | jbs, tsk 1, dj = d |
∑

Uj as follows: Let there be n jobs, p1j = aj , dj = B for

each job 1 ≤ j ≤ n. The decision version of the scheduling

problem asks if there exists a schedule such that
∑

Uj = 0?
It is easy to see that the Partition problem instance has a

“Yes” solution if and only if the P2 | jbs, tsk 1, dj = d |
∑

Uj instance has a schedule such that
∑

Uj = 0.
Theorem 3.1 and Theorem 3.2 immediately imply the NP-

hardness of their general cases, respectively:
Theorem 3.3: As generalization of the cases with common

due dates,

a) both problem P | jbs, tsk 1 |
∑

Uj and problem P |
jbs, tsk |

∑

Uj are strongly NP-hard;

c) both problem Pm | jbs, tsk 1 |
∑

Uj and problem

Pm | jbs, tsk |
∑

Uj are NP-hard in the ordinary sense

for every fixed m ≥ 2.

On the other hand, when it is restricted to only one job,

which has arbitrary number of tasks, the special cases are still

NP-hard, as shown below:
Theorem 3.4: Problem P | jbs 1, tsk |

∑

Uj is NP-hard in

the strong sense.
Proof: We shall show that the 3-Partition problem is

also reducible to P | jbs 1, tsk |
∑

Uj . Given any 3-

Partition instance, we construct an instance of the scheduling

problem as follows: Let there be 1 job with 3m tasks such

that pl1 = al for each l = 1, 2, . . . , 3m; and let d1 = B. The

decision version of the scheduling problem asks if there exists

a schedule such that U1 = 0?

Similar argument as described in Theorem 3.1 shows that

the 3-Partition instance has a “Yes” solution if and only if the

scheduling instance has a schedule such that U1 = 0.

Theorem 3.5: Problem Pm | jbs 1, tsk |
∑

Uj is NP-hard

in the ordinary sense for every fixed m ≥ 2.

Proof: It is sufficient that we consider the special case

m = 2. Again, a simple reduction from the Partition problem

shows that the problem is NP-hard in the ordinary sense for

m = 2.

With the presence of release dates, all the NP-hard cases

presented above would be harder. Further, we show that the

problem 1 | jbs, tsk, rj |
∑

Uj is NP-hard in the strong sense.

Theorem 3.6: Problem 1 | jbs, tsk, rj |
∑

Uj is NP-hard

in the strong sense.

Proof: Since problem 1 | jbs, tsk 1, rj |
∑

Uj is

equivalent to 1 | rj |
∑

Uj which is strongly NP-hard (due

to that 1 | rj |
∑

Lmax is strongly NP-hard [9] and Lmax

is reducible to Uj [10], [11], [12]), thus its general version

1 | jbs, tsk, rj |
∑

Uj is also NP-hard in the strong sense.

B. Polynomially Solvable Cases

We start with the single-machine cases:

Theorem 3.7: The following problems:

a) 1 | jbs, tsk k |
∑

Uj ; and

b) 1 | jbs, tsk |
∑

Uj .

can be solved in polynomial time.

Proof: As a direct result of a) in Lemma 2.1, by

aggregating the tasks of each job j into a single task with

processing time
∑

l plj , both 1 | jbs, tsk k |
∑

Uj and

1 | jbs, tsk |
∑

Uj can be solved in polynomial time by

Moore-Hodgson’s algorithm [7].

Now we consider a special case in which the tasks of all

jobs have identical processing times:

Theorem 3.8: Problem P | jbs, tsk, plj = p |
∑

Uj can be

solved in O(n log n+
∑

kj) time.

Proof: We can find the optimal schedule in two steps: (1)

identify the early job set E; and (2) schedule the early jobs

in E. To find the early jobs, we can do the following:

a) Sort and reindex the jobs such that d1 ≤ d2 ≤ . . . ≤ dn.

b) E = ∅, sumK = 0
c) For each 1 ≤ j ≤ n

E = E ∪ {j}, sumK = sumK + kj
If ⌈ sumK

m
⌉ ∗ p > dj

Let i = argmaxx∈E kx
E = E \ {i}, sumK = sumK − ki

To schedule the early jobs, we simply take the tasks of the

early jobs from E in non-decreasing order of the due dates,

and assign them one by one to the machines 1, 2, · · · , m, then

1 2, · · · m again, and so on.

First we show that our schedule is optimal. Without loss of

generality, we assume that for any job j, we have ⌈kj

m
⌉∗p ≤ dj .

Otherwise, it must be late in any schedule.

Notice that in step (1) the jobs are processed in non-

decreasing order of their due dates and in (c), if ⌈ sumK
m

⌉∗p >

LINGXIANG LI ET AL.: MINIMIZING THE NUMBER OF LATE MULTI-TASK JOBS ON IDENTICAL MACHINES IN PARALLEL 579

dj , we remove the job with the largest number of tasks (thus

maximum processing time) from E. This guarantees that if

job j ∈ E after step (1) , then ⌈

∑

i∈E,i≤j
ki

m
⌉ ∗ p ≤ dj .

By the way we schedule the tasks in step (2), we have

Cj = ⌈

∑

i∈E,i≤j
ki

m
⌉ ∗ p, thus Cj ≤ dj . So all jobs in E are

scheduled on time. Also notice that |E| must be maximum

due to the fact that the largest job is chosen to be tardy in (c).

For the time complexity, step (1) can be implemented in

O(n lg n) time if we use priority queue to maintain the jobs

in E, and step (2) can be implemented in
∑

kj .

With the presence of release dates, some special cases are

still polynomially solvable. Before we proceed further, we first

show that (as we are not aware of any proof in the literature),

the classical problem 1 | rj , dj = d |
∑

Uj can be solved in

polynomial time, even though the general case 1 | rj |
∑

Uj

is strongly NP-hard.

Theorem 3.9: Problem 1 | rj , dj = d |
∑

Uj can be solved

in O(n log n) time.

Proof: Consider the following algorithm:

a) For each job with rj + pj > d, simply mark it as late

and exclude it from the next steps.

b) For the remaining jobs, define a new deadline d′j = d−
rj .

c) Treat time d as time 0, and schedule the jobs with new

deadlines and release times 0 backwards by applying

Hodgson-Moore algorithm.

The correctness of the algorithm lies in the fact that the mod-

ified problem is equivalent to the original one and Hodgson-

Moore algorithm is optimal for the modified problem.

Theorem 3.10: Problem 1 | jbs, tsk, rj , dj = d |
∑

Uj can

be solved in O(n log n+
∑

kj) time.

Proof: The key observation is that, due to the common

due date, there exists an optimal schedule for any problem

instance in which the tasks of each early job are scheduled

consecutively. Otherwise, shifting the separated tasks (except

the first one) of the job forward so that they are consecutive,

and shifting the in-between tasks of other jobs backward would

not violate their release dates and the common due date, and

the schedule remains feasible and optimal. Thus, by aggregat-

ing all tasks of each job as a single task with processing time

of
∑

l plj , problem 1 | jbs, tsk, rj , dj = d |
∑

Uj can be

polynomially solved by an equivalent 1 | rj , dj = d |
∑

Uj

problem according to Theorem 3.9. Since aggregating the tasks

takes O(
∑

kj) time, the algorithm runs in O(n log n+
∑

kj)
time.

Theorem 3.11: Problem 1 | jbs, tsk, rj , plj = 1 |
∑

Uj can

be solved in O(n5) time.

Proof: Consider the following algorithm:

a) For any instance I of problem 1 | jbs, tsk, rj , plj =
1 |

∑

Uj , construct an instance I ′ of the classical

preemptive scheduling problem 1 | rj , pmtn |
∑

Uj

with p′j =
∑

l plp, r
′
j = rj , d

′
j = dj .

b) Solve I ′ by Lawler’s Dynamic Programming algorithm

in O(n5) time [11], [13].

c) Construct the schedule for I exactly from the optimal

schedule for I ′, by mapping the jobs one by one.

Apparently, the obtained schedule is optimal and the running

time is dominated by Lawler’s algorithm which runs in O(n5)
time.

Since the cases with release dates are harder than the ones

with no release dates, we focus on the design and analysis of

algorithms for the latter cases in the next two sections.

IV. HEURISTIC ALGORITHMS FOR PROBLEM

P | jbs, tsk |
∑

Uj

Due to the strong NP-hardness of problem P | jbs, tsk |
∑

Uj , it would be of interest to see if there exists any good

approximation algorithm for it. Unfortunately, the following

negative result shows that there exists no such approximation

algorithm unless P = NP .

Theorem 4.1: Unless P = NP , there exists no polynomial

time ρ-approximation algorithm (1 < ∀ρ < ∞) for both prob-

lem P | jbs, tsk |
∑

Uj and problem Pm | jbs, tsk |
∑

Uj

(for any fixed m ≥ 2).

Proof: It is sufficient to consider a special case of the

problem, i.e., P | jbs 1, tsk |
∑

Uj , for which we have only

1 job with arbitrary number of tasks to be scheduled on m
machines where m is not fixed. Given any problem instance

I , since it has only 1 job, being either late or on time, the

objective value returned by A must be
∑

Uj ∈ {0, 1}. We

consider the following four cases:

Case1. The optimal objective value is 0 and A returns 0,

which is optimal.

Case2. The optimal objective value is 1 and A returns 1,

which is optimal.

Case3. The optimal objective value is 0 and A returns 1.

The performance ratio is ∞.

Case4. The optimal objective value is 1 and A returns 0,

which is impossible.

First of all, Case 4 can be excluded for A, since it contra-

dicts to the optimality of the optimal objective value. As for

other cases, we claim that there exists at least one problem

instance so that Case 3 is true for A. Otherwise, assume that

“only” Case 1 and Case 2 are true for A, it simply implies that

A is optimal. Since A is also polynomial by assumption, it

would imply P = NP . Therefore, our claim must be true

unless P = NP , implying that the algorithm A must be

unbounded due to Case 3.

Similar arguments apply to Pm | jbs, tsk |
∑

Uj for its

special case when m = 2.

An observation on the non-approximability of P |
jbs 1, tsk |

∑

Uj and Pm | jbs 1, tsk |
∑

Uj is that,

each of them intrinsically consists of a NP-hard subproblem

to solve (i.e., the Cmax problem on parallel machines) and yet

its objective value is limited to only two numbers, i.e., either

0 or 1. Thus, there is no much freedom for any algorithm to

approximate within.

We first present a general algorithm scheme to identify and

schedule a set of early jobs, and then derive some specific

580 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

algorithms from it by customizing the task sorting criterion

and the machine selection criterion.

General-Scheme GS for P | jbs, tsk |
∑

Uj

Input. A set of n multi-task jobs; the number of machines m.

Output. A set of early jobs E and their schedule Se.

Sort the n jobs such that d1 ≤ d2 ≤ . . . ≤ dn.

for each job j = 1, 2, . . . , n
≪sort its tasks by certain criterion≫
assuming the sorted order is o1j , o2j , . . . , okjj

Let E = ∅, and Se be an empty schedule

j = 1, firstTry = true.

While j ≤ n
late = false
l = 1.

while (l ≤ kj and late = false)

≪select machine i∗ by certain criterion≫
assign task olj to machine i∗ in Se.

if olj is late

late = true.

remove all tasks o1j , o2j , . . . , olj from Se.

if firstTry = true
let j∗ = argmaxk∈E∪{j} {

∑

l plk}
if j∗ = j, then j = j + 1.

else

remove all tasks of j∗ from Se.

firstTry = false.

else j = j + 1, firstTry = true.

else

if l = kj
if firstTry = true, then E = E ∪ {j}.

else E = E \ {j∗} ∪ {j}.

j = j + 1, firstTry = true.

l = l + 1.

return Se

It should be noted that, when k = 1 and m = 1, the

above general algorithm schema would work in the same way

as Moore-Hodgson’s algorithm for 1 ||
∑

Uj . Thus, we can

regard it as generalization of Moore-Hodgson’s algorithm. To

derive a specific algorithm from the above general scheme,

we need to specify two criteria as marked within ≪ . . . ≫.

The first criterion to be specified in Step 1 is for sorting the

individual tasks of each job j = 1, 2, . . . , n, while the second

one in Step 2 is for choosing a machine to process the task

under consideration.

Intuitively, we consider two Task Sorting Criteria:

• Arbitrary Order. No sorting, just keep the original

ordering of the tasks as given in input. Thus, it takes

no extra running time.

• Non-increasing Order. Sort the tasks of job j in non-

increasing order of their processing times such that

p1j ≥ p2j ≥ . . . pkjj for each j = 1, 2, . . . , n. It takes

O(k log k) time for each job.

To assign a task to a machine, we consider three Machine

TABLE I
SIX ALGORITHMS DERIVED FROM THE TWO TYPES OF CRITERIA

Algorithm Machine Choosing Sorting Task Assignment

GSLS Smallest Load Arbitrary LS
GSLPT Smallest Load Non-increasing LPT
GSFF First Fit Arbitrary First Fit
GSFFD First Fit Non-increasing First Fit Decreasing
GSBF Best Fit Arbitrary Best Fit
GSBFD Best Fit Non-increasing Best Fit Decreasing

Choosing Criteria:

Smallest Load. Choose the machine with the smallest

load. This is used in the well-known Longest Processing

Time first rule (LPT) and List Scheduling algorithm (LS)

for problem P || Cmax [16].

First Fit. Choose the first machine which can process

the task before the job’s due date. The First-Fit al-

gorithms were originally designed for the Bin Packing

problem [17].

Best Fit. Choose the machine with the largest load but

can still process the task before the job’s due date.The

Best-Fit algorithms were also originally designed for the

Bin Packing problem.

Naturally, combination of these two types of criteria pro-

duces six different concrete algorithms, which are enumerated

in Table I.

In essence, each algorithm derived from the above general

algorithm scheme combines the Earliest Due Date first (EDD)

rule [18] (at job level), and either an algorithm for problem

P || Cmax [16] or an algorithm for the Bin Packing prob-

lem [17] (at task level).

Clearly, all algorithms derived from the general scheme

run in polynomial time. It is not surprising that, due to

Theorem 4.1, the performance ratio of these algorithms is not

bounded. To illustrate this by a simple example, we consider

the following instance: n = 1,m = 4, k = 9, p11 = 7, p21 =
4, p31 = p41 = 5, p51 = p61 = 6, p71 = 7, p81 = p91 =
4, d1 = 12. The “trial” assignment of tasks by all these six

algorithms, as illustrated by Table II, would result in schedules

in which the job is late. Thus, all these heuristic algorithms

return
∑

j Uj = 1. However, in an optimal schedule, as

illustrated by the last column in the same table, the job is

on time, and the objective value is 0. Thus, the performance

ratio of all these heuristic algorithms is ∞ .

Even though the above worst-case example shows that the

heuristic algorithms could perform arbitrarily bad, in practice,

we expect that their average performance could be much better.

To this end, we evaluate these algorithms by experimental

results in the next section.

V. EXPERIMENTAL EVALUATION

To evaluate the above heuristic algorithms, we choose the

number of jobs n = 500, and the number of machines m = 20.

Problem instances of varying hardness are generated according

LINGXIANG LI ET AL.: MINIMIZING THE NUMBER OF LATE MULTI-TASK JOBS ON IDENTICAL MACHINES IN PARALLEL 581

TABLE II
TRIAL ASSIGNMENT OF TASKS FOR THE WORST-CASE EXAMPLE

Machine GSLS GSLPT GSFF GSFFD GSBF GSBFD OPT

1 7, 4, 4 7, 4, 4 7, 4 7, 5 7, 4 7, 5 7, 5
2 4, 6, 4 7, 4 5, 5, 7, 5 5, 5, 4 7, 5 7, 5
3 5, 6 6, 5 6, 6 6, 4 6, 6 6, 4, 4 6, 6
4 5, 7 6, 5 7, 4, 4 6, 4, 4 7, 4 6, 4 4, 4, 4

to different characteristics of the due dates, in a similar way

described in Leung, Li and Pinedo [19].

First of all, for each job j = 1, 2, . . . , n, the number of

tasks kj is randomly generated from the uniform distribution

[1, 10m]. Then, for each task l = 1, 2, . . . , kj , plj is generated

from the uniform distribution [1, 100]. Finally, after all jobs

are generated, for each job j = 1, 2, . . . , n, its due date dj is

generated from the following uniform distribution:

[P (1− δ1/2− δ2), P (1 + δ1/2− δ2)],

where

P =

n
∑

j=1

kj
∑

l=1

plj/m,

and δ1 and δ2 determines the range in which the due dates lie

and adjusts the tightness of the due dates, respectively. Also,

in generating dj , we ensure that

dj ≥ max

{

∑

l

plj/m,max
l

{plj}

}

.

Otherwise, job j would always be late.

We set δ1 = 0.2, 0.4, 0.6, 0.8, 1.0 and δ2 = 0.2, 0.4,

0.6, 0.8, 1.0. For each combination of δ1 and δ2, 100 instances

are generated. Thus, there are 2500 instances in total. The

algorithms are implemented in Java. The running environment

is Windows 7 64-bit Operating System running on a dual core

(2.50GHz + 2.50GHz) PC with 4GB RAM memory.

To compare the algorithms, for each generated instance

Ii (i = 1, 2, . . . , 100), we also construct the corresponding

single-machine instance I ′i as described in Lemma 2.2. The

instance I ′i is solved optimally by Moore-Hodgson’s algorithm,

and then the result, denoted by LB(I ′i), is used as a reference

objective value (lower bound) to evaluate the objective value

produced by a heuristic algorithm A for Ii, denoted by
∑

j Uj(A, Ii). Table III shows the collective results for all

six algorithms. Each algorithm A has two columns, namely ε
and t, which are defined as follows. For each setting of δ1 and

δ2, ε is defined for A as:

ε =
1

100

100
∑

i=1

∑

j

Uj(A, Ii)− LB(I ′i)

 ;

and let t(A, Ii) denote the running time (in milliseconds) of

algorithm A on solving instance Ii, t is defined for A as:

t =
1

100

100
∑

i=1

t(A, Ii).

From the table, we have the following findings:

• The objective values produced by all six algorithms are

actually very close to the lower bound values, the gaps

are mostly less than 3, which means that the algorithms

perform close to an optimal algorithm for these randomly

generated instances.

• The frequencies that the six algorithms achieve the lowest

ε are (5, 9 | 11, 14 | 13, 22) corresponding to their order

listed in the table. Thus, in terms of Machine Choos-

ing Criterion, the algorithms based on Best-Fit criterion

performs better than those based on First-Fit criterion,

which in turn are better than those based on Smallest-

Load criterion. In terms of Task Sorting Criterion, the

algorithms based on non-increasing task sorting criterion

perform better than those without task sorting.

• In terms of running time, the First-Fit based algorithms

run faster than those based on Best-Fit criterion, which in

turn run faster than algorithms based on Smallest-Load

criterion.

• Interestingly, task sorting in initialization actually does

not increase the running time, but helps reduce the

running time. This could be due to that task sorting helps

produce better results and hence results in less iterations

for Step 2 and Step 3.

• Regarding the sensitivity of algorithms’ performance to

the hardness of problem instances, overall, ε increases

when δ2 increases. The explanation is that higher δ2
results in tighter due dates generated for the instances.

Hence, the number of late jobs is expected to be higher,

and the gap between the heuristic result and lower bound

result is expected to increase accordingly. On the other

hand, t also increases when δ2 increases. Indeed, when

the number of late jobs increases with higher δ2, more

iterations are required by Step 2 and Step 3 of the

algorithms.

The above findings are sufficient to give us an overview of

the performance of the algorithms and provide guidelines

for us to choose the best ones among them for practical

use. Considering both solution quality and running time, we

recommend that algorithm GSBFD is the best choice.

VI. CONCLUSIONS

In this paper, we studied the problem of minimizing the

total number of late multi-task jobs on identical and flexible

machines in parallel. We first investigated the complexity

aspect of the problem. As summarized in Table IV, complexity

582 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE III
COMPARISON OF THE SIX ALGORITHMS IN TERM OF ε AND t

GSLS GSLPT GSFF GSFFD GSBF GSBFD

δ1 δ2 ε t ε t ε t ε t ε t ε t

0.2 0.2 0.56 60 0.47 55 0.46 40 0.45 40 0.44 41 0.45 40
0.2 0.4 0.57 170 0.46 155 0.46 121 0.47 115 0.47 123 0.47 118
0.2 0.6 0.65 283 0.57 258 0.56 210 0.56 199 0.56 215 0.56 204
0.2 0.8 0.65 360 0.51 331 0.51 277 0.51 264 0.51 285 0.51 271
0.2 1.0 3.03 379 2.39 352 1.77 295 1.6 284 1.53 304 1.51 292
0.4 0.2 0.83 389 0.83 365 0.83 302 0.83 296 0.83 312 0.83 304
0.4 0.4 0.67 479 0.53 446 0.52 365 0.52 356 0.52 377 0.52 366
0.4 0.6 0.53 583 0.41 542 0.41 446 0.41 436 0.41 461 0.41 447
0.4 0.8 0.82 657 0.51 612 0.51 508 0.47 501 0.48 526 0.47 513
0.4 1.0 3.03 680 2.54 637 1.83 530 1.65 526 1.53 550 1.5 538
0.6 0.2 0.0 687 0.0 648 0.0 536 0.0 536 0.0 556 0.0 549
0.6 0.4 0.57 745 0.5 703 0.5 576 0.5 577 0.5 598 0.5 591
0.6 0.6 0.58 835 0.49 785 0.49 643 0.48 647 0.48 667 0.48 662
0.6 0.8 2.05 888 1.51 836 1.21 687 1.05 695 1.06 713 1.01 710
0.6 1.0 3.14 911 2.71 862 2.06 709 1.88 719 1.72 736 1.69 735
0.8 0.2 0.0 919 0.0 873 0.0 715 0.0 729 0.0 743 0.0 746
0.8 0.4 0.62 931 0.55 888 0.54 724 0.53 742 0.53 753 0.53 759
0.8 0.6 0.73 987 0.5 942 0.5 766 0.5 789 0.5 797 0.49 807
0.8 0.8 2.22 1018 1.63 974 1.3 791 1.19 818 1.16 824 1.13 836
0.8 1.0 2.95 1036 2.42 994 1.88 807 1.71 837 1.62 841 1.61 856
1.0 0.2 0.0 1043 0.0 1005 0.0 813 0.0 847 0.0 848 0.0 867
1.0 0.4 0.0 1050 0.0 1016 0.0 819 0.0 857 0.0 855 0.0 878
1.0 0.6 1.37 1061 0.9 1031 0.68 829 0.55 870 0.62 865 0.57 892
1.0 0.8 2.24 1072 1.64 1045 1.18 838 1.08 883 1.05 876 1.02 906
1.0 1.0 2.89 1083 2.34 1058 1.79 847 1.67 896 1.53 886 1.49 919

results were established for some cases that are either NP-

hard or polynomially solvable. Due to the NP-hardness of

the general case, we then investigated its approximability.

Unfortunately, the result was negative, as we showed that,

unless P = NP , there exists no ρ-approximation algorithm

(1 < ∀ρ < ∞) even for the case with no release dates. Thus,

we designed a general algorithm scheme and derived from

it six heuristic algorithms whose performance was evaluated

by experimental results. The findings from the experimental

results provided guidelines for choosing the best algorithm

among them for practical use, and we recommended algorithm

GSBFD as the best choice.

We did not consider setup times, preemption and weights for

the problem. It will be interesting to study the problem with

these additional constraints. Even for release dates, we only

considered the single machine cases. Hopefully, the heuristics

presented in this paper can be extended to the parallel machine

cases with release dates. We did not consider an exact algo-

rithm in this paper either. It seemed that the design of an exact

algorithm with intelligent search of an optimal solution is not

trivial at all, even though we looked into some properties and

derived a lower bound for optimal schedule. Indeed, although

it has been shown that there exists an optimal schedule which

complies with the EDD rule. However, the subproblem to

assign the individual tasks to the parallel machines is NP-

hard. This not only makes it hard for the design of an exact

algorithm with intelligent search, but also makes it non-trivial

for the design of effective local search heuristics or meta-

heuristics. All of these are worthy of further research for the

problem.

REFERENCES

[1] J.-T. Leung, H. Li, and M. Pinedo, “Order scheduling models: an
overview,” in Multidisciplinary Scheduling: Theory and Applications,
G. Kendall, E. K. Burke, S. Petrovic, and M. Gendreau, Eds. Springer,
2005, pp. 37–53, http://dx.doi.org/10.1007/0-387-27744-7_3.

[2] J. Blocher and D. Chhajed, “The customer order lead-time
problem on parallel machines,” Naval Research Logistics,
vol. 43, pp. 629–654, 1996, http://dx.doi.org/10.1002/(SICI)1520-
6750(199608)43:5<629::AID-NAV3>3.0.CO;2-7.

[3] J. Bruno, E. Coffman, and R. Sethi, “Scheduling independent tasks to
reduce mean finishing time,” Communications of the ACM, vol. 17, no. 7,
pp. 382–387, 1974, http://dx.doi.org/10.1145/361011.361064.

[4] J. Yang, “Scheduling with batch objectives,” Ph.D. dissertation, In-
dustrial and Systems Engineering Graduate Program, The Ohio State
University, Columbus, Ohio, 1998.

[5] J. Yang and M. Posner, “Scheduling parallel machines for the customer
order problem,” Journal of Scheduling, vol. 8, no. 1, pp. 49–74, 2005,
http://dx.doi.org/10.1007/s10951-005-5315-5.

[6] J.-T. Leung, H. Li, and M. Pinedo, “Approximation algorithms for min-
imizing total weighted completion time of orders on identical machines
in parallel,” Naval Research Logistics, vol. 53, no. 4, pp. 243–260, 2006,
http://dx.doi.org/10.1002/nav.20138.

[7] J. Moore, “An n job, one machine sequencing algorithm for minimizing
the number of late jobs,” Management Science, vol. 15, pp. 102–109,
1968, http://dx.doi.org/10.1287/mnsc.15.1.102.

[8] M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness. New York: W.H.Freeman, 1979.
[9] J. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine schedul-

ing problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–362,
1977, http://dx.doi.org/10.1016/S0167-5060(08)70743-X.

[10] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys, “Sequencing and
scheduling: algorithms and complexity,” in Handbooks in Operations

Research and Management Science, 1993, pp. 445–522.
[11] P. Brucker, Scheduling Algorithms, Fifth Edition. Berlin: Springer,

2007.
[12] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,

2008.
[13] E. Lawler, “A dynamic programming algorithm for preemptive schedul-

ing of a single machine to minimize the number of late jobs,” An-

LINGXIANG LI ET AL.: MINIMIZING THE NUMBER OF LATE MULTI-TASK JOBS ON IDENTICAL MACHINES IN PARALLEL 583

TABLE IV
COMPLEXITY RESULTS

Problem Complexity

1 | jbs, tsk, rj |
∑

Uj NP-hard in the strong sense

Pm | jbs, tsk |
∑

Uj NP-hard in the ordinary sense for m ≥ 2

P | jbs, tsk |
∑

Uj NP-hard in the strong sense

1 | jbs, tsk |
∑

Uj Solvable by Moore-Hodgson’s algorithm

1 | jbs, tsk, rj , dj = d |
∑

Uj Solvable in O(n logn+
∑

kj) time

1 | jbs, tsk, rj , plj = 1 |
∑

Uj Solvable by Lawler’s algorithm in O(n5) time

P | jbs, tsk, plj = p |
∑

Uj Solvable in O(n log(n) +
∑

kj) time

nals of Operations Research, vol. 26, no. 1, pp. 125–133, 1990,
http://dx.doi.org/10.1007/BF02248588.

[14] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi, Complexity and Approximation: Combi-

natorial Optimization Problems and Their Approximability Properties.
Springer, 1999.

[15] C. Papadimitriou and M. Yannakakis, “Optimization, approximation,
and complexity classes,” in Journal of Computer and System Sci-

ences, Vol. 43(3), pp. 425–440, 1991, http://dx.doi.org/10.1016/0022-
0000(91)90023-X.

[16] R. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

Journal of Applied Mathematics, vol. 17, pp. 263–269, 1969,

http://dx.doi.org/10.1137/0117039.
[17] E. Coffman, M. Garey, and D. Johnson, “Approximation algorithms

for bin packing: a survey,” in Approximation Algorithms for NP-hard

Problems, D. Hochbaum, Ed. PWS Publishers, 1997, pp. 46–93.
[18] J. Jackson, “Scheduling a production line to minimize maximum tar-

diness,” Management Science Research Project, UCLA, Tech. Rep. 43,
1955.

[19] J.-T. Leung, H. Li, and M. Pinedo, “Scheduling orders for multi-
ple product types with due date related objectives,” European Jour-

nal of Operational Research, vol. 168, no. 2, pp. 370–389, 2006,
http://dx.doi.org/10.1016/j.ejor.2004.03.030.

584 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

