
Minimizing Total Completion Time in Flowshop
with Availability Constraint on the First Machine

Yumei Huo
Department of Computer Science

College of Staten Island, CUNY

Staten Island, New York 10314, USA,

Email: yumei.huo@csi.cuny.edu

Hairong Zhao
Department of Mathematics, Computer Science & Statistics

Purdue University Northwest

2200 169th Street, IN 46323, USA

Email: hairong@pnw.edu

Abstract—We study the problem of minimizing total comple-
tion time in 2-stage flowshop with availability constraint. This
problem is NP-hard in the strong sense even if both machines
are always available. With availability constraint, although a
bulk of research papers have studied the makespan minimization
problem, there is no research done on the total completion
time minimization. This paper is the first attempt to tackle
this problem. We focus on the case that there is a single
unavailable interval on the first machine only. We show that
several special cases can be solved optimally or approximated
within a constant factor. For the general case, we develop
some lower bounds and dominance rules. Then we design and
implement a branch and bound algorithm. We investigate the
effectiveness of different lower bounds and the dominance rules
by computational experiments. We also study how the start time
and the duration of the unavailable interval affects the efficiency
of the branch and bound algorithm.

I. INTRODUCTION

S
CHEDULING with machine availability constraint has at-

tracted more and more research effort since early nineties.

Machine availability constraint is prevalent in all real industrial

settings. A machine may be unavailable due to breakdown,

preventive maintenance, or processing unfinished jobs from

a previous scheduling horizon. With the machine availability

constraint, many classical problems have to be reconsidered.

While some of the problems can still be easily solved,

many of them become more complicated and new optimal

algorithms/heuristics need to be designed. Many papers have

been devoted to various scheduling problems with machine

availability constraint, see the survey papers by Lee, Lei and

Pinedo ([18]), Sanlaville and Schmidt ([21]), Schmidt ([22]),

Ma, Chu and Zuo ([20]), etc.
For flowshop scheduling with availability constraint, most

research is done for two-stage flowshop problems([20]): there

are two machines, machine 1 and machine 2. Each machine

may have one or more unavailable intervals; There are n jobs,

1, 2, . . ., n. Each job j, 1 ≤ j ≤ n, has two operations aj and

bj which have to be processed on machine 1 and on machine

2, respectively. The operation bj cannot start on machine 2

before aj finishes on machine 1. We want to find a schedule

of the jobs so that some objectives are optimized. The bulk

of flow shop research in the last decades has been focused on

the minimization of the maximum of the job completion time,

i.e. the length or makespan of a schedule. However, Gupta

and Dudek [8] pleaded that criteria in which the costs of

each job are reflected have a better economic interpretation

than the makespan objective has. This paper deals with the

minimization of the sum of the job completion times in a

two-machine flow shop.

Based on the effect of the availability constraint to the

disrupted job’s processing, researchers discuss three cases,

namely resumable, nonresumable, and semiresumable. Resum-

able and nonresumable cases are defined by Lee in [16]. In

the resumable case, preemption is allowed thus jobs can be

resumed after being interrupted by the unavailable interval. In

the nonresumable case, a job has to be restarted if interrupted

by the interval. Semiresumable case is defined by Lee in [19]

and is between the resumable case and nonresumble case. In

this case, a job doesn’t have to be restarted from scratch,

instead, a fraction of the job needs to be reprocessed after

the machine is available.

A. Literature Review

Almost all research papers about flow shop scheduling with

availability constraint are with respect to makespan criterion

([20]). Lee ([17]) showed that if there is only one unavail-

able interval, either on the first machine or on the second

machine,the problem is NP-hard in the ordinary sense. If there

are an arbitrary number of unavailable intervals on the first ma-

chine but the second machine is always available, or there there

are an arbitrary number of unavailable intervals on the second

machine but the first machine is always available, the problem

becomes strongly NP-hard ([15]) in either case. Furthermore,

for the former case, Johnson’s rule gives a 2-approximation

regardless of the number of unavailable intervals; On the

other hand, for the latter case, there is no polynomial time

constant approximation for any constant even if there are only

two unavailable intervals on the second machine and the first

machine is always available. Many heuristics, meta-heuristics

and exact methods are developed for the general problem, see

the surveys [18],[21], [22], [20] and the references therein for

more details.

For the problem of minimizing the total completion time

with availability constraint, we are not aware of any research

so far. On the other hand, when both machines are available,

the problem has attracted a lot of attention because of its

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 627–635

DOI: 10.15439/2016F447

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 627

notorious intractability. A lot of research effort has been

focused on finding the exact solution using branch and bound

algorithm. In the following, we will review related literature.

The first research on this problem was done by Ignall and

Schrage ([13]) in 1965. They gave two lower bounds and

developed a branch-and-bound algorithm. For the experiments,

they limited the number of jobs to be 10. In 1967, Conway

et. al ([3]) showed that it is sufficient to study permutation

schedules, i.e. a schedule in which both machines have the

same job sequence with no unnecessary idle time between

operations. By using local search and other heuristics to

generate a good initial upper bound for the branch and bound

algorithm, Kohler and Steiglitz ([14]) further improved the

algorithm by Ignall and Schrage. They did the experiments on

instances of size 10 to 50 jobs. For most instances of more than

15 jobs, only suboptimal solutions is obtained within preset

time limit. In 1976, this problem was shown to be NP-Hard

in the strong sense by Gary, John and Sethi([6]).

Since 1990s, the problem was studied again by a group of

research papers, including [23], [10], [5], [4], [1], [12]. These

papers try to improve the lower bounds by using Lagrangian

relaxation ([23], [10]) or networking formulation ([1]), and/or

propose some dominance rules ([5],[4]), consequently im-

prove the performance of the branch-and-bound procedure

and solve bigger problems. Della Croce et al.’s ([4]) branch-

and-bound algorithm can solve up to 45 (30) job problems

when processing times are uniformly distributed in the [1,10]

([1,100]) range. In 2004, using a lower bound scheme based

on a network formulation, the branch and bound algorithm by

Akkan and Karabati ([1]) can solve problems with up to 60

(45) jobs, where processing times are uniformly distributed in

the [1,10] ([1,100]) range. At about the same time, Hoogeveen

et al. ([12]) also used improved lower bounds by LP to solve

instances of 40 jobs within reasonable time.

Very few papers studied the constant approximation algo-

rithms or solvable cases. The first one is by Gonzales and

Sahni ([7]) who showed that SPT (Shortest Processing Time

first) rule gives an m-approximation for m stage flowshops.

Thus for 2-stage flowshop, SPT is a 2-approximation. Later,

Hoogeveen and Kawaguvhi ([9] refined this bound for 2-stage

flowshop and they showed that the approximation ratio of SPT

is 2β/(α + β), where α = min{aj , bj}, β = max{aj , bj}.

They also studied some special cases. Specifically, they

showed that

1) if aj = a for all jobs j, the problem remains NP-hard in

the strong sense and SPT rule gives 4/3- approximation

schedule and the bound is tight.

2) if bj = b for all jobs j, then SPT rule generates an

optimal schedule.

3) if aj ≥ bj for all jobs j, scheduling the jobs in non-

decreasing order of aj gives an optimal schedule.

4) if aj ≤ bj for all jobs j, the problem can be solved

optimally in O(n3) time.

B. New Contributions

Our paper is the first attempt to tackle the total completion

time minimization problem in the 2-stage flowshop with

availability constraint. Given the complexity of the problem,

we focus on the case that there is a single unavailable interval

on the first machine. We consider the resumable case only.

We first show that SPT still provides a 2-approximation if the

single unavailable interval starts early so that no aj can finish

before it. We also show that some other special cases can be

solved or approximated within a constant factor.

For the general case, we give some lower bounds and dom-

inance rules and develop a branch and bound algorithm. We

investigate the effectiveness of different lower bounds and the

dominance rules by computational experiments. We also study

how the start time and the duration of the unavailable interval

affects the efficiency of the branch and bound algorithm.

C. Organization

The paper is organized as follows. We first give some

preliminary results in Section II. In Section III, we give a

mathematical formulation of the problem and develop five

lower bounds of the optimal solution. In Section IV, we

develop some dominance rules and a branch and bound

algorithm. Then we give analysis of the experimental results.

Finally, we conclude in section V.

II. PRELIMINARY RESULTS

Let us first introduce some notations. To indicate the

machine unavailability constraint, most literature extends the

α | β | γ notation, by adding two new components. In the α
field, hik represents the problem with k unavailable intervals

on the ith machine. So h11 and h21 represents the problem

with one unavailable interval on the first machine and on the

second machine respectively. The second component is in the

β field, we use r− a, nr− a and sr− a to denote resumable,

nonresumable and semiresumable availability constraints, re-

spectively. Thus, our problem, minimizing the total completion

time with a single unavailable interval on machine 1, can be

denoted as F2, h11 | r − a |
∑

Cj .

Like the classical model, one can show that there is an

optimal schedule that is a permutation schedule. So we only

consider permutation schedules. Let S be a permutation sched-

ule of the jobs, for job j, we use Ca,j(S), Cb,j(S) to denote

the completion time of the first operation aj and the second

operation bj in S, respectively. The completion time of job j
in S, is denoted by Cj(S) which is equal to Cb,j(S). We use

[j] to denote the job scheduled in position j on both machines,

and use Ca,[j](S) and Cb,[j](S) to represent the completion of

a[j] and b[j] in S, respectively. If it is clear from the context,

S may be omitted.

We frequently sort the jobs, for convenience, we use SPTa,

SPTb, SPT to denote the rule that schedules the jobs in

non-decreasing order with respect to aj , bj , and (aj + bj)
respectively.

From [7], we know that SPT is a 2-approximation algorithm

when both machines are available. When there is a single

628 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

unavailable interval, we show in the following that the per-

formance of SPT depends on the start time of the interval.

Lemma 2.1: Let [s, t] be the unavailable interval for

F2, h11 | r − a |
∑

Cj , if s ≥
∑n

j=1 aj or s < min{aj},

SPT is a 2-approximation.

Proof: First, if s ≥
∑n

j=1 aj , then all aj-s can finish

before the unavailable interval, thus the interval has no effect

on the jobs at all. By [7], SPT is a 2-approximation.

Now, let us consider the case s < min{aj}. Suppose the

jobs are indexed so that (aj + bj) ≤ (aj+1 + bj+1) for 1 ≤
j ≤ n − 1. We denote P1 to be the problem of scheduling

of n jobs with processing time (aj + bj) on a single machine

with the unavailable interval [s, t]. Then one can easily show

that the optimal schedule S1 for P1 is obtained by SPT rule,

and the completion time of j-th job will be C[j](S1) = t +
∑j

k=1(ak + bk).

Let S be the schedule generated by SPT rule for F2, h11 |
r − a |

∑

Cj . Apparently, we have

Cj(S) ≤ C[j](S1) = t+

j
∑

k=1

(ak + bk).

Now, consider the relaxed flowshop problem P2 where aj
and bj can be concurrently executed and the completion time

is the time when both aj and bj finish. Let S2 be the optimal

schedule for this relaxed flowshop problem. We must have that

C[j](S2) ≥
1
2 (t+

j
∑

k=1

(a[k] + b[k])) ≥
1
2 (t+

j
∑

k=1

(ak + bk)).

Let S∗ be the optimal schedule for F2, h11 | r− a |
∑

Cj .

Then we have

C[j](S
∗) ≥ C[j](S2) ≥

1

2
(t+

j
∑

k=1

(ak + bk)) ≥
1

2
C[j](S).

Thus,
∑n

j=1 Cj(S) ≤
∑n

j=1 2C[j](S
∗). This completes the

proof.

Unfortunately, if s is arbitrary, SPT may generate a schedule

that has a very large approximation ratio.

Lemma 2.2: For F2, h11 | r − a |
∑

Cj with a single

unavailable interval [s, t], if s ≥ a1 where a1+b1 = min{aj+
bj}, SPT can generate a schedule whose approximation ratio

is n in the worst case.

Proof: Given an instance I of the problem with a single

unavailable interval [s, t]. Let I ′ be the corresponding instance

of F2 ||
∑

Cj which is obtained from I by removing the

unavailable interval. Let Copt and C ′
opt be the minimum total

completion time for I and I ′, respectively. It is obvious that

C ′
opt ≤ Copt.

Let S be the schedule generated by SPT rule for instance I
and S′ be the SPT schedule for I ′. For convenience, suppose

the jobs are indexed in non-decreasing order of (aj + bj),
1 ≤ j ≤ n. Let i be the last job such that Ca,i(S) ≤ s. Since

a1 ≤ s, i ≥ 1. It is clear that for j ≤ i, we have Cj(S) =

Cj(S
′); for all j > i, we have Ca,j(S) = Ca,j(S

′) + (t− s),
so Cj(S) = Cb,j(S) ≤ Cb,j(S

′) + (t− s). Thus,

n
∑

j=1

Cj(S)≤
i
∑

j=1

Cj(S
′) +

n
∑

j=i+1

(Cj(S
′) + (t− s))

≤

n
∑

j=1

Cj(S
′)

+ (n− i)(t− s).

On the other hand, since
∑n

j=1 aj > s , at least one job must

finish after t in any schedule. Thus the completion time of the

last job in the optimal schedule is

C[n](S
∗) ≥ ((t− s) +

n
∑

j=1

(aj + bj))/2 ≥ (t−s)
2 + Cn(S

′)
2 .

For j-th job in S∗, j 6= n, we have that C[j](S
∗) ≥ Cj(S

′)/2.

Thus we have
∑n

j=1 Cj(S
∗) ≥

∑n
j=1 Cj(S

′)/2 + (t − s)/2
and

n
∑

j=1

Cj(S)≤

n
∑

j=1

Cj(S
′)

+ (n− i)(t− s)

≤(2

n
∑

j=1

Cj(S
∗)− (t− s)

+ (n− i)(t− s)

≤2
n
∑

j=1

Cj(S
∗) + (n− i− 1)(t− s)

≤(n− i+ 1)
n
∑

j=1

Cj(S
∗).

Since we assume i ≥ 1,
∑n

j=1 Cj(S) ≤ nCopt.

Next, we show that for some special cases in terms of aj-s

and/or bj-s, we can use SPTa or SPTb to solve the problem

optimally or get a good approximation.

Lemma 2.3: SPTa generates a schedule whose total com-

pletion time is minimum for

(a) F2, h11 | r − a, bj = b |
∑

Cj ; and

(b) F2, h11 | r − a, aj ≥ bj |
∑

Cj

Proof: First consider case (a): F2, h11 | r − a, bj = b |
∑

Cj . Let S be an arbitrary schedule and suppose that the

jobs are scheduled in the order of 1, 2, · · · . Define C0 = 0,

then the completion time of job i in S is

Ci(S) = max(Ci−1, Ca,i) + b,

where

Ca,i =

{

∑i
j=1 aj , if

∑i
j=1 aj ≤ s

∑i
j=1 aj + (t− s), if

∑i
j=1 aj > s.

Apparently scheduling the jobs in SPTa minimizes the total

completion time.

Now we consider case (b): F2, h11 | r−a, aj ≥ bj |
∑

Cj .

Suppose that a1 ≤ a2 ≤ · · · ≤ an. Since aj ≥ aj−1 ≥ bj−1, in

the schedule generated by SPTa, bj can be scheduled immedi-

ately after aj completes, thus minimizing the total completion

HAIRONG ZHAO, YUMEI HUO: MINIMIZING TOTAL COMPLETION TIME IN FLOWSHOP WITH AVAILABILITY CONSTRAINT 629

time is the same as minimizing the total completion time of

the aj-s which is obtained by SPTa rule.

Lemma 2.4: SPTb generates a schedule for F2, h11 | r −
a, aj = a |

∑

Cj whose total completion time is at most 7/3
times that of the optimal schedule.

Proof: Given an instance I of problem F2, h11 | r −
a, aj = a |

∑

Cj with the unavailable interval [s, t], let

Copt be its minimum total completion time for I . Let S
be the schedule generated by the SPT rule. Let I ′ be the

instance of F2 | aj = a |
∑

Cj obtained from I by

removing the unavailable interval. Let C ′
opt be the minimum

total completion time for I ′. Apparently, we have C ′
opt ≤ Copt.

Let S′ be the SPT schedule for I ′. From [9], we know

that
∑n

j=1 Cj(S
′) ≤ 4

3C
′
opt ≤ 4

3Copt. Let i = ⌊ s
a⌋. Then

only i jobs can finish before t on the first machine in any

schedule which implies that Copt > (n − i)t. Thus we have

Cj(S) = Cj(S
′) for 1 ≤ j ≤ i. For j > i, its completion

time in S is increased by at most the length of the interval

compared with that in S′, thus, Cj(S) ≤ Cj(S
′)+ (t− s). So

we have

n
∑

j=1

Cj(S)≤

n
∑

j=1

Cj(S
′)

+ (n− i)(t− s)

≤ 4
3C

′
opt + Copt

≤ 4
3Copt + Copt

≤ 7
3Copt,

and this completes the proof.

III. MATHEMATICAL FORMULATION

Our problem can can be formulated as follows:

min
∑n

j=1 Cb,j subject to

Ca,j ≥ aj ∀j (1)

Cb,j ≥ Ca,j + bj ∀j (2)

Ca,i ≥ Ca,j + ai
∨

Ca,j ≥ Ca,i + aj ∀i, j, i 6= j (3)

Cb,i ≥ Cb,j + bi
∨

Cb,j ≥ Cb,i + bj ∀i, j, i 6= j (4)

Ca,j ≤ s
∨

Ca,j > t ∀j (5)

The schedule is a permutation schedule. (6)

The first four constraints are the same as the classical model.

Constraint (1) says that the processing of any job on first

machine cannot start before time 0; and the constraint (2)

specifies the second operation of any job can’t start before the

first operation finishes; and the constraints (3) and (4) show

that a machine can not process more than one job at a time.

The constraint (5) is unique to our model, it says that the

completion time of the first operation is either before or after

the breakdown. An additional redundant constraint is (7) or

(8), which will be used when we develop lower bounds.

Cb,j ≥

(

min
1≤k≤n

ak

)

+ bj ∀j (7)

Cb,j ≥

(

min
1≤k≤n

ak

)

+(t−s)+bj if min
1≤k≤n

ak > s ∀j (8)

A. Lower Bounds

Let Copt denote the minimum total completion time of the

jobs. Based on the formulation, we can develop several lower

bounds for Copt by relaxing some of the constraints. Quite

a few lower bounds were developed in previous literature

for the classical flowshop model, see [5] and the references

therein. With breakdown, those lower bounds either need to be

modified or not work at all. In the following, we will examine

those lower bounds.
1) LB1: This lower bound corresponds to the first lower

bound of Ignall and Schrage [13]. The first lower bound from

[13] is obtained by relaxing the constraint (4) so that the

second machine can simultaneously process as many jobs as

needed. Thus, the jobs should be scheduled in SPTa order

on the first machine, and bj-s can be scheduled immediately

without any delay after aj finishes. With breakdown, the same

idea still works, except that we have to count the number of

aj-s that are scheduled after the breakdown.

Suppose a1 ≤ a2 ≤ · · · ≤ an and k is the smallest integer

such that
∑k+1

j=1 ak > s where s is the start time of the

unavailable interval. It is easy to see that there are at least

(n − k) jobs finish after the breakdown on the first machine

in any schedule. Thus

LB1 =

n
∑

j=1

j
∑

i=1

ai

+ (n− k)(t− s) +
n
∑

j=1

bj .

2) LB2: This corresponds to the second lower bound of

Ignall and Schrage [13], which is obtained by relaxing the

constraints (1) and (3). Thus, the jobs should be scheduled in

SPTb order subject to constraint (7). Again, with breakdown,

we need to do a modification. If min{ai} ≤ s, then the lower

bound is not affected by the breakdown; otherwise, constraint

(8) should be satisfied. Assume bi1 ≤ bi2 ≤ · · · ≤ bin , then

we have that

LB2 =

{

nmin{ai}+
∑n

j=1

∑j
p=1 bip , if min ai ≤ s

n(min{ai}+ (t− s)) +
∑n

j=1

∑j
p=1 bip , otherwise.

3) LB3: this corresponds to the lower bound in [23], which

is obtained by applying Lagrangian relaxation to constraint (2)

to the classical model. The bound from [23] is based on the

assumption that Ca,[j] =
∑j

i=1 a[i] which is true for classical

model but not true with breakdown. However, we can still use

it to get lower bounds for partial schedules whose completion

time on the first machine passes the unavailable interval. For

the details on how to calculate/estimate the lower bound, see

[23].

From the analysis, we can see LB4 givens a stronger bound

than both LB1 and LB2.
4) LB4: This corresponds to LBDNT2 in [5] which dom-

inates the first two lower bounds in classical model. We can

adapt this bound for our model.

First note that with breakdown, it is still the case that for any

schedule S and the j-th job in S, Ca,[j](SPTa) ≤ Ca,[j](S),

630 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

where SPTa represents the schedule generated by SPTa rule.

If we relax the constraint (3), then the problem is equivalent

to a single machine problem with each job j has a release

time aj or aj + (t− s) if aj > s, and processing time bj . A

lower bound of the new problem is given by schedule the jobs

using SRPT (Shortest Remaining Processing Time First). As

with the classical model, it is still true that Cb,[j](SRPT) ≤
Cb,[j](S) for S and j.

Use similar argument as in [5], we can show that for any

schedule S,

n
∑

j=1

Cj(S)≥
n
∑

j=1

max
(

Ca,[j](SPTa) + b[j](S), Cb,j(SRPT)
)

=

n
∑

j=1

Cb,j(SRPT)

+∆,

where

∆ =
n
∑

j=1

max(0, bj(S)− (Cb,[j](SRPT)− Ca,[j](SPTa))),

and ∆ is minimized by sorting both bj-s of S and

(Cb,[j](SRPT)− Ca,[j](SPTa)) in non-decreasing order. By

the analysis, it is easy to see that LB4 generates a bound that

is better than both LB1 and LB2.

5) LB5-Lower Bound by Linear Programming: If we know

that the number of first operations that finish before breakdown

in the optimal schedule is K, then we can modify the formu-

lation from [12] as follows. Let wj be the time that b[j] has

to wait after a[j] finishes and w1 = 0. Thus we have

Cb,[j] = Ca,[j] + b[j] + wj for each position j = 1, . . . , n.

Then the problem is to minimize

n
∑

j=1

(Ca,[j] + wj + b[j])

subject to

a[k]+wk ≥ b[k−1]+wk−1 ∀k = 2, . . . , n, and k 6= K+1 (9)

a[K+1] + w[K+1] + (t− s) ≥ b[K] + wK (10)

K
∑

i=1

a[i] ≤ s (11)

Let xij be the binary variable such that xij = 1 means job

i is the j-th job in the schedule and xij = 0 otherwise. Then

the problem can be formulated as to

minimize

n
∑

j=1

(n− j + 1)

n
∑

i=1

xijai +

n
∑

j=1

wj +

n
∑

j=1

bj + (n−K)(t− s)

subject to

n
∑

j=1

xij ≥ 1, ∀i = 1, . . . , n

n
∑

i=1

xij ≤ 1, ∀j = 1, . . . , n

n
∑

i=1

xikai + wk −

(

n
∑

i=1

xik−1bi + wk−1

)

≥ 0, ∀k 6= K + 1

n
∑

i=1

xikai+wk+(t−s)−

(

n
∑

i=1

xik−1bi + wk−1

)

≥ 0, k = K+1

K
∑

j=1

n
∑

i=1

xijai ≤ s

xij ∈ {0, 1} for i = 1, . . . n; j = 1, . . . , n

wj ≥ 0 for j = 2, . . . , n

The problem is that we don’t know the magic number K.

However, we can find its minimum possible value of Kmin

and its maximum possible value Kmax by sorting the first

operations in SPTa and LPTa (longest processing time first

by ajs) respectively. Let LP (k) be the lower bound for our

problem with a specific K = k. Then the lower bound for our

problem is minKmax

k=Kmin
LP (k).

IV. BRANCH AND BOUND ALGORITHM

Our branch-and-bound procedure builds the search tree in a

depth-first-search fashion. It starts with the root node at level

0. Each node at level k of the tree corresponds to an initial

partial schedule in which k jobs have been put in the first k
positions. For this node, at most (n − k) child nodes will be

created, one for each unscheduled job. The size of the search

tree can be reduced by applying lower bounding technique and

dominance rules at each node.

A. Upper Bound

To get an initial upper bound, we first generate some random

schedules. We also generate the neighbors of these random

schedules which are obtained by local interchanges. Then,

we pick the best among these schedules and the schedules

obtained by applying SPT , SPTa, SPTb. The upper bound

is updated any time a leaf of the search tree results in a better

schedule. At each internal node, we also calculate the upper

bound using SPT , SPTa, SPTb based on the partial schedule,

the upper bound is updated if a better schedule is obtained.

HAIRONG ZHAO, YUMEI HUO: MINIMIZING TOTAL COMPLETION TIME IN FLOWSHOP WITH AVAILABILITY CONSTRAINT 631

B. Lower Bound of a Partial Schedule

The LB1, LB2, LB3, LB4 and LB5 mentioned in previous

section assume that no jobs have been scheduled yet. All

of them can be adjusted if some jobs have been scheduled.

However, it will be too expensive to calculate LB5 at each

node. So we only calculate LB5 at the root node, and enhance

the lower bound based on the partial schedule using the

technique from [9]. All other lower bounds will be calculated

at each node. If the maximum lower bound is greater than the

current upper bound, the node will be cut from the search tree.

C. Dominance Rules

For the aim of improving the performance of the branch

and bound algorithm, dominance rules can be used to reduce

the size of the search space.

Given a (partial) schedule S, we use CA(S), CB(S) to

represent the completion time of the last operation on machine

1 and 2 in S, respectively. Let TC(S) be the total completion

time of the jobs in S. The earliest available time for the

remaining jobs on the second machine, denoted by r(S), is

max(CB(S), CA(S) + mini/∈S ai) or max(CB(S), CA(S) +
mini∈S ai + (t− s)) if s < CA(S) + mini/∈S ai ≤ t.

We have the following dominance rules that can be applied

to cut the branches of the search tree.

Lemma 4.1: Dominance rule 1. Given two partial schedule

S1 and S2 of the same set of jobs. If TC(S1) ≤ TC(S2) and

CB(S1) ≤ r(S2), then to find the optimal schedule of all jobs,

there is no need to consider the schedules based on S2.

It is easy to see that the above lemma is true. Given a schedule

S, a particular schedule that can be checked to see if it

dominates S is the schedule resulting from Johnson’s rule. If

CA(S) ≤ s, we check the schedule generated by Johnson’s

rule for the same set of jobs. Otherwise, CA(S) > t, we

check the schedule that schedules the jobs in the same way

as S before t, and schedule the remaining jobs after t using

Johnson’s rule. In both cases, the schedules being checked are

guaranteed to have a makespan not greater than that of S.

Lemma 4.2: Dominance rule 2 ([4]). Given two partial

schedules of the same set of jobs, S1 and S2, then S2 can

be pruned if both of the following inequalities hold:

TC(S1) ≤ TC(S2)

and

(CB(S1)− CB(S2))q ≤ TC(S2)− TC(S1),

where q is the number of unscheduled jobs.

The Lemma is obviously true, actually it holds no matter how

many breakdowns on the first machine, as long as there is no

breakdown on the second machine. The rule can be applied

to a schedule S by checking any adjacent schedules of S.

Adjacent schedule can be obtained by swapping any two jobs

i and j or by inserting j before or after i, etc.

Lemma 4.3: Dominance rule 3. Given a partial schedule

S and an unscheduled job i such that ai ≤ bi. If for any

other unscheduled job j , we have ai ≤ aj and bi ≤ bj , and

CA(S) + ai + aj ≤ s or CA(S) + mink/∈S ak > s then there

exists an optimal schedule that job i is the first among all the

unscheduled jobs.

Proof: A similar rule for the classical model without

availability constraint is given by Croce et. al ([4]) (Dominance

rule D2). One can prove the lemma by adapting the proof from

[4].

It should be noted that this dominance rule holds only if

CA(S) + ai + aj ≤ s or CA(S) + mink/∈S ak > s. For

example, consider a1 = a2 = a3 = 2, b1 = 2, b2 = 3 and

b3 = 4. Suppose the unavailable interval is [5, 11]. At the

beginning, S is empty, the conditions are satisfied for i = 1,

thus by Lemma 4.3, we know there must exist an optimal

schedule starting with job 1. So we don’t need to consider the

schedules that start with job 2 or 3. On the other hand, if the

unavailable interval is [3, 9], neither CA(S)+ ai + aj ≤ s nor

CA(S)+mink/∈S ak > s holds for i = 1. So it is not clear that

there exists an optimal schedule starting with job 1. It turns

out the the optimal schedule starts with the last job 3, not job

1.

Lemma 4.4: Dominance rule 4. Given a partial schedule

π and two unscheduled jobs i and j, such that ai ≤ aj ,

bi ≥ bj . Let L = s − CA(π), and π1 and π2 be sequences

of unscheduled jobs. Let S1 = πiπ1jπ2 and S2 = πjπ1iπ2.

Then S1 dominates S2 if one of the following cases is true,

(a) 0 < L ≤ ai ≤ aj , and

max(CA(π) + ai + (t− s), CB(π)) + bi
≤ max(CA(π) + aj + (t− s), CB(π)) + bj ;

(b) L ≤ 0 or L > ai, and

max(CA(π) + ai, CB(π)) + bi
≤ max(CA(π) + aj , CB(π)) + bj .

Proof: If we could show (1) Cb,i(S1) + Cb,j(S1) ≤
Cb,i(S2) + Cb,j(S2), and (2) Cb,k(S1) ≤ Cb,k(S2) for any

k 6= i, j, then both the makespan and the total completion time

of S1 are less than or equal to that of S2, thus the lemma is

true.

We consider case (a) first. Apparently, for any k ∈ π, we

have Ca,k(S1) = Ca,k(S2) and Cb,k(S1) = Cb,k(S2). For job

i in S1 and job j in S2, the condition 0 < L ≤ ai ≤ aj means

that neither ai not aj can finish before the unavailable interval

given the partial schedule π. So for S1, we have Ca,i(S1) =
CA(π)+ai+(t−s), Cb,i(S1) = max(Ca,i(S1), CB(π))+ bi.

Similarly for S2, we have Ca,j(S2) = CA(π)+aj+(t−s),
Cb,j(S2) = max(Ca,j(S2), CB(π)) + bj .

Since ai ≤ aj , we have Ca,i(S1) ≤ Ca,j(S2). The condition

max(CA(π)+ai+(t−s), CB(π))+bi ≤ max(CA(π)+aj +
(t− s), CB(π)) + bj implies

Cb,i(S1) ≤ Cb,j(S2).

Consequently, for any k ∈ π1, it must be true that

Ca,k(S1) ≤ Ca,k(S2) and Cb,k(S1) ≤ Cb,k(S2). Therefore

CB(πiπ1) ≤ CB(πjπ1).

632 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Clearly, Ca,j(S1) = Ca,i(S2). Since bi ≥ bj , we have

Cb,j(S1) = max(Ca,j(S1), CB(πiπ1) + bj ≤ Cb,i(S2) =
max(Ca,i(S1), CB(πjπ1)) + bi Thus, for any k ∈ π2,

Ca,k(S1) = Ca,k(S2) and Cb,k(S1) ≤ Cb,k(S2).
For case (b), given the partial schedule π, if L ≤ 0, then

all the remaining jobs including i and j have to be scheduled

after the unavailable interval. If L ≥ ai, then ai can finish

before the unavailable interval, but aj may or may not finish

before the unavailable interval. Either way, the inequality

max(CA(π)+ai, CB(π))+bi ≤ max(CA(π)+aj , CB(π))+bj

guarantees that Cb,i(S1) ≤ Cb,j(S2). We can use similar

argument as case (a) to prove that Cb,k(S1) ≤ Cb,k(S2) for

any k 6= i, j, thus the lemma is true.

D. Experimental Results

The instances are generated as follows. For processing

times, we use three distributions, [1, 10], [1, 50], [1, 100]. It

is known that the distribution [1, 100] generates the most

difficult type of problem instances. The [1, 10] distribution

is the easiest and also the most practical distribution. The

number of jobs n takes on values 10, 15, 20, 25, 30, 35.

The start time s of the unavailable intervals are generated

from four uniform distributions, [0, 1
4A], [

1
4A,

1
2A], [

1
2A,

3
4A],

[34A,A], where A =
∑n

j=1 aj . The duration of the unavailable

intervals, (t−s), takes the values of 1% 20%, 40%, 60%, 80%,

100% of A. For each combination of n and a processing time

distribution, we generate 25 sets of n jobs; then for each set

of n jobs, we generate 16 instances by combining different

distribution of s and (t− s).
We pre-process the jobs in SPT , SPTa, SPTb and John-

son’s rule and keep this order so that they can be accessed at

each node of the tree. We set the termination criteria of the

branch and bound algorithm by limiting the number of the

nodes explored to be 5000000.

1) Comparison of Lower Bounds At the Root Node: From

previous discussion, when min1≤i≤nai < s, the LB2 bound

doesn’t put much consideration of the unavailable interval on

the first machine, so its is expected to be the worst lower

bound. LB3 can only be applied for partial schedules passing

the unavailable interval. We also know that LB4 dominates

LB1 and LB2. LB5 is generated by linear programming.

Experiments show that at the root node, LB5 always gives

the best lower bound, and LB4 is very close to LB5. On

average, LB1 is not that bad. The performance of LB2 can

vary a lot from instance to instance. Table I shows the ratios

of the LB5 with LB1, LB2, and LB4 for the instances with

n = 35. For each distribution of the processing times, we

list the minimum, maximum, average ratios and the standard

deviation.

We also notice that the gap of LB5 at the root and the

optimal solutions is very small. Table II shows the value of

LB5 at the root compared with the optimal solution (or the

best solution found if optimal not found) for the instances

with n = 35. We can see on average, LB5 is within 1% of

the optimal (best) solution.

2) Lower Bounds at the Internal Node: Although LB5 is

very good and close to the optimal solution, but its computa-

tion takes a lot of time, thus we cannot afford to compute at

other nodes. So we use the method from [12] to enhance LB5

based on the partial schedule at each node. For each instance,

we record the number of nodes it explores before it finds the

optimal solution or reach the maximum node limit, 5000000.

For each of the lower bound LB1, . . ., LB5, We also record the

number of nodes such that the lower bound is maximum. We

observed that LB4 provides the best lower bound at internal

nodes for almost all instances. Fig.1 shows 125 instances of

35 jobs. For each instance, among all the nodes explored, the

figure shows the number of times when each of LB3, LB4

and LB5 equals to max(LB3, LB4, LB5). We can clearly

see that LB4 provides the best lower bounds at the majority

of the nodes in the search tree, and LB3 provides good lower

bound only for a very small portion of the nodes in the tree.

3) Dominance Rule: To find out the effectiveness of the

dominance rules, we run experiment with and without applying

dominance rules. For each instance, we compare the number of

nodes explored by the algorithm in both cases. We compute

the ratio of the number of nodes with dominance rules and

the number of nodes without dominance rules. Table III

lists minimum, maximum, and average ratio for different

processing time distribution when n = 20. We can see on

average, the number of the nodes with dominance rules is

only 10% of the number of nodes with no dominance rules,

i.e 10 times speed up of the algorithm.

4) Unavailable Interval: Fig. 2 shows how the starting time

of the unavailable interval affects the size of the search tree.

In the figure, we show the number of nodes explored for 120

instances of n = 20. The instances are divided into 4 groups

of 30 instances whose unavailable interval starting times

are drawn from the distribution [0, 1
4A], [

1
4A,

1
2A], [12A,

3
4A],

[34A,A], respectively. The figure suggests that the search tree

size is getting bigger as the unavailable interval starts later.

We can also see that the LB3 plays a bigger role when the

unavailable intervals starts before 1
4A.

Fig. 3 shows how the length of the unavailable interval

affects the size of the search tree. The effect is not that obvious.

5) Problems Size Solved: Our algorithm is implemented in

C++, and Gurobi is used for linear programming. Within the

maximum number of nodes 5000000, we were able to solve

the instances of 30 jobs. When n = 35, we can solve the

majority of the instance if the processing time distribution

is from [1, 10]. For the other two distributions, [1, 50] and

[1, 100], we can only solve some of the instances. For example,

for the 125 instances we used from Table I and Table II, the

number of solved instances are 88, 28, 19, respectively. On the

other hand, from the Table II, we know that the best solutions

found by the branch and bound algorithm are actually very

close to the optimal solution.

V. CONCLUSION

In this paper, we studied the problem of minimizing total

completion time subject to the constraint that there is a

HAIRONG ZHAO, YUMEI HUO: MINIMIZING TOTAL COMPLETION TIME IN FLOWSHOP WITH AVAILABILITY CONSTRAINT 633

Fig. 1. Comparison of the lower Bounds at Internal Nodes

Fig. 2. Number of nodes explored by starting time of the unavailable interval, each of [0, 1

4
A], [1

4
A, 1

2
A], [1

2
A, 3

4
A], [3

4
A,A] has 30 instances

Fig. 3. Number of nodes explored by length of the unavailable interval, each of 1%A, 20%A, 40%A,60%A,80%A and 100%A has 20 instances

634 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE I
LOWER BOUNDS COMPARISON AT THE ROOT NODE

[1,10] distribution [1,50] distribution [1,100] distribution
LB5/LB1 LB5 /LB2 LB5 / LB4 LB5/LB1 LB5 /LB2 LB5 / LB4 LB5/LB1 LB5 /LB2 LB5 / LB4

min 1.018 1.089 1.018 1.005 1.072 1.005 1.005 1.054 1.005
max 1.174 3.410 1.119 1.301 3.454 1.151 1.253 3.351 1.160

average 1.080 1.601 1.069 1.102 1.692 1.067 1.089 1.598 1.064
standard deviation 0.042 0.485 0.027 0.084 0.552 0.038 0.069 0.486 0.043

TABLE II
LB5 AT THE ROOT COMPARED WITH OPTIMAL SOLUTION/BEST SOLUTION

FOUND

[1,10] [1,50] [1,100]
min 0.001 0.002 0.002
max 0.013 0.046 0.028

average 0.001 0.014 0.012
standard deviation 0.003 0.009 0.007

TABLE III
THE RATIO OF NUMBERS OF NODES IN SEARCH TREES USING

DOMINANCE RULES WITH THAT NOT USING DOMINANCE RULES

[1,10] [1,50] [1,100]
min 0.002 0.011 0.004
max 0.149 0.714 0.244

average 0.027 0.117 0.069

single unavailable interval on the first machine. We show

that some special cases can be solved optimally or within a

constant factor; and for the general case, SPT rule gives an

n-approximation. We performed computational experiments to

investigate the effectiveness of different lower bounds and the

dominance rules. It is observed that at the root node, LB5

provides the best lower bound with the expense of time, LB4

can provide almost good lower bounds but more efficiently at

the root node and gives the best lower bounds at most internal

nodes. The dominance rules speeds up the algorithm dramat-

ically. We also observed that the earlier the the unavailable

interval starts, the more efficient the algorithm is; on the other

hand, the duration of the unavailable interval does not affect

the efficiency of the branch and bound algorithm very much.

REFERENCES

[1] Akkan, C. and S. Karabati, The two-machine flowshop total completion
time problem: Improved lower bounds and a branch-and-bound algo-
rithm, European Journal of Operational Research, 159, 420-429, 2004,
http://dx.doi.org/10.1016/S0377-2217(03)00415-6.

[2] Cadambi, B. W. and Y. S. Sathe, Two-machine flowshop scheduling to
minimise mean flow time, Opsearch, 30, 35-41,1993.

[3] Conway, R. W., W. L. Maxwell, and L. W. Miller, Theory of Scheduling.
Addison-Wesley, Reading, MA, 1967.

[4] Della Croce, F., M. Ghirardi, and R. Tadei, An improved branch-and-
bound algorithm for the two machine total completion time flow shop
problem, European Journal of Operational Research, 139, 293-301, 2002,
http://dx.doi.org/10.1016/S0377-2217(01)00374-5.

[5] Della Croce, F., V. Narayan, and R. Tadei, The two-machine total comple-
tion time flow shop problem, European Journal of Operational Research,
90, 227-237, 1996, http://dx.doi.org/10.1016/0377-2217(95)00351-7.

[6] Garey, M. R., D. S. Johnson, and R. Sethi, The complexity of flowshop
and jobshop scheduling, Mathematics of Operations Research, 13, 330-
348, 1976, http://dx.doi.org/10.1287/moor.1.2.117.

[7] T. Gonzalez and S. Sahni, Flowshop and jobshop schedules:
Complexity and approximation. Operations Research 26, 36-52,
1978,http://dx.doi.org/10.1287/opre.26.1.36.

[8] J.N.D. Gupta and R.A.Dudek, Optimality criteria for
flowshop schedules, AIIE Trans, 3, 199-205, 1971,
http://dx.doi.org/10.1080/05695557108974807.

[9] H. Hoogeveen and T. Kawaguchi, Minimizing total completion time
in a two-machine flowshop: Analysis of special cases, Mathe-
matics of Operations Research, Vol. 24 Issue 4, 887-910, 1999,
http://dx.doi.org/10.1287/moor.24.4.887.

[10] Hoogeveen, J. A. and S. L. Van de Velde, Stronger La-
grangian bounds by use of slack variables: applications to machine
scheduling problems, Mathematical Programming, 70, 173-190, 1995,
http://dx.doi.org/10.1007/BF01585935.

[11] Hoogeveen, J. A. and S. L. Van de Velde, Scheduling by positional
completion times: Analysis of a two-stage flow shop problem with
a batching machine, Mathematical Programming, 82, 273-289, 1998,
http://dx.doi.org/10.1007/BF01585876.

[12] Hoogeveen, J. A., L. van Norden and S. L. Van de Velde, Lower bounds
for minimizing total completion time in a two-machine flow shop, Journal
of Scheduling, 9: 559-568, 2006, http://dx.doi.org/10.1007/s10951-006-
8789-x.

[13] Ignall, E., and L. E. Scharge, Application of the branch and bound
technique to some flow-shop problems, Operations Research, 13, 400-
412, 1965, http://dx.doi.org/10.1287/opre.13.3.400.

[14] Kohler, W. H. and K. Steiglitz, Exact, approximate and guaranteed
accuracy algorithms for the flowshop problem n/2/F/F, Journal ACM, 22,
106 -114, 1975, http://dx.doi.org/10.1145/321864.321872.

[15] W. Kubiak, J.Blazewicz, P. Formanowicz, J. Breit and G. Schmidt,
Two-machine flow shops with limited machine availability, European
Journal of Operational Research Volume 136, Issue 3, pp. 528-540, 2002,
http://dx.doi.org/10.1016/S0377-2217(01)00083-2.

[16] C.-Y. Lee, Machine scheduling with an availability constraints,
Journal of Global Optimization, 9, pp. 363-382, 1996,
http://dx.doi.org/10.1007/BF00121681.

[17] C.-Y. Lee, Minimizing the makespan in the two-machine flowshop
scheduling problem with an availability constraint, Operations Re-
search Letters, 20, pp. 129-139, 1997, http://dx.doi.org/10.1016/S0167-
6377(96)00041-7

[18] C. Y. Lee, L. Lei and M. Pinedo, Current trends in deterministic
scheduling, Annals of Operations Research,70(0) : 1-41, 1997.

[19] C. Y. Lee, Two-machine flowshop scheduling with availability con-
straints, European Journal of Operational Research, 114, pp. 420-429,
1999, http://dx.doi.org/10.1016/S0377-2217(97)00452-9

[20] Ma, Y., C. Chu and C. Zuo, A survey of scheduling with deterministic
machine availability constraints, Computers & Industrial Engineering,
58(2), pp. 199-211, 2010, http://dx.doi.org/10.1016/j.cie.2009.04.014

[21] E. Sanlaville and G. Schmidt, Machine scheduling with availability
constraints, Acta Informatica, 35, pp. 795-811, 1998.

[22] G. Schmidt. Scheduling with limited machine availability, Euro-

pean Journal of Operational Research, 121(1), pp. 1-15, 2000,
http://dx.doi.org/10.1016/S0377-2217(98)00367-1

[23] Van de Velde, S. L, Minimizing the sum of the job completion times
in the two-machine flow shop by Lagrangian relaxation, Annals of
Operations Research, 26, 257 - 268, 1990.

HAIRONG ZHAO, YUMEI HUO: MINIMIZING TOTAL COMPLETION TIME IN FLOWSHOP WITH AVAILABILITY CONSTRAINT 635

